Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

ROLLBACK SOMETIMES WORKS ... IF FILTERED
(ABSTRACT)

Boris Lubachevsky
Adam Shwartz*
Alan Weiss

AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract We introduce a new parallel discrete
event simulation algorithm called filtered
rollback. It is a combination of the Time Warp
and bounded lag simulation algorithms
introduced previously. The "filter" postpones
event processing in some subsystems in favor of
safer simulation. The filter may be tuned by the
simulationist; at one extreme the algorithm is
conservative, i.e., free from rollback, and at the
other extreme the algorithm is purely optimistic,
i.e., relying exclusively on rollback. We prove
that rollback cascading, wherein a "chain
reaction” of secondary and higher generation
rollbacks appear in the simulation, can be
bounded by an appropriate tuning. The tuning
achieves a trade-off between the two extremes
which yields an efficient and scalable algorithm.
Our method of proof uses a representation of the
rollback cascading as a tree and models such a
tree as a Galton-Watson branching process on
which an additional structure is defined, a
random walk with a barrier.

1. Introduction. "Rollback” simulation refers
to algorithms such as Time Warp (4] which
allow simulated subsystems to keep different
local times, and which recover from errors
caused by such asynchrony by rewinding the
state of the simulated system to earlier times.
There are at least two modes in which
rollback-based simulation may become
inefficient, namely echoing and cascading.
Echoing is a pattern of self-fueled rollbacks
whose amplitude increases without bound. In
Appendix 1 we construct an echo between just
two nodes in a three-node network. Cascading
is a "chain reaction" of rollbacks where the
number of participants increases without bound.
Although we are currently unable to produce an
example of cascading as convincing as the one
of echoing in Appendix 1, our Theorem 2 (Part

IT) gives strong indications that cascading exists.

A conservative, ie., rollback-free
algorithm named "bounded lag" was introduced
in [6). It requires the programmer to provide
guaranteed lower bounds on the delays between
causally connected events. As discussed in [6],
good bounds which would assure efficiency may
be difficult to provide in certain cases. The
"filtered rollback” scheme described in the
present paper was introduced in [6] (Conclusion,
p.123) as an amalgam of "bounded lag" and
"rollback.” We call this scheme filtered rollback,
because the bounded-lag stage "filters" the event
stream before it enters the rollback stage. The
filter postpones some event processing in favor
of safer simulation. The scheme contains
tunable parameters which at one extreme make
the algorithm identical to a (possibly inefficient)
implementation of bounded-lag, and at the other
extreme make the algorithm identical to a
synchronized "moving time window" rollback
[8].

Echoing with unbounded amplitude cannot
occur because rollback amplitude cannot exceed
the lag bound. However unbounded cascading
may still occur. This paper shows that by tuning
the rollback filter one may achieve a trade-off
between the extremes yielding an efficient
algorithm: the rollback cascading is bounded
independently of the size of the simulation.
Furthermore, the simulation is scalable in the
following sense: as both the simulated system
size and the number of processing elements in
the parallel simulator proportionally increase,
keeping other parameters (e.g., local degrees of
the simulated network, density of simulated
events, length of simulated runs) unchanged, the
processing time increases not faster than the
logarithm of the size (see Sec. 4).

Our method of proof may also be
applicable to the analysis of other rollback

Adam Shwartz participated in this work while visiting AT&T Bell Laboratories. His permanent address: Electrical Engineering

Technion, Israel Instutute of Technology, Haifa 32000, Israel.

630

schemes. We represent rollback cascading as a
tree and model such a tree as a Galton-Watson
branching process [1] on which an additional
structure is defined, a random walk with a
barrier. The damage to performance due to
cascading increases when the tree size does and
we present tight conditions for the trce
boundedness which are also sufficient conditions
for the boundedness of the cascading.

2. The bounded lag algorithm. To define
filtered rollback, we first need a definition of the
bounded lag algorithm. Consider the simulation
of a static network with nodes 1,2,.N. For
simplicity we assume that each node i is
permanently hosted by its own processing
element (PE). (The results are easily extendible
to the case when one PE permanently hosts
several nodes.) Node i is represented in the
simulation by its (possibly empty) set I1; of
tentative future events, each event being a pair
(event content, event occurrence time); by T(i),
the minimum of the event times in I1;; and by
an estimate (i) of the earliest time when the
history at node i can be affected by other nodes.
Fig. 2.1 represents the conservative bounded-lag
algorithm [6]. The convention for interpreting
the code in Fig. 2.1 is that all PEs execute it
concurrently. Thus all PEs at Step 1 check
condition floor < end_time, then at Step 2
compute o.(i) for all nodes i = 1,2,..N, then at
Step 3 synchronize and so on. No
synchronizations are implied except for the ones
explicitly stated, e.g., a PE may begin Step 2,
while another PE is still at Step 1.

