Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

MARKED EVENT METHOD IN DISCRETE EVENT SIMULATION

ABSTRACT

In this paper, we develop a new method for sensitivity
analysis of discrete event dynamic systems. The method is
based on the observation that event lists under nominal
system parameters can be shared by simulations with
slightly perturbed parameters. Thus the simulation on
different system configurations may be more efficient. The
resulting algorithm is exact for Markovian systems, and
approximate for non-Markovian systems.

Experimental

results are given to study the new algorithms.

1. INTRODUCTION.

Modelling, analysis, and optimization of discrete event
dynamic systems (DEDS) are gaining more interest from
both research institutions and industry. A typical discrete
event system evolves from one state to the other driven by
a large set of events occurring in discrete times. The
occurrence of these events may be affected by the required
logical conditions as well as the random phenomenon in
the system. This is a common feature of most modern man-
made systems such as flexible manufacturing systems.

Examples of random discrete cvents in these systems are:

»parts arrival”, "machine down", etc.

Perturbation Analysis (PA), among others, is a
relatively new technique aiming at more efficient use of

simulation data for sensitivity analysis and optimization

Shu Li
Department of Systems & Industrial Engineering
University of Arizona
Tucson, AZ 85721

719

of DEDS (Ho (1987,1988)). Given a simulated or observed
sample path of a discrete event dynamic system, PA
attempts to derive information about perturbed systems
without additional simulation or observation. Recently,
the concepts of state matching and event matching have
been proposed, leading to the Extended Perturbation
Analysis (EPA) (Ho and Li (1988), Li (1989)) and the
Event Matching Algorithm (EMA) (Ho, Li, and Vakili
(1988)). The motivation of these methods is to overcome
the limitations of infinitesimal perturbation analysis (IPA)
(Heidelberger et al (1988)). Although EPA and cvent
matching algorithm extend the applicability of IPA, they
construct a perturbed sample path by selectively cut and

paste portions of the nominal sample path, wasting some

usable simulation data.

In this paper, we provide a new method, which extends
the idea of EPA and EMA. The new mcthod uscs all
portions of nominal sample path. The algorithm is exact
and approximate for

for Markovian systems, non-

Markovian systems.

The paper is organized as follows: In section 2, we
formulate our problem in the discrete event simulation
model. In scction 3, we present our main alogrithms.

Simulation results arc presented in scction 4 (o

experimentally validate the new algorithms. The paper

ends with a concluding remark.

2. PROBLEM FORMULATION.

Let x(t,0) be a random process parameterized by a real
number 6. Our purpose is to construct a realization of the
perturbed process x(t,6+A6) from a given realization of the
nominal process x(t,0). We assume that the sample
realization of the nominal process is generated by discrete
event simulation. Sensitivity can be calculated from the

nominal and the perturbed paths. To assist the
presentation, we review the basic concept of discrete event
simulation based on the generalized semi-markov process

(GSMP) model (Barbour and Schassberger (1981)).

The basic building blocks of a discrete event simulation
consist of a countable state space X, an allowable finite
event list I'(x) for each state x€ X, a transition probability

p(*;x,e) for x€ X and e€ I'(x), and event life time

distribution ¢, €€ T=Uy ¢ 3 T(x).

During simulation, at any time t, a current state x(t) and
event list E(t) are maintained. A realization (path) can be
generated as follows: At the initial time, the system is in
state x(0)=x0 with its event list E(O)=I’(x0)‘ For each e in
E(0), event life time t(e) is generated according to ¢,'s. Let
t* and e* represent the smallest event time and the
corresponding event respectively. Simulation clock is
then advanced to the triggering time t*. At t*, e* triggers
the next transition to a new state x(t*)=x1 chosen
according to the transition probability p(-;xo,e*). The new
cvent list E(t*) is updated according the event scheduling
rule F(xl). For any events e#e* in E(0), and c€ F(xl), e is
allowed to continue in E(t*) with event time t(c)-t*. New

cvent times are generated in E(t*) for those events in I'(x l)

but not in E(0) according to ¢,'s. With the new state and

cvent list, the simulation continues in a similar fashion.

