Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

Efficient Aggregation of Multiple LPs in Distributed Memory
Parallel Simulations

David M. Nicol

Chris C. Micheal

Patrick Inouye

Department of Computer Science
The College of William and Mary
Williamsburg, VA 23185

ABSTRACT

The state of research in parallel simulation now demands
that we experiment with a multitude of simulation
models. [t is evident that large-scale simulations
involving many interacting logical processes should be a
focal point of such experimentation, as large-scale
simulations will benefit the most from parallelism. This
realization raises a number of issues. Large-scale parallel
simulations must aggregate many logical processes onto
This
fact creates internal management problems---how does

each machine in a distributed memory architecture.

one synchronize in such a setting? How does one
If
what

efficiently find and manage the simulation workload?
we are to experiment with multiple models,
underlying functions can we extract to program once, and
use many times? This paper describes YAWNS, Yet
Another Windowing Network Simulator, for dealing
with these problems.

1. INTRODUCTION

The present state of research in parallel simulation
calls for extensive experimentation on a large number of
simulation models. Naturally, we would like to develop
each model as quickly as possible, by using common
program components on all the models.
immediate problem the

environment to support rapid development of parallel

Thus, one

is development of an

simulations. Another problem stems from the type of
which has
parallelization: large-scale simulation models with many
logical processes (LPs). Given the additional difficulty and

added overheads of parallel processing, only those models

simulation the most

promise for

which are too large to be handled serially will likely be
parallelized in practice. These models, when mapped
onto a parallel architecture having only distributed
memory, must aggregate the many LPs assigned to each
processor. In addition to the usual problems of

synchronization and load balance, these aggregrated

680

systems must use efficient means of managing the

synchronization, communication, and event executions.

As researchers active in the study of synchronization
methods and load balancing, we have undertaken the
implementation of a parallel simulation testbed, Yet
Windowing Network Simulator (YAWNS)
YAWNS is being
implemented on our Intel iPSC/2, and will serve as the

Another
which addresses these problems.

basis for our studies in the parallel simulation of timed
Petri-nets, queueing networks, Monte Carlo physical
simulations, reliable

and highly multiprocessor

computing systems. YAWNS provides a software layer
All

communication and synchronization between processors

between the LPs, and the communication network.

is initiated and controlled by individual version of
YAWNS running on each processor, as shown in figure 1.
YAWNS uses a both a new synchronous synchronization
protocol, and a new "multi-order" priority-queue

structure. This paper describes the protocol, the general

YAWNS design, and the multi-order priority-queue.

As a tool for studying parallel simulations, YAWNS

is related to Reynold's SPECTRUM testbed [7].
Processor 0 Processor 1
LP Layer LP Layer
I |
YAWNS YAWNS
Communication

Communication
Channel l

. Channel
AR

Figure 1: YAWNS Topology

SPECTRUM's intention is to provide a common testbed
where a variety of synchronization protocols can be used
YAWNS is also
related to Abram's common language interface [1],

on a single given simulation model.

which takes a simulation model and parallelizes it using
one of a specified set of synchronization protocols. The
testbed developed by Wagner [8] is intended to support
development of parallel simulation models on a shared-
memory architecture. YAWNS notable advantage over
all of these systems is that its synchronization protocol
rests on theory which proves that for sufficiently large
problems, YAWNS will achieve good performance.

2. SYNCHRONIZATION PROTOCOL

The YAWNS design is largely driven by its
synchronization protocol. This protocol assumes the
simulation is composed of activities, each with a distinct
beginning and completion point. Ewvents punctuate the
beginning and ending of activities; the time difference
between an activity's beginning and completion point is
its duration. Like most protocols, YAWNS assumes that
Unlike the most
In this it

follows in the footsteps of [2,3,5]. Processors periodically

each LP manages its own event list.
widely cited protocols, YAWNS is synchronous.

synchronize globally, and cooperatively compute a time
window within which they will process events. In
YAWNS the window is chosen so that all LPs with events
in the window can execute those events in parallel with
other LPs. YAWNS ability to do so (at least in the

simplest version, to be described) rests on some

assumptions which are often met in practice:

1. Activities which advance the simulation clock
have distinct beginning and ending points
(e.g,when a job enters service, and when it leaves

service).

2. Once an activity has begun, its ending time is
not affected by any other occurrence in the

simulation (e.g., non-preemptive queueing).

3. Other LPs are affected by the activity only upon
its completion.

4. The simulation time delay between an activity's
beginning and ending points can be selected in
advance.

681

5. The LPs to be affected by the activity's
completion are known at the time the event

begins.
6. Only one activity can occur at a time at an LP.