In this algorithm, B is an arbitrarily chosen
positive upper bound on the time lag. Line 4 in
Fig. 2.1 assures the bounded lag property: the
difference in simulated time between any two
events processed concurrently does not exceed B.

Let d(i,j) be the minimum propagation
delay from node i to node j, and S! (i,B) the
incoming reachability sphere of radius B, with
the center at i; i.e., the set of nodes j such that
d(j,i) < B. Delays d(i,j) are supposed to
satisfy the triangle inequality:
d(i,j) + d(j,k) = d(i k) for any three nodes i,
J, and k.

Several methods for implementing Step 2
are described in [6]. The easiest one to explain
is the following:

o(i) = 2.1

min _{d(j,i)+min{ T(j), d(i,j) + T() } },
je Si(i.B)
J#

In algorithm (2.1), each node i computes its o.(i)

independently of the other nodes. The PEs
hosting nodes j € §! (i,B) communicate T()
to the PE hosting node i.

Figure 2.1. A conservative
algorithm

bounded lag

initially: floor = 0, some 1; # O,

time(e) > 0 for each e € v I,
‘ _ 1<i<N
T() = mlr}I time(e) ifIl; # &

e, € II,
T({) = 400 ilIl;, = @

1. while floor < end time do {
compute bound o(i) of the earliest time
when the history at node i can be
affected by the other nodes ;
3. synchronize ;
4. while T(i) < floor + B and
T() < a(i)do{
5. process events e with locally
minimum time 7(i) ;
if required, schedule new events
for node i or other nodes j and/or
delete some events from IT;
or other IT; ;
6. delete the processed events from TT;
and compute new T(i) ;

»

b

synchronize ;

compute floor « min T(i)
1<isN

o0 =

and broadcast floor to all nodes ;
9. synchronize ;

}

Let ¢(i,j) be a dclay in simulated time required
for an event at node i to affect the history at
node j. Given i and j, for different events at
node i, the ¢(i,j) may be different. A particular
value of t(i,j) may not become known until the
actual simulation is done. However, the estimate
d(i,j) must be known in advance. In the
simplest case, d(i,j) is a constant precomputed
before the simulation run. (One might choose to
update d(i,j) during the run, as discussed in
(6].) By definition, in the conservative algorithm
the values d(i,j) are chosen so that the
conditions

d(i,j) < 1(i,j), i,j=12,...N (22)

always hold, which guarantees 100% safety of
estimates o(i): no event can affect the history at

node i earlier than at time o(i). The test
T(i) < a(i) at Step 4 of Fig. 2.1 prohibits
processing of an event scheduled at node i with
time greater than or equal to o(i).

3. The filtered rollback algorithm. In the
bounded lag algorithm the programmer is
required to provide positive estimates d(i,j)
which guarantee (2.2). This may be difficult,
undesirable, or impossible. For example,
suppose for fixed i and j, (i,j) = 100 for 99%
of the events processed at node i and ¢(i,j) = 1
for 1% of such events. The safe estimate d(i,/)
must be valid for all processed events and hence
must be no larger than 1. However, taking
d(i,j) = 1 decreases parallelism and is therefore
inefficient. We propose to solve this problem in
"filtered rollback” by allowing (2.2) to be
violated. For example, if the lower bound for
t(i,j) is very small or even zero but the mean,
Et(i,j), is positive, we can take
d(i,j) = Et(i,j)/2, in the hope that (2.2) will
be violated rarely. The guidelines for setting
d(i,j) will be discussed more thoroughly in Sec.
5.

Once (2.2) is not guaranteed, an event with
smaller simulated time can be submitted to a
node for processing after the node has already
processed an event with larger simulated time.
Antievents, similar to antimessagest in [4]
should allow recovery from the error. The
version of the algorithm that incorporates the
additional rollback mechanisms is given in Fig.
3.1. The additional steps in Fig. 3.1 are
enumerated by number-letter indices. The reason
we adopt this enumeration scheme is so that the
steps which are essentially the same as in Fig.
2.1 have the same numbers as the corresponding
steps in Fig. 2.1.

A new quantity t(i) is referenced in Steps
5a, 3a, and 3c in Fig. 3.1; ¢({) is defined in 5a as
the simulated time of the last processed event. If
we similarly introduced ¢(i) in the conservative
algorithm in Fig. 2.1 we could have shown that

T(i) > 1(i) (3.1)

and that ¢(i) does not decrease as the simulation
progresses.