In order to make the above meaningful, we assume that all

720

events in I'(x) are different, and that at any time t, the event
activation times are all different almost surly so that a

unique triggering event is defined.

With the above GSMP formulation, we are in a position

to discuss the main results.

3. A SIMPLE EXAMPLE.

In this section, we study a simple example to introduce

the marked event idea.

Consider a simple Markov process (described in GSMP

terminology) with state space X={aj,a,,...,apN}, where N

is some positive integer. Let there be two types of events

e and e,, with exponential event life times, respectively.
Suppose that the allowable event list is I'(a;)={e} for
i=1,3,...,2N-1, and T(aj)={e;,e,} for i=2,4,...,2N. The
transition probabilities are defined as follows: At any a,
i=1,3,...,2N-1, the only event e triggers with probability
one the transition to a;, ;. At any state a;, i=2,4,....2N,
e| triggers with probability 1 the transition to itself i.e.
a;, and e, triggers with probability 1 the transition to the
next state a;;| (an4+p=2aj). In our former notation,
p(aj;:aj.e)=1, for i=1,3,..., 2N-1; p(a;a;eq)=1, and
p(ai+l;ai,e2)=l for i=2,4,...,2N, where aON+1=ag- A
sample realization for this simple system is shown in
Fig.1.

For more information on the issue of sample path

analysis of GSMP, the reader is referred to Li (1988).

Now recall that our purpose is to construct a perturbed
path (PP) from the given nominal path (NP) without an
simulation.

additional Let us consider the following

perturbed process:

Perturbed system I. The perturbed system is the same as the

nominal one except: i) p(aj, 1:ap,€1)=1-4p,
p(ajaj.e)=Ap, for i=1,3,..., 2N-1, where Ap>0 is some
small number; ii) p(ajaje)=1-Ap, p(a.i+1;a1~,el)=Ap, for

i=2,4,...,2N.

How do NP and PP differ? If the nominal and perturbed
systems start from the same state, they become different

when either of the following occurs:

i) At state 2k-1 (for k=1,2,...,N), with probability Ap, the
next state on NP jumps to 2k, but the next state on PP stays
the same, i.e. 2k-1.

ii) Atstate 2k, if ¢ triggers the next transition, then with
probability Ap, the next state is 2k on NP but 2k+1
(2N+1=1) on PP.

Definition of the graphic notation of GSMP used in the figures

!
1 oix " e next state
current state A .
| —
)
:.___1_> } events in next event list
]
current events { : r =
' .
- ' time axis (implicit) >
\duration
lof x
a a a a !
1 2 b2 3

J

Fig.1.
We call the above branching of states. When a
branching of states occurs, neither states nor event lists on
NP and PP are the same. Let us now describe the idea of
constructing a PP from the NP. At any time t, let the event
lists be ENP(t) and EPP(t) on NP and PP, respectively. Let
us study case i) first. Suppose at time t, both NP and PP are
on state 2k-1, i.e. ENP(t)=EPP(t), and that at the transition
time t*, the next states on NP and PP are 2k and 2k-1,
respectively. Thus, ENP(tx)=T(2k)={e],e;), and

gPPt*)=T(2k-1)={e}. An immediate observation is

)
|—>62 2

721

A realization of the nominal process.

EPP(l*)g ENp(l‘). This shows that the nominal sample
path carries all the information about events of the the
perturbed path. To make use of this, we can simply mark
the event e| in ENP(t*). Then we know that EPP(I*) cquals
to the marked subsct of ENP(t*). Thus we do not have to
generate additional events for PP. However we still have to
generatc the state on PP, or at lcast to remember the
difference from NP. Let us call such algorithm the Marked
Event Method (MEM). Fig.2 shows how this procedure is

used to construct a realization of the perturbed process from

the given nominal path in Fig.1.

