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ABSTRACT

This paper suggests that a simulation model
provides results that lead to the development of
analytic models. The analytic models can be used
to uncover model relationships. Illustrations are
given of simulation models that provide direction
for analytic model building.

1. INTRODUCTION

Models of systems should be built for a pur-
pose. If the purpose of modeling is to gain an
understanding of system operation then a com-
bined use of simulation and analytic modeling can
lead to greater insights and improved system
designs.

The paper demonstrates by example how the
outputs of simulation models are used to direct
the development of analytic models. No claim is
made that the observations from the simulation
results could not have been made without experi-
menting with the simulation models.

Models developed for analysis by simulation
include the realism necessary to understand the
system for which problem solving is sought. The
realism included in simulation models provides
for greater understanding and a foundation upon
which other models can be developed. Simulation
models should be built first and then continually
used throughout a problem solving project.

For the examples included in this paper, each
problem is stated with exponentially distributed
random variables. This was done to simplify the
development of analytic models and to focus at-
tention on the structural characteristics of the
simulation model. The assumption of exponential
random variables permitted a concentration on
the structural aspects of the model. In Section 4,
a distribution free analysis is performed to give
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one example where exponential assumptions are
not necessary.

Throughout the examples, only the first itera-
tion of the evolution from simulation model to
analytic model is provided. It has been my expe-
rience that many iterations take place where
transitions are made from a simulation model to
an analytic model to a simulation model. The
hypothesis that needs further development is
that combined analytic-simulation modelingis an
appropriate way to obtain a full understanding of
system operations.

Further research on the modeling process is
required. We have barely begun to scratch the
surface of this complex activity. A paradigm
needs to be developed that relates the purpose for
modeling to the types of results that can be ob-
tained from modeling. In thisregard, measures of
the benefits and effectiveness of a modeling effort
need tobeexplored. Inthefollowingsections, only
ideas for developing analytic methods based on
simulation results are presented. This is a small
step toward the combined modeling activities
needed to achieve the benefits of combined ana-
lytic and simulation modeling.

2. MODEL OF WORK STATIONS IN
SERIES [Pritsker, 1986]

The maintenance facility of a large manufac-
turer performs two operations. These operations
must be performed in series; operation 2 always
follows operation 1. The units that are main-
tained are bulky, and space is available for only
eight unitsincluding the unitsbeing worked on. A
proposed design leaves space for two units be-
tween the work stations, and space for four units
before work station 1. A SLAM II model and its
parameters are present in Figure 1. Current
company policy is to subcontract the maintenance
of a unit if it cannot gain access to the in-house
facility.
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Figure 1 SLAM II network model of maintenance facility.

The serial work station configuration pre-
sented in this example results in a significant
amount of subcontracting as the mean processing
time for work station 2 of 0.5 is greater than the
mean time between arrivals which is 0.4. Thus,
the utilization factor, p, is 1.25. Since there is a
finite queuebefore each work station, steady state
results will be obtained, but a significant amount
of balking should be expected.

A simulation was run for 300 time units. With
amean time between arrivals of 0.4 time units, we
expect 750 arrivals to occur in a 300 time unit
simulation. Simulation results [Pritsker, 1986]
show that 586 units were processed and 180 units
balked. Thus, there were 766 arrivals in the 300
time units. Since the time between arrivals is
assumed to be exponentially distributed, the
number of arrivals in 300 time units is Poisson
distributed with a mean of 750 and a variance of
750. This yields a standard deviation of over 27
and the sample value from the one run is well
within one standard deviation of the expected
value. For work station 2, there were 586 units
processed. From the simulation results, the utili-
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zation of work station 2 was 0.9421 indicating
that work station 2 worked for 282.63 time units.
At the end of the simulation run, work station 2
was processing a unit. Dividing the working time
by 587 yields an average service time for work
station 2 of 0.481 which is also within one stan-
dard deviation of the value of the mean of 0.5 time
units that was input.

On first analysis of the maintenance facility,
it appears that the designer should have realized
that having only two spaces for units before work
station 2, and 4 spaces before work station 1,is a
poor design since the service time at work station
2islarger. Based on this, afirst alternative would
be to put more buffer space before work station
2 in order to decrease the amount of subcontract-
ing. Upon reflection, however, it is the process-
ing time of work station 2 not the amount of buffer
assigned to work station 2 that is the problem. To
reduce the balking, the processing time at work
station 2 needs to be reduced with the addition of
another server or more efficient processing tech-
niques. This can be seen by the following simpli-
fied analysis of the simulation model.