Figure 3.1. A filtered rollback algorithm

initially: floor = 0, some I1; # @,

1.
2.

3a.
3b.

3c.

M, = @and (i) = Ofori = 1,..N,

time(e) > O foreache € II;,
1SisN
T@) = mir}1 time(e) ifI; # @
e, e I,
T() = +oo ifIl; = &

while floor < end_time do {
compute approximation a.(i) of the earliest time
when the history at node i can be
affected by the other nodes ;
synchronize ;
if t(i) > T(i) then {
recover the state of node i including TT; the
node had just before simulated time 7(i);
for each event e scheduled previously
by node i in a different IT; on
the interval of simulated time [T (i),¢(i)],
create the matching antievent e and
insert it into IT"; ;
t(i)y « T@);
} else
while T(i) < floor + B and
T(() < ofi)do {
process events e with time T(i) ;
if required, schedule new events
for node i or delete some events
from IT; and/or schedule
some events or antievents e for
other node j and insert them
into IT’; ;
t(i) « TW);
delete the processed events from IT;
and compute new T(i) ;
b
synchronize ;
1_[‘- — n" U H',-;I_I',- — @,
compute new T(i) ;

compute floor « min T(i)
1<i<N
and broadcast floor to all nodes ;
synchronize ;

}

The original fonnu{aUOn of the T'ur_\e Warp algor@lhm 4 operates with messages and antimessages. Our algorithm operates
with events and antievents. Where in [4], queue I sends a message/antimessage to queue j, in our algorithm, node { inserts an
event/antievent into set l_Ij. Thg two approaghes are equivalent: it is always possible to recast a message-antimessage
processing in terms of an event-antievent processing and vice versa. We believe that our algorithm is easier to formulate in the
event-antievent language, which does not prohibit a message-antimessage implementation.

632

However, in the new version, Fig. 3.1, condition
(3.1) is not guaranteed. An instance of violation
of (3.1) which is detected by the test in line 3a
of Fig. 3.1 means that at Step 7a, T(i) was
computed for an event or antievent e with
time(e) smaller than ¢(i); note that ¢(i) is the
previous value of T(i) (Steps 5a and 6). Such an
event was necessarily inserted by a node j, j # i.
Such an instance requires a rollback at node i as
a result of which ¢(i) will decrease. Observe
that any event or antievent inserted by j is not
immediately incorporated into IT;, but is kept in
the auxiliary storage IT’;.

The rollback branch, lines 3b and 3c,
begins with recovering the state to what it was
just before the error time 7T(i). We are not
proposing new elements in the way this recovery
should be implemented and assume it is done as
in the Time Warp [4]. Observe that no rollback
extends further in the past than the floor. We
exploit this in two ways. First, this simplifies
the implementation, e.g., bounded memory
suffices to remember old states. Second, in our
efficiency analysis in Sec. 4, we can assume the
cost associated with this action to be O(1) for
each node. Another action in the rollback
branch is the scheduling of antievents as stated
in line 3c.

The described method corresponds to the
aggressive cancellation policy (4], wherein the
same event e may be canceled by the subsequent
event e, then again scheduled, then again
canceled etc. A more elaborate lazy cancellation
policy [3] can also be used and similarly
analyzed within the same filtered rollback
framework.

When the test in line 3a fails, execution is
directed to the non-rollback branch, lines 4-6 of
Fig. 3.1, which are similar to lines 4-6 of Fig.
2.1. There are two differences, however. The
first difference is that some events subject for
processing are antievents. Processing of an
antievent e by node i simply means finding its
counterpart positive event e in II;, such that
time(e) time(e), and deletion ("annihilation”)
of both e and e. It can be shown that such a
counterpart must necessarily be present in II;
when node i executes the non-rollback branch.
The other difference is in the way node i
schedules events for or deletes events from a
different node j. In the conservative version at
the same iteration node j can process an event ¢;
belonging to set II; while node ¢ can
concurrently insert an event e; into the same set

633

I1; or delete an event e; from II;. These two
activities do not interfere, since the bound o j)
well separates the times:

time(e;) < o(j) < time(e;).

An implementation can be arranged in which
both PEi and PEj concurrently access the same
data structure which represents II; without
ambiguity.

In the filtered rollback version, node i
might schedule an event e; for IT; or might
attempt to delete an event e; from II;
concurrently with the processing of event e; by
node j with time(e;) < time(e;). To avoid
ambiguity, we assume that the recipient of the
scheduled event, node j, incorporates it into its
set of tentative events II; only after
synchronization at Step 11. Event deletion is
reduced to event insertion by creating an
antievent e;. During Steps 3c and 8 the
scheduled events, including antievents, are
inserted into the auxiliary set I1°;. Before
computing the new floor, at Step 7a I1’; joins
I1; and this action is followed by updating 7().

