Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

DISTRIBUTED SIMULATION USING HIERARCHICAL ROLLBACK

Richard L. Gimarc
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712

ABSTRACT

As the complexity of computer and communication
systems increases, it becomes increasingly difficult to
construct and evaluate models of these systems which can
be wused to study their performance under varying
conditions. A modeling technique which is once again
gaining in popularity due to its generality and ability to
represent systems in varying degrees of detail is discrete
event simulation.

Constructing a simulation model of a real or proposed
system is well understood and many tools are available.
The major problem which arises is model evaluation. Due
to the complexity and level of detail in a simulation
model, it may require an excessive amount of time and
computer resources to perform the evaluation. There is
an area of current research, though, which is addressing
these performance problems: distributed simulation.

Distributed simulation has the potential to reduce the
often lengthy run—time required for complex discrete event
simulation by wusing multiple, cooperating processors
instead of a single processor for model execution. Also,
the computer resource requirements can more easily be
satisfied by spreading the demand across a set of
processors rather than depending on a single processor to
furnish the required resources.

In this paper a mnew technique for distributed
simulation called hserarchical rollback is presented.
Hierarchical rollback employs multiple processors for the
evaluation of a single simulation model. Synchronization
and coordination of the processors is based on a unique
checkpoint/rollback mechanism. It will be shown how
hierarchical rollback can be used to execute a hierarchical
simulation model on a distributed set of processors.

1. INTRODUCTION
Distributed simulation (Misra 1986) has the potential

to reduce the often lengthy run—time 'reqnired .for
evaluating a complex discrete event simulation by using

multiple, cooperating processors instead of a single
Processor. With n processors working in concert,
distributed simulation has the potential to reduce

run—time to 1/n—th of that of sequential simulation.
Parallelism inherent in the simulation model may be
exploited by the simultaneous execution of submodels on
separate processors. Concurrent submodel execution has
the potential to dramatically reduce the elapsed run—time.

621

Characteristics common to the distributed simulation
techniques presented in the literature are
1. The simulation model is partitioned into disjoint
submodels, and each submodel is assigned to a
separate processor.
Each submodel has its own event list and simulation
clock.
There is no shared memory.
Processors communicate exclusively using messages.
The set of processors (submodels) execute concurrently
until simulation terminates.

Ll ol o

The one characteristic which differs markedly between
the various distributed simulation techniques is how they
manage submodel interaction. If each submodel is
logically isolated and never interacts with other submodels,
then local submodel execution can proceed independently
of other submodels. However, it is often the case that
there is some degree of submodel interaction. For
example, suppose submodel S(1) on processor P(1)
generates an event which must be executed at time t by
submodel S(2) on processor P(2). I S(2)’s local
simulation time is greater than t when it receives the
event, then S(2) will not be able to process the event
directly since that would invalidate the simulation (by not

processing events in chronological order). Thus, there
must be some mechanism in place to ensure
synchronization for interacting submodels.

Managing submodel interaction is the primary

problem addressed by the different distributed simulation
algorithms. There are two basic approaches that have
appeared in the literature: conservative and optimistic.

The conservative approach (Peacock 1978) (Chandy
1979) (Chandy 1981) controls the local progress made by
each submodel such that when an external event is
received by a submodel, it is guaranteed that the event
time is not in the receiving submodel’s local past. Each
submodel throttles its local progress based on the progress
made by the submodels which could send it simulation
events. This ensures that submodels will receive events to
be executed in present or future time which is easily
accomplished by posting the event on their event list.

In the optimistic approach (Jefferson 1985), submodel
execution proceeds asynchronously on the (optimistic)
assumption that it will not receive an event from another
submodel. K submodel interaction does occur, a

checkpoint/rollback mechanism is used to enable the
received event to be executed at the proper time.
Rollback requires the saving of previous submodel states
(using checkpoints) so that local simulation can be backed
up in time for proper event scheduling. The rollback
mechanism is used instead of throttling local submodel
progress to guarantee that events are executed in the
proper order.