To compare with other algorithms, we apply EPA (Ho
and Li (1988) and Event Matching Algorithm (Ho,Li, and
Vakili (1989)) to the same problem as shown in Figures 3
and 4. We see that MEM makes more use of the given

nominal data.
4. MARKED EVENT METHOD.

To generalize the idea discussed in the previous section,

we need to address the following two problems: First, from
Fig.2, e, is marked only for the last portion (see the shaded
event). At the third state a; on PP, we used the residule life
time of e, as though it were the newly generated event life
time. Thus we need justify the correctness of the
algorithm. Second, in the example, the event list on the
perturbed path is always a subset of nominal one.
However, it may not be the case for general systems. In

this section, we answer these questions and present the

main algorithm.

]
! a

PP StateI 1 a1
1

NP State! al a
1

This event is
not marked at
this shaded period.

A branching
of states at a
occurs at here!

An important concept is the so called statistical
similarity discussed in Ho and Li (1988). Two sample
realizations are called statistical similar if they obey the
same probabilistic law. In the construction of a perturbed
path, the minimum requirement is that the constructed

perturbed path is statistically similar to the one from brute

force simulation.

The property for justifying the marked event procedure
is based on the property of Markov process. Let there be m
events at time t in the event list E(t), and that the residule
life times of these events are: Rl(t) ... RM(t). Suppose we
replace Rj(t), for some l<j<m by a new random variable
Rj(t) independently genérated from the same distribution.
Clearly &j(t)#Rj(t) a.s. Thus the sample path generated
after this single replacement is different from the original
one. The point is that the two paths are statistically
similar! This is due to the memoryless property of the
Let us summarize

event life times of a Markov process.

this observation as the following:

3 coe

—
[]
w

This event is
now marked as
required by PPState.

Fig.2. A PP constructed from the NP in (a) by MEM. This PP is represented by the
unshaded part of NP events, along with the sequence of PPState.

There is a branching
of states at a here!
Note NP state is a3
but PP state is 4 1

This shaded area is the waste by
EPA. EPA is searching for a

$.
\ After the shaded area, construction
of PP resumed here!

Fig.3 . A sample path for the perturbed process,
constructed from the NP in Fig.1 by EPA.

PPState: : a1 ;34 ; a] s
[}) 1
NPState: | | a a_ ! oes
D) ! a3
]
' .:,e 1
[| '
h . , eoe
! 1
2
Shaded portion Event lists matched after
i] is the waste, waiting the shaded. period.
This row is for matching event lists
the state of
the constructed))
PP required by EMA. There is a branching
of states at 31 here!
Fig.4. A PP constructed from the NP in (a) by event matching alg...
Invariance Property. Given a sample path x(t) of a It is readily seen that this invariance property

Markovian GSMP, arbitrary replacement of any residual
times in R(t) by an independent event life time of the same
type generates a statistically similar sample path to the

original one. 0

We point out that the result reduces to the invariance
under cut-and-paste property in Ho and Li (1988) if all the
residual times are replaced simultaneously. Also note that
the number of replacements along the time horizon is
arbitrary, giving an infinitely number of different

statistically similar paths.

723

guarantees the legitimacy of the marked event procedure.

Now let us answer the second question. Namely what
should we do if the nominal event list does not include the
perturbed one? In general, the events in the nominal and
perturbed event lists can be partitioned into three parts.
They are: A=ENP(t)nEPP (1), B=ENP(t)n[EPP(1))¢ (where
the superscript ¢ denotes complement of a set), and
c=[ENP1)]cnEPP(t). If Cis empty, we can use the marked
event procedure discussed in section 2 to construct the

perturbed path. On the other hand, if C is not empty, we

can simply generate those events in C, and mark them only

for the perturbed path. This procedure is again justified by

the invariance property.

To show a case that C is not empty, let us consider the

following example.