In an altermative method, not shown in Fig.
3.1, updating of IT; takes place concurrently with
processing events in IT;. In this method, if an
(out-of-order) event or antievent e; is inserted
into IT; while node j is processing an event e;
with time(e;) 2 time(e;), processing is aborted
and a rollback follows. The efficiency analysis
given below is valid for both methods.

4. Efficiency analysis. We will try to follow
the analysis outlined in ([7]. The immediate
problem which we encounter on this path is
event counting. Note that a rollback algorithm
may sweep over the same simulated time more
than once. Hence the same event can be
processed several times. Moreover, during these
sweeps some erroneous events may be
introduced and processed. We need to
distinguish between inherent events, those which
actually occur and are counted only once, and
processed events, which are all events, inherent
or not, each counted as many times as processed.
Let us denote by I the set of inherent events and
by IT the set of processed events. It follows that
I < IT and that all events in IT \ I are canceled
by rollbacks. In Sec. 5 we give a finer
classification of the set IT.

The proof of the log-scalability of the
conservative algorithm [7] is based on the
following assumptions:

Al. Q(N) nodesi have events e satisfying
floor < time(e) < floor +B at one iteration of
the algorithm on the average.

A2. The total number |/|of inherent events in
the simulation run is O(N) (For a set A we let
| A|denote the number of elements in A.)

A3. There exists a constant D, 0 < D < +09,
independent of the size N and node i such that
| §7 (i,B)| < D, where §7 (i,B) is the outgoing
reachability sphere of radius B with the center at
i, i.e. the set of nodes j such that d(i,j) < B.
(Contrast this with S4 (i,B) defined in Sec. 2.)
Ad4. |T1;| , the number of scheduled events for
a node i, is bounded from above by a finite
fixed constant independent of the node identity i,
the problem size N, and the iteration number.
AS. The number of processed events for a node
at an iteration is bounded from above by a finite
fixed constant independent of the node identity,
the problem size N, and the iteration number.

The proof in [7] proceeds as follows:

Step 1. Al and A3 imply that the number of
events processed at an iteration is Q(N),
averaged over the simulation run.

Step 2. Examining the algorithm implementation
and using A3, A4, and AS imply the estimate
O(logN) for the time required for one iteration.
Step 3. Dividing the latter over the former yields
the estimate O(N~'logN) for the time spent per
event on the average over the simulation run.
Step 4. A2 and the estimate in Step 3 imply
estimate O(logN) for the average processing
time, i.e., log-scalability.

In applying the same proof scheme for the
filtered rollback algorithm, we observe that Steps
1, 2, and 3, and the assumptions involved, are
equally valid in the filtered rollback case.
However, Step 4 does not work. In the
conservative case, I = IT, but in the filtered
rollback case, IT may be substantially larger than
I and assumption A2 does not imply log-
scalability anymore. In order to prove log-
scalability we shall derive an upper bound for
the number of processed events |T1] .

Since rollback cascading is directly
responsible for the extra events, we digress into
examining this phenomenon in greater detail.

5. Rollback cascading. Fig. 5.1 shows a time
diagram of a three-node-network simulation.

Three time axes numbered 1, 2, and 3
correspond to nodes 1, 2, and 3, respectively,
and the simulated time increases upward along
the axes. Suppose at iteration 1, nodes 2 and 3
compute their a(2) and o(3) (shown in Fig.
5.1), and suppose IT1, (resp. IT;) contains an
event e’, (resp. e’3) scheduled at a time slightly
less than a(2) (resp. a(3)). (Those additional
events are not depicted in Fig. 5.1 so as not to
clutter the picture.) In the computations of their
a(i)s both nodes see the minimal-time event e,
at node 1 and assume that ¢(1,2) and ¢(2,3), the
delays in propagating this event from node 1 to
node 2 and from node 2 to node 3, respectively,
will not be smaller than the corresponding
d(1,2) and d(2,3). Contrary to this assumption,
however, node 1 schedules event e, for node 2
and the actual delay ¢(1,2) happens to be
smaller than d(1,2). Node 2 notices at Step 3a
(Fig. 3.1) of iteration 2 that rollback is required,
at which point it rolls back to time(e,)
invalidating the results of its simulation on the
interval from time(e,) to o(2). This implies
that the first occurrence of e’, is a non-inherent
event. Meanwhile node 3 computes a new o (3)
(not shown in Fig. 5.1) which is smaller than the
value of o(3) at iteration 1 and is in the past of
event e’5, which has already been processed by
node 3. This indicates that a rollback might
occur soon, but according to the algorithm in
Fig. 3.1 node 3 does not roll back until hard
evidence is obtained. Such evidence is generated
later, when node 2 processes e, and schedules an
event e, for node 3. Even though the actual
delay ¢(2,3) is larger than its estimate d(2,3),
node 3 notices at iteration 3 that event e is in
its past and rolls back to time(es).