More sophisticated versions of the protocol are under
development, and will relax some of these assumptions,
notably 2, 4, 5, and 6.

In defining a window, YAWNS goes through three

steps. The lower edge of the window is known, as it
served as the upper edge of the previous window. In the
first step, every LP determines whether it is active with an
the

LPs which will be affected by the activity's completion are

activity which began in the previous window. If so,

notified of that completion time. This step terminates

with a global synchronization. In the second step each LP
inserts any completion notifications it has just received as
events into its event list. From here, each LP participates
further in this window only if its event list is not empty.
Each participating LP determines the completion time of
its next activity which has not yet begun, under the
(possibly false) assumption that no further completion
notifications will be received. The key to this calculation is
the assumed ability to pre-compute the difference between
The LP can

determine the starting time of its next activity---that time

an event's beginning and ending time.
is in the event list. It need only add the known duration
of that activity to its starting time to compute the value of
interest. The second step terminates with a global
synchronization wherein the processors cooperatively
compute the minimum "next-activity-completion-time"
among all LPs in the system. That minimum time
becomes the upper edge of the window, and is known to
all processors. In the third and final step each LP executes
all events with time-stamps strictly less than the upper
window edge.

We have analyzed this protocol in a stochastic
setting [6], where we have derived lower bounds on the
number of events processed per window: these bounds
grow arbitrarily large as volume of simulation activity
increases. We have also shown that the performance
achieved using the protocol approaches optimality as the
number of events processed per window increases. The
protocol's effectiveness is demonstrated on the following
model. Consider a domain containing a countable
number of points. An object resides at a point for 14X

units of time, where X is an exponential random variable.

Avg Events/Window

4000 + | W 1 4 exp(10) A
2000 + A
A exp(1)
1 +4
000 A -
8004
600+
A »
400+
200 A "
+ - °
0 t t + + {
128 256 512 1024 2048 4096

Number Of Objects

Figure 2: Avg Events/Window
in YAWNS Model

The object then moves to any other unoccupied point in
the domain. Events model the arrival and departures of

objects from points in the domain. Figure 2 plots the

average number of events processed in a window, as a
function of the number of objects. Two plots are shown,
one where X has mean 1, the other where X has mean 10.
Here we see that the parallel workload increases linearly
in the number of objects. It is evident that on large
problems, a large amount of parallelizable activity is
identified by the YAWNS , especially when duration
times have a significant constant component.

The simulation modeler using YAWNS must be
aware of its underlying demands and assumptions.
Unlike many other protocols, the YAWNS protocol
makes no attempt to parallelize, without programmer aid,
Instead, the YAWNS
philosophy is restrict attention to a class of useful

any and all simulation models.

simulation models, and to ask the programmer to provide
a small amount of readily accessible information. As we

have just seen, the benefits can be substantial.
3. YAWNS INTERFACE

YAWNS singles out completion cvents for special
attention. A completion event is one which can cause
other events to be scheduled at other LPs. For example,
the departure of a job from a queue is a completion event.
YAWNS interfaces with an LP through the structure
below, which contains information needed by the

YAWNS protocol.

682

struct LOGICALPROCESS {
int LPId;
double TimeOfNextEvent;
long NextEventld;
char CompletionEvent;
double ActivityStartTime;
struct CommList *AffectedLPs;
double TimeOfFollowingCompletion;
b

LPId records the LP's identity. TimeOfNextEvent records
the time-stamp of the event at the head of the LPs event
list; NextEventld is that event's identity (each event has a
unique numeric identity). CompletionEvent is 1 if the
LPs next event is a completion event, it is otherwise 0. 1If
the next event is a completion event, ActivityStartTime
records the time-stamp of the activity's start event. The
CommlList structure holds an LP id, a pointer to a message
record to be passed to LP and a pointer to another LPList
structure. If the LP's next event is a completion event,
AffectedLPs points to a null terminated list of LPs who are
affected by the completion. TimeOfFollowingCompletion
records a lower bound on the time at which the next
event which hasn't yet begun can complete. This is the
field whose minimum value over the entire simulation
defines the upper edge of a YAWNS window.

YAWNS and the LP event execution routines
interact in two ways. The first concerns event executions.
Suppose that YAWNS identifies LP,

executable events.

as one with
YAWNS calls a user-written routine
DoLPWork(LPld,t), passing an LP identity number, in
this case 1, and a time limit . DoLPWork() then executes
all events in LPy's event list having a time stamp strictly
Upon return from the call to DoLPWork(),
YAWNS assumes that the values in the LP record for LP,
reflect its state following all of the simulation work just

less than .

executed. YAWNS then uses this information to update

its internal data structures.