All randomness was taken out of the model by
replacing the distributions by their mean value.
Figure 2 shows the status of the two work stations
and space 2 of the queue of work station 2. From
the status of work station 1, we see that itis either
blocked or busy. When exponentially distributed
times are used, a similar result is obtained but the
length of time work station 1 is blocked or busy is
a random variable (see Figure 3).
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Figure 2 Work stations in series:
deterministic simulation.
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Figure 3 Work stations in series:
exponential simulation.
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Quantitatively, the average time spent in
work station 1 in the stochastic case was 0.4941.
Thus, the service time for work station 2 domi-
nates the service time for service station 1. From
the above analysis, we can view the model as
having a single server with a mean service time of
0.5 and a queue capacity of 7 units (4 for first
queue, 1 in the first station, and 2 for second
queue). We can now build an analytic model of the
situation. From queueing theory [Saaty, 1961],
the probability of having 8 units in the system (7
in queue and 1 in service) is given by the following
formula:

rg=tLoof
1-p°

Since the probability of a unit arriving at any
point in time is equal for exponentially distrib-
uted arrivals, the probability of a unit balking is
the same as the probability of 8 units in the
system. Thus, for the analytic model of the ab-
stracted system, the probability of a unit balking
is obtained by evaluating the above formula with
p equal to 1.25 which gives a balking probability
0f0.231. Thus, we expect 23% of the arriving units
to balk which is approximately the number ob-
served during the simulation run (180/766 = 0.235).

The points of this discussion are:

1. The simulation model with deterministic
times provided understanding of the situ-
ation;

2. The simulation model was used to com-
municate system operation;

3. The simulation results pointed to an al-
ternative model;

4. The alternative model was a standard

analytic model.

3. DRIVE-IN BANK WITH JOCKEYING
[Pritsker, 1986]

Adrive-inbank has two windows, each manned
by a teller and each with a separate drive-in lane.
The drive-lanes are adjacent. From previous
observations, it has been determined that the
time interval between customer arrivals during
rush hours is exponentially distributed with a
mean time between arrivals of 0.25 time units (4
=4). The service time is exponentially distributed



for each teller with mean service time of 0.4 (u =
2.5). It has also been shown that customers have
a preference for lane 1 if neither teller is busy or
if the waiting lines are equal. At all other times, a
customer chooses the shortest line. After entering
the system, a customer does notleave until served.
However, the last customer in a lane may change
lanes if there is a difference of two customers
between the two lanes. Because of parking space
limitations only 9 cars can wait in each lane.
These cars, plus the car of the customer being
serviced by each teller, allow a maximum of 20
cars in the system. If the system is full when a
customer arrives, the customerbalksandislost to
the system. The initial conditions are that both
drive-in tellers arebusy and there are two custom-
ers waiting in each queue.

The drive-in bank example is amenable to
modeling with network concepts with the excep-
tion of the jockeying of cars between lanes when
the lanes differ by two cars or more. Since jockey-
ing can occur only when a teller completes service
on a customer, an EVENT node for processing the
jockeying of cars between lanes is included in the
model following the end-of-service for each entity
in the system. The network model for this ex-
ample is depicted in Figure 4.

In watching an animation of the running of this
model, it becomes obvious that the number of cars

in teller 1's subsystem differs by at most 1 from
the number of carsin teller 2’s subsystem. Thisis
also shown in the plot given in Figure 5. Thus, the
inclusion of jockeying reduces the number of states
required to describe the number of customers in
the model.
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Figure 5 Number of customers for each teller.

With a simplified set of states and all random
variables being exponential, a set of differential
difference equations can be developed to charac-
terize the probability, P (1), of i customers in teller
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Figure 4 SLAM II network model of drive-in bank.
Source [Pritsker, 1986]
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1’s subsystem andj customers in teller 2’s subsys-
tem at time ¢. These equations are given below.

dPoy((?)

e APo((t) + pPoy(t) + uP1((t)
dpg#= - (A + ) Poy(®) + uP1((2)
dP1®

7 = APo(t) -(A + 1) P(t) + P 11(D)

Forj=1,2,...9, we have

dejle(t)= APji(t) - (A +211) Pj o1 j(8) + pPj o1 41(8)
W= AP(®) - (A+ 200) Py S8 + 1P} 11 1(0)
digl(—t)s -(A+2uw) Pj j1(0) + pPj415.41(8)
dpgt(t) = (A +20) Pjj(#) + APj j.1(t) + APj.1 )

+2UPj 12 + 2uPjj (D)

and

P10,1dt) =214 P10,140) + AP 10(t) + AP 10 «1).

The continuous capabilities of SLAM II were
used within SLAMSYSTEM to evaluate the equa-
tions to obtain the plots of P,,(¢) and EV(¢), shown
in Figure 6. Note that the initial conditions for the
problem have three customersin teller 1’s subsys-
tem and three customers in teller 2’s subsystem so
that P,,(0)=1 and all other probabilities at time 0
are zero. From these equations, the steady state
probabilities and mean number of customers in
the drive-in bank teller system were computed as
given given in Table 1. Alternatively, the steady
state results can be obtained using a Markovian
argument [Hazen and Pritsker, 1981 or Glynn,
1984 ].