In this example, node 2 has an original
rollback and node 3 has a rollback of the second
generation. There may be, of course, third and
higher generations of rollbacks. Observe that we
can always, at lcast conceptually, trace each
non-original rollback to its origin. Specifically,
if node i receives a rollback-causing event from
node j we put link i« j into our trace. If two or
more rollback-causing events are received by
node i we trace the rollback only by the event
with the smallest time, because this rollback
overrides the others. Thus, we can visualize
rollback trees growing from iteration to iteration
with branches sometimes dying out as the
simulation progresses.

+ For non-negative functions ®(N) and Y(N): ¢(N) = Q(Y(N)) and Y(N) = O(G(N)) if there exists constant
0 < C < 409 such that o(N) > CW(N) for all sufficiendy large N.

634

Figure 5.1. Two generations of cascading

1 2

Let i be the node at the root of such a tree. In
the neighborhood of i we can always find a
unique node j and a unique event e, Whose
processing at j causes the original rollback at i
which starts the tree. In Fig. 5.1, the root is at
node i = 2 and this original rollback is caused
by processing event €., = €1 atnode j = 1.
A starter event e, Such as e; may or may
not be inherent,e¢; € fore; € TI\ /.

We now wish to decompose II by
classifying the degree to which each event is
"non-inherent.” We do this by constructing sets
I® such that

n=1o Ul U U s

where I¥) ~ 1Y) = @ wheni # j. Define

1 & Recursively define 1**!) as the set
of events which are part of trees rooted in 10,
k=0,1,..

Returning to Fig. 5.1, we observe that the
diagram does not specify to which /) the events
on this rollback tree belong. If there are other
nodes in the network besides nodes 1, 2, and 3,
it is possible that e; may be canceled by a
rollback (not shown) at some future iteration. In
this case ¢, € /¥ for some k > 1, and then
6,2, 6,3 e](k+l).

We present a model which upper-bounds
the described cascading effect. This model is a
tree defined by a standard Galton-Watson
branching process [1] on which an additonal
structure is defined, a random walk with a

M 1@

635

secondary
rollback

barrier. This structure represents "survival” of the
rollback tree branches. The root of the tree
corresponds to an original rollback. In Fig. 5.1, a
rollback tree originates at node 2 with positive
"survival number” X, = d(1,2) - ¢(1,2).
Node 3 is a first generation child. Suppose it is
the first child in this generation; its "survival
number" X; = oa(3) — time(e;) can also be
represented as X = Xo + W;; where
Wy = d(2,3) — ¢(2,3). At each level of the
tree there may be several children of a particular
father because an event processing at a node may
schedule events in several neighboring nodes.
Each child (k,m) (k-generation number, m-child
number) inherits the survival number from the
father and adds its own positive or negative
increment W, to it. A rollback branch (k,m)
terminates (a desirable situation) when its
survival number X, becomes negative.

For simplicity of the analysis, let us
assume a statistically homogeneous simulation
with i.id. ¢(i,j) and with independent event-
producers at each node and where the
distribution of ((i,j) is independent of the
number of nodes N. Note that this homogeneity
assumption applies only to the simulated system.
Topology and architecture of the host parallel
computer is irrelevant, as long as the computer
works efficiently for the given topology of the
simulated system, e.g., it does not take long to
synchronize, or to send a message from a node
to a ncighboring node. Then we will have

homogeneous branching and iid. survival
increments W,,. The distribution of the
increments is that of d(i,j) — ¢(i,j). Estimates
d(i,j) are in the control of the simulationist.
How should these d(i,j) be chosen?

An obvious guideline is to choose d(i,/)
so that the d(i,j) — ¢(i,j) are 1iid. with
negative mean i.e.,

B1. W,,, are i.id and E(W,,) < O,

(note that even if the t(i,j) are not identically
distributed, the d(i,j) may be chosen so that Bl
holds). How negative should E(W,,) be?
Theorems 1 and 2 below provide explicit bounds
in terms of the distribution of Wy, which ensure
boundedness of cascading.