Example 4.1. Consider the same system as in section 3.

Let us define the following perturbed system:

PP State

NP State

A branching of
states at a, occurs.
The shaded event is
a newly generated one in C.

Now let us discuss the general Marked Event Algorithm.

For easier presentation, we assume the following

parameterization:

Assumption 4.1. The GSMP depends on 6 only through the

The event life time

The GSMP is

routing probabilities p(e;x,e)’s.

distributions ¢;'s are independent of 6.

Markov. 0

The generalization to other parameterizations is
straightforward as discussed in Li (1988). In the case of
non-Markovian GSMP, the Marked Event algorithm is

only approximate..

Let us first see how perturbation is generated from the
given nominal sample path. From Assumption 4.1,
perturbation comes from the routing probabilities. Let us

distinguish the variables on NP and PP by subscripts 6 and

Perturbed system II. We modify the nominal system as

follows: Let p(aj,|;aje,)=1-Ap, and p(aja;e;)=Ap,

i=2,4,...,2N. In this case, if both NP and PP are at state

2k and event e, triggers the next transition on NP, the

next NP state will be 2k+1 and the next PP state will be 2k
with probability Ap. Thus C={e;}. An implementation

of the above idea of generating new events is shown in
Fig.5. 0

Fig.5. A PP for perturbed system II, constructed from

the NP of Fig.1.

124

0'=6+A06 (e.g. pg(*:x,e) and pg:(*;X,e)), respectively. An
apparent constraint is
Yx exApg(x’;x,e)=0 for all x€ X and e€T.
We show how we identify a branching of states. At each
jump time t*, the next state x’ is determined by the
triggering event e*, the current state x, and the routing
probability as: x’=y, if
Zysx',yexpe()’§x'e*)5U<Zy<x"yexpe()’;x»e*) 4.1

where we assume there is a total ordering on the state space
X, and u is a uniform random variable in [0,1]. To identify

a branching of states, we use the same u, and apply (4.1) to

Per(*:x.e¥).

With the above mechanism to identify a possible
branching of states, we give the following schematic

algorithm to construct a perturbed path:

Algorithm 4.1

Definition:
Xg : state of nominal path;
X g+ : state of perturbed path; x9 - initial state.

N : length of the nominal path (# transitions);
e* . next triggering event on NP;

C=[ENP]CnEPP
Initialize:
XgXg =x0;
generate gNP according to I‘(xo);

mark all events in ENP; {initial NP events are also
PP events}

C=empty set

Begin

forn:=0to N
choose next event from ENPuC— e
if e* € ENP and is not marked do i)
else if e* € ENP and is marked, do i) and ii)
else if e* € C, doii)

i) generate x0=pe‘l(u;xe,e*),u-U(O,l)]

ii) generate X g =pe.'1(u;x9',e’)

update NP according to T'(xg)

if [T(xg)]°NT(xg:) not empty, new events—C
end.

Remark 4.1. It is interesting to note that the above
algorithm can be interpreted as a kind of parallel
simulation. Imagine that we simulate a set of N slightly
different systems. We can use a similar algorithm to
gencrate all the N simulations simultaneously. The
triggering event is chosen each time from a minimal joint
event list covering all the event lists for different systems.
Thus N jobs share minimal amount of data in the
simulation, offering more efficiency than simulating N
jobs separately. We believe that this kind algorithm may
also find application in a multiprocessor environment

(another interpretation of parallel simulation).

We have seen that the Marked Event Method has the
advantage of making use of the whole nominal trajectory,

as opposed to earlier algorithms such as EPA and event

728

matching algorithms. Hence, intuitively it is more
efficient. The algorithm should be more advantageous for
GSMPs which have large sets of cvents and simpler state
specification. The efficiency also depends on how the
simulation is implemented (e.g. the algorithm for updating
states and events etc.). We do not intend to provide a
theoretical evaluation at the present time. Instead, we will

validate our intuition by simulation experiments.