A second interaction occurs when YAWNS passes
messages to LPs. YAWNS calls a user-written function
AcceptLPMsg(LPid,MsgPtr) to pass a message pointed to
by MsgPtr to LP number LPId.

of an LP's accepting a message involves inserting an event

It is anticipated that part

into its event list. If that insertion caused a change to any
value in the LP's interface record, AcceptLPMsg() returns
the value 1, it otherwise returns 0. Receiving a 1,
YAWNS is warned to update its own data structures.

The only requirement YAWNS makes of the
programmer is that the rules governing this simple
interface be followed.

We turn now to a description of how YAWNS
handles the synchronization, communication, and

control aspects of the simulation.

4. YAWNS OPERATIONS

YAWNS is responsible for all synchronization,
communication, and control in the parallel simulation.
The YAWNS synchronization protocol determines when
each of these activities occurs. Consider the first step in
the processing of a window: each LP with an activity that
began in the previous window sends completion
messages to LPs affected by the completion. Under the
interface protocol between YAWNS and LP processing,
the information YAWNS needs to perform this
communication has already been supplied to it, in the last
window. YAWNS maintains a priority-queue of LPs
It
consequently can find all LPs with activities which started
in the previous window, go to their interface records, and
retrieve the messages left there. These messages are
passed to the YAWNS communication layer,
determines which processor is to receive each message,

organized by their latest activity start time.

who

and places the message in a buffer specifically allocated for
that processor. In the simplest, but most memory
intensive case, each LP holds an array describing the
complete LP to processor mapping. Other schemes are
possible: for example, one might concisely define a
mapping function which determines an LP's processor as
a function of the LP index. Once all these messages are
properly placed, the individual processors engage in a
global crystal-routing [4] which causes all messages
Each
processor's YAWNS system then distributes the received

messages by calling AcceptLPMsg().

addressed to each processor to be routed to it.

In preparation for finding the minimum
TimeOfFollowingCompletion value, YAWNS maintains
a priority-queue of LPs, organized by their

TimeOfFollowingCompletion values. An LP's value can
be affected by accepting a completion message,
YAWNS monitors the returned by

AcceptLPMsg() call, and updates this priority-queue
whenever a 1 is returned. Consequently, when all
messages have been distributed, YAWNS can quickly

identify the least TimeOfFollowingCompletion value

50

value each

683

among all LPs on the processor. This value is passed to a
global minimum-computing routine, (this is the gdlow()
system call in the Intel iPSC/2) where the processors
cooperatively the

TimeOtFollowingCompletion value in

compute minimum
the

simulation. This minimum is returned to each processor,

entire
and is the upper edge of the current window.

YAWNS maintains a priority-queue of LPs,
organized by their TimeOfNextEvent value. Once the
upper edge of the window is known, YAWNS can initiate
YAWNS
enters a loop where it selects the LP with least

the processing of all events in the window.

TimeOfNextEvent falling within the window, calls
DoLPWork(), and then updates the LP's entries in the
ActivityStartTime, TimeOfFollowingCompletion,
TimeOfNextEvent

priority-queues using the new information found in the

and

LP's interface record. This loop terminates when the least
TimeOfNextEvent on the processor is greater than or
At this point the
processor has completed all processing associated with the

equal to the upper window edge.

window, and can begin processing for the following

window.

We have seen that three distinct priority-queues are
used by YAWNS in the course of its processing. Each
priority-queue organizes the same subset of LPs---those
with non-empty event lists---on different priority keys.
We have combined those three priority-queues into a
single structure called a multi-order priority-queue,

which we describe in the following section.

5. MULTI-ORDER PRIORITY-QUEUE

YAWNS maintains three priority-queues over the

set of LPs with non-empty event lists. These queues are

We
could simply create three separate queues and manage

organized around three different priority values.
them separately, but certain optimizations may be
possible if we exploit commonality between the queues.
First, these queues are over the same set of LPs. That set
changes dynamically, but it is the same set for all three
priority-queues. Secondly, when an LP changes one of its
priority values, it is likely to have changed another. This
means that when one priority queue has to be adjusted
due to a change in the LP's value, the other ones may as
well. The multi-order priority-queue is a means by which

we can exploit this commonality.