Let p(r) be the branching distribution of
the process, i.e. p(r) is the probability that a
father has exactly r children. Observe that
p(r) = O for values r larger than the local nodal
degree D; at node i. We assume that

max

de
B2. D; ¥ D <+oo.
i is a node of the network

Assumgg SO
B3.h = Supg(-logEexp(6Wy,)) < o,
and define

b & E (number of children of a father)
= Y kp(k),

k
which is the branching factor. Straightforward
calculations show that by choosing d(i,j) small
enough (but positive), & can be made arbitrarily
large.

Theorem 1. Under assumptions B1-B3:

if D < e” then E(size of the tree) < +oo,
Proof is given in Appendix 2.

6. Efficiency analysis (cont’d). Returning to
the main-stream of the efficiency analysis, we
introduce the following assumptions:

A6. The mean size of all rollback cascading trees
is O(1) uniformly over the simulation run.

A7. E|T1|=0(N).

A6 follows from Theorem 1. A7 follows from
A6 and the analysis below. We will show that
for an appropriate choice of d(i,j), there exists a
B < 1 so that

E[I**D| < BE[I®|, k=0,1,2,... (6.1)
From (6.1) and A2 it follows that

636

ElN| = EY [I¥|

6.2)

IA

k=0 -
1913 B = o(V)
k=0

To show (6.1), choose d(i,j) small enough so
that D <e”. Let ¢ be an upper bound on the
probability that an event starts a rollback tree.
Since by Theorem 1 the expected size of a tree
started by event eygnr, | tree(€game,)| , is
bounded from the above, say by a constant

C < 400 which is independent of k£, N and
€ starter> we haVe

E|1%+D)| (6.3)
= E Y |uee(e)| 1(e roots a tree)
ecI®
Since the size of any particular tree is

independent of the size of /*¥), Wald’s Lemma
applied to (6.3) yields

E|1%*+D)| (6.4)
= E|I®| E|tree(e)| P(e roots a tree)

From the proof of Theorem 1 it follows that C
decreases when the d(i,j) decrease. Since ¢
depends on all d(i,j) and is zero if all d(i,j) are
smaller than the respective ﬁg}’j)’ choosing
d(i,j) small will ensure that B = ¢C < 1 and
(6.1) follows.

Now since A7 is assured, the expected
number of processed events | II| , counting
each time the same event is processed as a
separate event, and including all events wrongly
introduced by the rollback optimism, is O(N).
Therefore we can complete Step 4 of the proof.

The analysis above also implies that the
total number of events in IT is finite with
probability one, i.e. in almost all realizations of
the stochastic system, IT is finite. Moreover, the
number of events processed is O(N) with high
probability. The actual system being simulated
may not be stochastic in any sense, and
furthermore the simulation may not be stochastic.
There is a connection, however, between random
processes and deterministic processes that is
often exploited in information theory (e.g. to
show existence of efficient codes) that enables us
to apply these results to deterministic
simulations. If the event times are regarded as a
realization of a stochastic simulation, or as
samples of such a simulation, we can conclude
that, in this deterministic system, IT is still finite
and is even O(N).

7. Final remarks.
Theorem 2. Under assumptions B1, B3 and

S kip(k) < oo

k

(D) if b < e" then P(tree is finite) = 1 and
E(size of the tree) < oo;

(I1) if b > e* then P(tree is finite) < 1 and
E(size of the tree) = oo.

Theorem 2 substantially improves Theorem
1 by establishing a condition for the finiteness of
the wee which is tight. Its lengthier proof is
omitted.

We have only proved sufficiency of the
tree boundedness but not its necessity for the
rollback simulation efficiency. This is so
because the tree model establishes only the upper
bound for the possible damage due to rollback.
Specifically, if several rollback trees coexist in
the simulation, the cumulative damage can be
smaller than the sum of the damages due to each
tree. However, in our analysis we use the latter
as representing this damage. Also, a single
rollback tree can fork children to itself which
may also decrease the damage as compared with
its upper bound from our model.

These damage alleviating phenomena
depend on the topology of the simulated network
and their effects as a function of the topology
require further investigations.

Also note that the analysis outlined above
applies only to our specific algorithm, filtered
rollback. However, we believe it sheds some
light to the efficiency or inefficiency of the
general rollback simulation paradigm. In
particular, the lower bound in Theorem 2, part
(1), strongly suggests that if b > e” then
unbounded cascading may develop.

Appendix 1: An echo in a rollback algorithm.
It is easy to generate an echo by "maliciously”
manipulating processing rates for different types
of simulated activities during simulation. An
attractive and realistic feature of the example
below is that processing rates for the simulated
activities are assigned in advance so that the
echo is generated without outside intervention,
just by virtue of the pattern of node interactions.
The end result is that after achieving simulated
time ¢, the lengths of simulated time intervals
which must be rolled back and the number of
wrongly processed events are (i), so that as
the real time ¢, advances, the processing rate
(which determines how many inherent events are
processed per unit of physical time) decreases as
0(1/\/:). Long cascading is not possible,
since the number of nodes is fixed at 3.