5. EXPERIMENTAL RESULTS.

In this section, we perform several experiments to test
the Marked Event Method (MEM). Throughput this section,
we will use Algorithm 4.1. We will compare the results
with those obtained by EPA (Ho and Li (1988)), Event
Matching Algorithm (EMA) (Ho,Li, and Vakili (1988)),
and brute force simulation (BF). Not all of the test systems
necessarily require simulation. We choose them partially
because of the exsistence of analytical results. Since
efficiency is our major motivation, we define the following
measure of efficiency for data utilization and CPU time
utilization. Define

cpu time for the specified algorithm
cpu =

cpu time for brute force simulation
length to construct PP
B length for brute force simulation

where for a given simulation length L (in terms of
transitions of the GSMP), the denominator is 2L (one for
NP, one for PP), while the nominator represents the length
of NP to obtain a PP of length L by either EPA or EMA or

MEM.

Experiment 5.1. We use the system in section 3. Suppose

0

we want to cstimate the sensitivity of the steady state

probability at state a; with respect to the perturbation Ap.

With N=2, we calculate the theoretical values by solving

the balance equations. The theoretical values for the

nominal and perturbed probabilities are given as:
1 1

D=, m(l)=
oD N gy T N (-0 oy, 20)]

where nnp(l) and npp(l) are the steady state probabilities
at state a; for nominal and perturbed systems respectively.
The input parameters and experimental results are shown in

Table | in the Appendix. The data is also plotted in Fig.6.

It is readily seen that MEM is the most efficient one.

N CPU .
T (Ratio) 7 EPA)
3 - 4”///
p««ﬂ"’MMM
2 T "”MM
(EMA)
l o= (MEM)
1 1 1 1 n »
6 8 10 12 14 e

Fig.6
Experiment 2. Consider a closed single class queueing
network, with 5 single server service stations Sq..--,8s,

and infinite buffers. Let the service times be exponentially

distributed with mean s for k=1,2,3,4,5. Our goal is to

estimate the throughput sensitivity at S| with respect to

some routing probability changes. Both the input
parameters and the simulation results are shown in Table
5.2. The results show that MEM offers more savings than

EPA and Event Matching method. 0

Experiment 3. This network has been studied in Ho and Li
(1988). In that paper, because of large number of states,
approximate EPA has to be used. Let us simulate this
system by MEM. There will be no approximation
necessary by using MEM. The system is a closed multiple
class queueing network. Each service station consists of a

single server, a infinite buffer with FCFS discipline.

Service time at a station is the same for all classes. Let s

726

be the mean service time at the ith server. Performance

measure is the throughput of class 3 at server 3. We
calculate the throughput sensitivity with respect to routing
parameter changes. Table 5.3 shows the input data and
simulaiton results. The simulation result shows that MEM
is more robust to problem size. The saving over brute force
simulation seems to reduce as the problem size becomes
large. The reason may be that updating state consumes
most part of simulation. To have a better state
representation and updating scheme may help raise the

efficiency of MEM. 0

Experiments also show reasonable accuracy for MeM to

approximate non-Markovian systems. Due to space

limitation, we omit this part.

6. CONCLUDING REMARKS.

We have prescnted a new class of perturbation analysis
algorithms, the Marked Event algorithm. The new mecthod
may provide more efficiency than EPA and event matching
algorithms. The efficiency has been supported by the
simulation experiments performed in terms of CPU time
ratio and extra run length.

Experiments show that the

MEM is quite robust to the problem size.

7. REFERENCES.

Barbour,A.D. and Schassberger,R. (1981), "Insensitive
Average Residence Times in Generalized Semi-Markov
Processes.”, Adv. Appl. Prob. 13, pp720-735.

Heidelberger, P., Cao, X., Zazanis, M.A., and Suri, R.
(1988), "Convergence Propertics of Infinitesimal
Perturbation Analysis Estimates,” manuscript.