The multi-order priority-queue is most easily
explained by first describing its operations when there is
only one priority value, say, TimeOfNextEvent. The idea
is simply to build a binary combining tree over the
The LPs serve as leaves; each non-
empty LP offers its TimeOfNextEvent value to the next
tree layer. Each node in that layer is responsible for

collection of LPs.

determining which of two LPs has the smaller time. It
offers that time to the next layer up, and so on. This is
illustrated in figure 3(a), which also illustrates the
The multi-order priority-
queue is the obvious generalization of this: each LP offers

structural links between nodes.

a vector of priority fields to the first tree layer, whose
nodes select the minimum in each component position.
This process is repeated throughout the entire tree, so that
the root node contains the minimum value of each
priority field. In practice, the tree nodes contain pointers
to the LPs with minimum values, rather than the
minimum values themselves. This is illustrated in figure
3(b), for the case of one priority field. With the extension
to multiple priority fields, each tree node holds a vector of
pointers to LPs; for each priority field, the LP with
minimum value in that field is found by following that
field's pointer in the tree's root.

Operations on the tree are straightforward.
Whenever an LP changes its priority values, all interior
nodes on the path between the LP and root must be re-
evaluated. This operation has a linear cost in the depth of
the tree. To insert an LP into the tree structure one simply
finds a free leaf, and attaches the LP there. All nodes on
the path from the LP to the root must then be re-

LP Event Lists

Figure 3(a): Min-Tree over LP Event Times

684

evaluated. Likewise, when an LP is removed from the
tree, all nodes on the path from the LP's leaf to the root
need to be re-evaluated. Of course, it is also possible to
selectively update the pointers associated with a subset of

the the priority fields.

The number of LPs attached to the tree dynamically
grows and shrinks. We want to keep the tree as small as
possible, to minimize the depth. On the other hand,
excessive tree re-organization should be avoided, as it
involves reallocating all the leaves, and re-evaluating all
the interior nodes of the tree. We adopt a policy which
grows the tree to depth n+1 when we need to insert the
2n+141st LR The tree is shrunk to depth n-1 if the tree
depth is n and the number of nodes falls below 2n - 2n-2,
The policy's philosophy is to grow the tree only when
absolutely necessary, and to shrink the tree at sizes
“between" the grow points---this to avoid re-organization
thrashing.

Multi-order priority-queues have attractive time
complexities. Changing an arbitrary LP's priority, or
adding an LP exacts a constant expected cost, if we can
assume that its priority value has only half a chance of

defining the minimum value at each of the tree stages

between the LP's leaf and the root. Changing the priority
of the LP with least cost, or deleting an LP has
logarithmic cost in the size of the queue. The cost of
reorganizing the tree can be amortized over all queue
operations which occur between two reorganizations,
yielding at most a constant "amortized" reorganization

cost each queue operation.

N path to modify

———» pointer to highest
priority LP in subtree

@
O
e

TE

LP Event Lists

Figure 3(b): Min LPs found with pointers

7. SUMMARY

We have described YAWNS, a parallel simulator
designed to allow rapid development of various large-
scale simulation models used in parallel simulation
research. YAWNS provides mechanisms for aggregating
many LPs onto a single processor, for synchronizing those
LPs and supporting their communications, and for
controling the execution of events. YAWNS is built
around a new synchronous synchronization protocol, and
clearly defines an interface with the LP processing
routines. YAWNS demands that the LP programmer
provide it with a small amount of information which is
often available. YAWNS is presently being implemented
on an Intel iPSC/2, and will serve as a basic testbed for our
experiments in parallel simulation on that machine.

Acknowledgements

This work was supported in part by the Army
Avionics Research and Development Activity through
NASA Grant NAG-1-787, and by CIT grant INF-89-014.

References

[1] Abrams, M. A common interface for Byrant-Chandy-
Misra, Time-Warp, and sequential simulators. In
Proceedings of the 1989 Winter Simulation
Conference, Washington, D.C., 1989.

[2] Ayani, R. A parallel simulation scheme based on
distances between objects. In Distributed Simulation
1989, SCS Simulation Series, 1989, pp. 113-118.

3] Chandy, KM., and Sherman, R. The conditional
event approach to distributed simulation. In
Distributed Simulation 1989, SCS Simulation Series,
1989, pp- 113-118.

[4] Fox, G.Johnson, M., Lyzenga, G. Otto, S., Salmon, |.,
and Walker, D. Solving Problents on Concurrent
Computers. Prentice-Hall, Englewood Cliffs, New
Jersey, 1988.

[5] Lubachevsky, B. Efficient distributed event-driven
simulation of multiple-loop networks.
CACM 32,1(1989), pp. 111-123.

(6] Nicol, D. The cost of conservative synchronization in
parallel discrete-event simulations. Submitted for
publication.

[7) Reynolds, PE. Jr. Comparative analyses of parallel
simulation protocols. In Proceedings of the 1989
Winter Simulation Conference, Washington, D.C.,
1989.

[8] Wagner, D. Conservative Parallel Simulation:
Principles and Practice. Ph.D. thesis, University of
Washington, 1989.

685