In this paper a new technique for distributed
simulation called hierarchical rollback is presented.
Hierarchical rollback is a hybrid scheme containing
features common to both the conservative and optimistic
approaches. Its goal is to meld these two approaches in
such a way to maximize their strengths and minimize
their deficiencies.

The next section
hierarchical simulation.
rollback is described.

describes
Following

the concept of a
that, hierarchical

3. HIERARCHICAL SIMULATION MODEL

A hierarchical simulation model is a special type of
simulation model which exhibits a hierarchical structure of
objects being modeled. A system called the Hierarchical
Simulation System (HSS) has been developed which
supports the construction and evaluation of hierarchical
simulation models of office systems. Although the focus of
HSS is on office systems, the concepts it employs can be
applied to other application areas.

3.1 The Hierarchical Simulation System

The Hierarchical Simulation System (Gimarc 1985) is
an interactive, object—oriented simulation modeling system
which provides a complete environment for building and
executing hierarchical simulation models of office systems.
HSS embodies a modeling methodology which provides a
framework which structures the perception and
representation of office systems. This methodology enables
an office planner to design and comstruct a simulation
model which directly reflects the hierarchical structure of
the office system being modeled. The hierarchical
structure is then simulated by HSS.

There are two
methodology:

stepg in the HSS modeling

Step 1:

Step 2:

Decompose the office system into a hierarchical
collection of information processing subsystems.
Describe the information paths in the office
system.

Information Processing Subseystems. An office system
can be viewed as a hierarchical collection of information
processing subsystems. At the highest level, the office
system can be decomposed into first—level subsystems.
This decomposition may, for example, be driven by
business areas, physical location, or department boundaries.
After the first—level subsystems have been identified, they
may themselves be decomposed into lower—level
subsystems. The result of this decomposition is a

622

hierarchical collection of information processing subsystems.
The decomposition of an office system into a hierarchy of
information processing subsystems may be obtained in a
manner analogous to the programming methodology of
stepwise refinement described in (Wirth 1971).

The HSS modeling methodology enables the office
planner to obtain a hierarchical description of an office
system by a sequence of refinement steps. Initially the
office system being modeled is viewed as a single entity.
The first step in the refinement process is to identify the
major subsystems of the office system. These major
subsystems are then decomposed repeatedly until the
components of the office system (workstations, LANSs, file
servers, etc.) appear as leaves on the refinement tree.
The resulting tree structure is referred to as the HSS
model tree.

The HSS model tree represents the hierarchical
structure of the office system being modeled. Each
subtree represents a logical subsystem. Unlike the

program tree built during program design using stepwise
refinement, the HSS model tree is seen directly in the
HSS simulation model. All nodes in the model tree have
a corresponding representation in the simulation model.

Information Paths. An office system is composed of
both information processing equipment and the information
that is processed by that equipment. Information in an
office generally flows along fixed paths. That s,
information originates at an information source, travels
through various stages of information processing and
finally reaches its destination. The source and destination
can usually be identified as specific components in the
office system. An information path is the sequence of
office system components through which information flows.
There may be several information paths within an office
system, each characterized by the type of information that
flows along the path. And further, information paths need
not be disjoint.

To complete the design of an HSS model the
information paths must be identified. The office system
components which appear on these paths will be the leaf
nodes of the HSS model tree.

HSS Simulation Model. An HSS simulation model
may be constructed in a mechanical fashion directly from
the design obtained by applying the HSS modeling
methodology. The simulation model is constructed using
the same two—step procedure applied during model design.
Namely,

Step 1:
Step 2:

Build the model tree.
Build the information paths.

HSS provides a complete on—line environment for
constructing a hierarchical simulation model. The user
interface supports the top—down modeling methodology
and provides a set of parameterized objects representing
office system components.