637

First, we describe the simulated system. It
consists of three nodes A, B, and C which
exchange messages:
node A may send messages to B and C,
node B may send messages to A and C.
after receiving a message from B, node A
processes the message, then sends a reply
message to B.
similarly, after receiving a message from A, node
B processes the message, then sends a reply
message to A.

Another activity A and B can be engaged
in is sending messages to C. Node A starts
preparing a message to C when A has no other
work to do. The message is sent as soon as it is
ready, and then if A again has nothing to do,
preparation of another message for C is started.
Similarly B prepares and sends messages to C if
B has otherwise nothing to do.

For both A and B, their mutual message
exchange has a higher priority than sending
messages to C. Thus, if A receives a message
from B while preparing a message for C, the
preparation is aborted and processing of the
message from B is started. Similarly B aborts a
preparation of a message for C and starts
processing a message from A if such a message
is received.

Sending/receiving messages takes no time.
But processing the message between A and B
takes time u and preparation of messages for C
takes time 2u, u > 0.

Suppose that initially, at time ¢ = 0, A
receives the first message from B. Then for
t > 0 the only message traffic will be between A
and B: A sends a message to B at t = u, then B
sends a message to A at time ¢t = 2u, then A
sends a message to A at time t = 3u, and so on.
The idle periods of length u for both A and B
would not be long enough to complete the
preparation of a message to C; each time such a
preparation is started it is later aborted and no
message to C is sent.

Our final assumption about simulated
system is that C has very little work to do, and
sends no messages.

Now we describe the work of the
simulator. The simulation is hosted by three
processors, h(A), h(B), and h(C), each of which
performs a simulation of the corresponding node
of the simulated system. Suppose that the
simulation of processing one message and
sending one reply by #(A) to h(B) or by h(B) to
h(A) takes one time unit of physical time, and
similarly preparing and sending a message to
h(C) by either h(A) or h(B) takes one time unit.

Also one time unit is required for preparation
and sending an antimessage during a rollback.
Since C has little work to do, h(C) increases its
simulated time very fast, so the simulated time

of C is always very large (+0°0).

According to the rollback strategy the
events will be processed as follows:

1. At physical time 1, A(A) completes processing
the message which was received by A from B at
simulated time O and sends a message to h(B)
with time stamp u. Meanwhile, since h(B)
received no time stamp during interval of
physical time (0,1), it has completed preparation
and sending a message by B to C. Thus, at
physical time 1, the simulated time of A is u, the
simulated time of B is 2u, h(A) has correctly
sent a message to h(B), and A(B) has incorrectly
sent a message to h(C).

2. Receiving time stamp u with the message
from h(A), h(B) starts rolling back its simulated
time from 2u to u after physical time 1. One
antimessage is to be sent from 4(B) to A(C), so
the rollback would be completed by physical
time 2. Meanwhile, since h(A) received no time
stamp during interval of physical time (1,2), by
time 2, h(A) has simulated preparation and
sending a message from A to C.

3. At physical time 2 the rollback by A(B) is
completed and Ah(B) starts simulation of
processing the message which B received from A
at simulated time wu. This processing is
completed with sending a message to h(A) at
physical time 3. The message has time stamp
2u. Meanwhile, since A(A) still received no
time stamp neither at physical time 2 nor during
the following interval (2,3), by time 3, hA(A) has
simulated preparation and sending a second
message from A to C. Thus, at physical time 3,
the simulated time of B is 2u, the simulated time
of A is Su, h(B) has correctly sent a second
message to h(A), and h(A) has incorrectly sent
two messages to h(C).

4. Following the same pattern, at physical time
6, the simulated time of B is 8u, the simulated
time of A is 3u, h(A) has correctly sent a
message to h(B), and h(B) has incorrectly sent
three messages to Ah(C). The next similar
physical time would be 10=6+4, then 15=10+5,
and so on.

By induction, at physical time
n(n+1)/2=1+2+...+n, the floor of the
simulation is nu which is also the simulated time
of A if nis odd, or of B if n is even. The other
of the two nodes is incorrectly advanced to
simulated time (3n-1)u and has incorrectly
sent n messages to C.

638

Thus, the simulated time advancement
during one unit of the physical time
advancement degrades in inverse proportion to
the square root of the physical time, as the
rollback amplitude rises in direct proportion to
the square root of the physical time.