Ho,Y.C. (1987), "Performance Evaluation and
Perturbation Analysis of Discrete Event Dynamic System,
Perspective and Open Problems”, IEEE Transaction on

Automatic Control, AC-32, 6.

Ho,Y.C. (1988), "Perturbation Analysis Explained”,
IEEE Transaction on Automatic Control, Vol.33,No.8.

Ho,Y.C. and Li,S. (1988), "Extensions of
Inifinitesimal Perturbation Analysis”, IEEE Transaction on
Automatic Control, Vol.33,No.5,pp427-438.

Ho,Y.C., Li,S., and Vakili,P (1988), "On the Efficient
Generation of Discrete Event Sample Paths”, Mathematics
and Computers in Simulation, No.30.

Law,A.M. and Kelton, W.D. (1982), Simulation
Modeling and Analysis, McGraw Hall.

Li,S. (1988a), "Extended Perturbation Analysis of
Discrete Event Dynamical Systems”, Ph.D thesis, Applied

Sciences, Harvard University, January.

Li,S. (1989), "A Tutorial on the Extended Perturbation
Analysis Technique of DiscreteEvent Dynamic Systems,”
Mathematics

Computer, with Applications,

Vol.17,No.11,ppl467-1473.

AUTHORS’ BIOGRAPHIES

SHU LI is an assistant professor in the Department of
Systems and Industrial Engincering, University of Arizona.
He received a BSEE from Huazhong University in 1982,
MSEE from University of Illinois in 1985, and Ph.D from
Harvard University in 1988. His research interests include
discrete event dynamic systems, perturbation analysis,

manufacturing systems, and decision making.

APPENDIX

TABLE 1

INPUT PARAMETER: u|=1/1.5, uy=1/2, Ap=0.5.
DEFINITION:

(2N,L)=(# of states, simulation length in terms of transitions in CPP or PP);

SIMULATION RESULTS (Each entry of simulation is the average of 10 i.i.d simulations):

(2N,L) Tinp Tpp Tipp Tpp Tpp Am/Ap An/Ap An/Ap Ant/Ap
(BF) (EPA) (EMA) (BF) (EPA) (EMA) (MEM)
(6,5) 0.147374 0.242457 0.233399 0.243022 0.238095 -0.1902 -0.1859 -0.1952 -0.1855
True 0.142857 0.238095 0.238095 0.238095 0.238095 -0.1905 -0.1905 -0.1905 -0.1905
CPU 1.0 1.85 1.05 0.69 L.R.
1.0 1.95 0.98 0.5
(8,6) 0.106151 0.179405 0.175115 0.179705 0.181527 -0.1465 -0.1372 -0.1479 -0.1508
True 0.107143 0.178571 0.178571 0.178571 0.178571 -0.1429 -0.1429 -0.1429 -0.1429
CPU 1.0 2.39 1.04 0.70
L.R. 1.0 2.49 0.97 0.5
(10,7) 0.084304 0.144099 0.143499 0.142455 0.143166 -0.1196 -0.1142 -0.1148 -0.1177
True 0.085714 0.142857 0.142857 0.142857 0.142857 -0.1143 -0.1143 -0.1143 -0.1143
CPU 1.0 2.90 1.12 0.75
L.R. 1.0 2.94 0.98 0.5
(12,8) 0.070326 0.119411 0.116720 0.119745 0.116892 -0.0982 -0.0905 -0.0959 -0.0931
True 0.071429 0.119048 0.119048 0.119048 0.119048 -0.0952 -0.0952 -0.0952 -0.0952
CPU 1.0 3.46 1.06 0.71
L.R. 1.0 3.43 0.99 0.5
(14,9) 0.060962 0.102151 0.102765 0.100968 0.102895 -0.0824 -0.0829 -0.0813 -0.0839
True 0.061224 0.102041 0.102041 0.102041 0.102041 -0.0816 -0.0816 -0.0816 -0.0816
CPU 1.0 4.04 1.13 0.76
L.R. 1.0 3.95 0.98 0.5

727

TABLE 2

INPUT PARAMETERS:
Mean service times: s;=1.0, 52=1.2, 53=1.2, s4=2‘0, s5=1.5.