The distribution of service times for this ex-
ample was changed from normal to exponential in
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Figure 6 Dynamic behavior of P,(t) and the
expected number of customers.
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order to do the analytic modeling. A questionthat
needs to be answered is the validity of the analytic
models when the form of arrival and service time
distributions are changed from normal to expo-
nential. Another question is what would be the
impact of changing the random variables to con-
stant values? Further, are there performance
measures which areinvariant when this certainty
equivalence approach is taken and is useful infor-
mation generated when considering special cases
such as 4> 2p and 4 < 2u?

4. CIRCULAR CONVEYOR

Consider the case of five servers stationed
along a circular conveyor belt shown in Figure 7.

Amival
point

Figure 7 Schematic diagram
of a circular conveyor.

Assume that items to be processed by the servers
arrive at the conveyor belt with an interarrival
time whose mean is 1 minute. After being placed
on the conveyor belt, it takes 2 minutes for a new
arrival to reach the first server. Service time for
each server averages 3 minutes. No storage space
for items is provided before any of the servers. If
the first server is idle, the item is processed by
that server. If the first server is busy when the
item arrives, the item continues down the con-
veyor belt until it arrives at the second server.
The delay time between servers is 1 minute. If an
item encounters a situation in which all servers
are busy, it is recycled to the first server with a
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time delay of 5 minutes. At the completion of
service for an item, the item is removed from the
system.

A simulation model was developed for the
circular conveyorbelt situation. A SLAM II' model
is shown in Figure 8 with exponentially distrib-
uted times. Other distributions for the arrival
times and service times were selected and simula-
tion runs performed. From the simulation runs,
several observations were made. The length of
the delay times on the conveyor belt from the
loading point to the first server, between servers
and the recirculation delay did not affect the
steady state utilization probabilities of the serv-
ers. It did, however, affect the amount of time
spent in the system by an item. It was also seen
that the system was designed to avoid overflows
and the recirculation of the items.

Based on this information, an analytic model
was built for determining the number of busy
servers assuming no recirculation of items and no
storage before each server. Under these condi-
tions, the expected number of items being served
in an m-server model, L _, is equal to the sum of the
probabilities that a server is busy, that is,

m
Ln=3% qj
j=1

where g; denotes the probability that thejth server

Figure 8 SLAM II network model.



is busy. Under steady-state conditions, the mean
duration of the activity of the jth server during an
interval of length T'is Tq, and the average number
of items served by the Jtil server during T is uTq;

where [ is the service rate for all servers. Thus

the total number served during T is

m m
> uTq;=pT Y qj=pTLy,
Jj=1 j=1

The total number of arrivals which are serviced
during T'is AT(1 - p, ) where 1 is the arrival rate,
and (1 - p,) is the steady-state probability of an
arrival being served (not lost). Since the total
number of arrivals served equals the total number
served, we have

AT(1-p ) =pTL_
and Lm =P(1 "pm)r

where p=Au

In the above development no assumptions
regarding the arrival distribution or the service
distribution were made and the equation for L_ is
a general result. It was assumed that there is no
delay between servers. As indicated earlier,
simulation results showed that delays between
servers do not affect the steady-state probabilities
associated with a conveyor system [Pritsker, 1966].

For the ordered selection of the servers, the
expected busy time of server j does not depend on
the servers after j. Therefore, it is possible to
compute the probability of server j being busy
starting in the m = 1 case and then using all
previously computed probabilities to compute the
probability that server i, i > j is busy when m =i.

From
m
=2, 4
J=1
we have the recurrence relationship

m-1
- 2 qk =Lm'Lm-1,m = 172”"
k=1

dm =Lnm

with L,=0.

Note that the probability that a channel is
busy can be obtained directly from L, which in
turn is dependent only on p_ and p. Results from

queueing theory for ordered-entry systems can be
used to compute p .

This example is interesting in that a distribu-
tion free analysis is performed. In addition, for
those quantities for which distributions were
important, it was possible to use known results for
deterministic and general distribution types to
obtain further insight into the problem. These
results were then related to the important vari-
ables in the design of the circular conveyor sys-
tem.

5. CONCLUSIONS

This paper advocates that simulation models
bebuilt first to lead the direction of analytic model
developments. By example, it demonstrates that
there is an evolutionary path from simulation
models to analytic models. The combined use of
simulation and analytic modeling can lead to a
greater understanding of systems.

The paper also calls for a paradigm to relate
the purpose for modeling and the results desired
from models. Additional research efforts are
needed to enhance our understanding of the simu-
lation and analytic problem solving process as is
a greater elaboration on the benefits of modeling
in problem solving.
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