Appendix 2: Proof of Theorem 1. We have a
standard (Galton-Watson) branching process [1]
defined by a distribution on the nonnegative
integers ({p(i)}, i = 0,1, ..) and a sequence of
1i.d. random variables w(i,J) with
P(w(i,)) = n) = p(n).

The process realization can be thought of
as a random tree with root labeled (0,1) which

spawns’ w(0,1) = k(1) children labeled
(1,1),(1,2),...,(1,k(1)); each child (1,))
spawns w(l,)) grandchildren. The
k(2) = w(l,1) + + w(l,k(1))

grandchildren are labeled

(2,1),(2,2),...(2,k(2)) and so on. The number
of descendents of the nth generation, k(n), is
defined recursively: k(0) = 1;

k(n+1) = Y w(n,)).
j=1
B2 yieldls) p(i) = 0fori > D, therefore

Ew(i,j) = Yip(i) & b < +oo.
i=0

We need the genealogy of each
descendent. We label the descendents at the nth
generation

(n, 1), (n,2), -+ ,(n, k(n)).
The ancestry of descendent (n, j) is given by the
following sequence
0, 1% (1,L(1, n, j))
(n, j),
where L(i,n,j) is the label of the direct ancestor
of node (n,j) in the ith generation.

Once our branching process which
generates random trees with nodes (n,j) has
been constructed, we define two new random
processes on it, x(n,j) and x(n,j). We are given
a probability distribution dF(t) with

j [ar) > o,
0

(2, L2, n, j)); s

[wr@) <o, and

—oo

_[e®dF (1) < = for some 6 > 0. We assume

that the i.i.d. sequence of random variables W
introduced in Sec. 6 is distributed according to
F(1). It follows from Sec. 6 that W ; is assigned
to descendent (i,j). Now, given a positive
number x, define

1) x(0,1) = x,

2) x(n, m)

=x(n-1,L(n-1,n,m)) + W,,.

That is,

n
x(n,m) = x0 + X Wirinm

i=1

3)

x(n,m) if x(@i, L(i, n, m)) are
positive forall 0 <i<n
0 otherwise .

x(n,m) =

We also define z(n) = the number of x(n, j)
1 £ j < k(n) which are positive.

We further define a process x” (n,i) in the
same way as x(n,i), except that the carrier
branching process is deterministic with branching

factor D. It is always possible to construct
x*(n,i) so that
x (n,i) = X(n,i), 1<i<k
This yields
k(n)

o
3 1(x"(n,i) > 0).

i=1

> 1(x(n,i) > 0) <
i=1
Lemma.Given any €>0 there exists an ng > 0
such that if n > ng then
P(x"(n,i) > 0) < e~ ™h-9),
Proof is a direct application of Chemoff
inequality [2].
Proof of Theorem 1.

E(S 2(n))

n=1 - k(n)

E(Y X 1(x(n,i) > 0))

- n:lﬁ;l

< T E(T1(x"(n,i) > 0)
n=1 i=1

< Y D"P(x"(n,i) > 0)

n=1

no
< YD™ +
n=1

I

i Dre-"h-9 < o

n=n,+ 1 A
—h+e

where € is small enough so that De <1

and n is given by the lemma.

References

639

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Asmussen, S. and Hering, H., Branching
Processes, Birkhauser, 1983.

Chernoff, H., A measure of asymptotic
efficiency for tests of a hypothesis based
on the sum of observations. Ann. Math.
Statist., 23 (1952), 494-507.

Gafni, A., Berry, O., Jefferson, D.
Optimized virtual synchronization, Proc.
2nd Int. Workshop on Applied Math. and
Performance/Reliability Models, Univ. of
Rome II (1987), 229-244,

Jefferson, D.R., Virtual time. ACM
Transactions on Programming Languages
and Systems, 7, 3 (1985), 404-425.

Lubachevsky, B.D. Bounded lag
distributed discrete event simulation
(Extended Abstract), in Distributed

Simulation, B.Unger, and D.Jefferson
(eds.), SCS, Simulation Series, 19, 3
(1988), 183-192.

Lubachevsky, B.D. Efficient distributed
event driven simulations of multiple-loop
networks, Communications of the ACM,
32,1 (1989), pp.111-131.

Lubachevsky, B.D. Scalability of the
bounded lag distributed discrete event
simulation, in Distributed Simulation,
B.Unger, and R.Fujimoto (eds.), SCS,
Simulation Series, 21, 2 (1989), 100-107.

Sokol, L.M., Briscoe, D.P, and Wieland,
AP. MTW: a strategy for scheduling
discrete simulation events for concurrent
execution, in Distributed Simulation,
B.Unger, and D.Jefferson (eds.),
Simulation Series, SCS, 19, 3 (1988) 34-
42,