Perturbation: Ap=0.1 (this perturbation is shown in rows 1,2,3 of the following routing probabilities)

Routings:
Nominal Routing Perturbed Routing

S S2 83 84 Ss ;. S2 S3 S4 Ss
Sy 0.5 0.3 0.1 0.1 0.0 Sy 0.4 0.3 0.2 0.1 0.0
S, 0.2 0.2 0.2 0.2 0.2 Sy 0.1 0.3 0.2 0.2 0.2
S5 0.4 0.0 0.6 0.0 0.0 Sy 0.3 0.1 0.6 0.0 0.0
Sy 0.0 0.1 0.7 0.2 0.0 Sy 0.0 0.1 0.7 0.2 0.0
S5 1.0 0.0 0.0 0.0 0.0 Ss 1.0 0.0 0.0 0.0 0.0

Initial state: (xl.xz,x3,x4,x5)=(5,4.3,0,0), where xi=# of customer at Si'
DEFINITION: TP=Throughput at ;.
SIMULATION RESULTS: (500000 customers/run, each entry is the average of 10 i.i.d runs)

TPyp TP, ,(BF) TP ,,(MEM) ATP/Ap(BF) ATP/Ap(MEM)
0.902593 0.619879 0.621042 -2.8271 -2.8155
CPU ratio: 1.0 0.78
L.R. 1.0 0.5
TABLE 3
INPUT PARAMETERS:

Mean service time: sl=l.0, 52=l.2, s3=l.2, s4=2.0, s5=1.5,

Perturbation: Ap=0.2 (This perturbation is shown in the routing matrix for class 3 customers below)

Class 1: Nominal Routing Perturbed Routing
Sy S, Sy Sy Ss

Sy 0.36 0.07 0.09 0.38 0.10

S, 0.29 0.21 0.28 0.14 0.08 SAME AS NOMINAL

S3 0.14 0.08 0.26 0.25 0.27

Sy 0.28 0.14 0.16 0.18 0.24

Ss 0.21 0.05 0.15 0.16 0.43

Class 2: Nominal Routing Perturbed Routing
S Sy S3 Sy Sg

Sy 0.24 0.01 0.21 0.23 0.31

Sy 0.14 0.22 0.31 0.09 0.24

S3 0.11 0.29 0.26 0.20 0.14 SAME AS NOMINAL

Sy 0.20 0.18 0.13 0.41 0.08

Ss 0.06 0.25 0.27 0.31 0.11

Class 3: Nominal Routing Perturbed Routing

Sl 52 53 S4 SS Sl 52 53 54 55
S 00 00 1.0 00 0.0 Sy 0.0 02 0.8 00 0.0
S, 1.0 0.0 0.0 0.0 0.0 S, 1.0 0.0 0.0 0.0 0.0
S; 0.0 0.0 0.0 1.0 0.0 S3 0.0 0.2 0.0 0.8 0.0
S4 0.0 0.0 0.0 0.0 1.0 Sy 0.0 0.0 0.0 0.0 1.0
Ss 1.0 0.0 0.0 0.0 0.0 Ss 1.0 0.0 0.0 0.0 0.0

Initial state: (x|.Xy,X3,X4,X5), Where x{=(1,1,1), x9=(2,2), x3=(3,3,3,3), x4=(), x5=().
SIMULATION RESULTS: (500000 customers/run, each entry is the average of 10 i.i.d runs)

TPnp TPpp(BF) TPpp(MEM) ATP/Ap(BF) ATP/Ap(MEM)
0.918456 0.868081 0.866333 -0.2519 -0.2606

CPU ratio: 1.0 0.82

L.R. 1.0 0.5

728