3. HIERARCHICAL ROLLBACK: SYSTEM MODEL

The model tree derived from building a hierarchical
simulation model defines the basic structure for the
processors used in hierarchical rollback. The model tree is
partitioned into subtrees, and each subtree is assigned to a
processor. The processor tree will be used for distributed
simulation with hierarchical rollback.

For processor P(i), the processor tree is defined by
the following data structures:

P(i).parent Name of the processor that is P(i)’s
parent. If P(i) is the root node in the
processor tree, then P(i).parent is NULL.

P(i).child(j) Name of P(i)’s j—th child processor. If

P(i) does not have a j—th child, then
P(i).child(j) is NULL.

There is no shared memory in the processor tree.
The only resource that is shared between processors are
communication channels which link each processor to its
parent and child processors.

3.1 Processor Communication

Processors communicate with each other exclusively
via messages. Processor P(i) has communication channels
attached to its parent and child processors, if they exist,
in the processor tree. Thus, P(i) can only communicate
with its immediate parent and child processors. To send
a message to a processor outside of this neighbor set, P(i)
must route the message through its parent or child
processor, whichever is closer to the desired destination
(measured in terms of the number of communication links
traversed).

Assumptions. The following assumptions are made on
the processor communication mechanism:

1. The communication channel is error—free.

2. Messages cannot be lost on the channel.

3. Messages are received in the order sent (the channel
does not change message order).

4. Processor input buffers have infinite capacity (tkus
messages cannot be lost due to buffer overflow).

Input/Output Buffers. Each processor maintains
separate input and output buffers. The input buffer holds
messages received from other processors and the output
buffer holds messages that must be transmitted to other
processors. Messages are kept in ascending message time
stamp order. For messages with identical time stamps,
ordering is first—in—first—out.

The input and output buffers both have pointers
which are used to indicate the next message to be
processed. This mechanism allows the buffers to serve as
historical repositories of messages that have already been
processed. The input buffer pointer is incremented after a
message from the buffer is processed. Likewise, the
output buffer pointer is incremented after a message is

623

transmitted.

Message Types. Every message m contains the
following data fields:

m.sender Name of the processor that will send
message m.

m.receiver Name of the processor that is to receive
message m.

m.type Message type: DATA, ACK, or TIME.

m.time Message time stamp.

m.text Arbitrary text, depends on message type.

m.send_id Message sequence number.

DATA messages are used to transmit simulation
events between processors. A description of the event is
placed in m.text. Event time is placed in m.time and
m.send_id is used to uniquely identify the message.

An ACK message is used to acknowledge the receipt
of a DATA message. M.send_id is set to the sequence
number of the DATA message being acknowledged. Since
time is meaningless for an ACK message, m.time is set to
zero, and likewise, m.text is set to NULL.

Processors exchange simulation time information using
TIME messages. The appropriate time value is placed in
m.time and fields m.text and m.send_id are set to NULL.

Communication Protocol. The communication protocol
governing message transmission is very simple. DATA
messages are assigned a message sequence number
(m.send_id) which uniquely identifies the message. When
processor P(i) transmits a DATA message to P(j), it
expects to receive a corresponding ACK message with
matching sequence number from P(j). The ACK indicates
that the receiving processor has successfully received the
message and scheduled the event it contains for processing.
P(i) can have at most one outstanding unackmowledged
DATA message sent to each receiving processor.

There are no protocol restrictions on TIME messages.
They are never acknowledged and message receipt is
assumed to be successful.

4. HIERARCHICAL ROLLBACK: COMPONENTS

Hierarchical rollback (HR) is a distributed simulation
technique which uses a checkpoint/rollback mechanism to
synchronize submodel interaction. The three key
components of HR are time management, checkpoint
processing, and rollback processing.

Time management is used to control the processing of
events and submodel interaction. The algorithms used are
fully distributed so that there is no single processor which
is designated as the master time keeper.

Each processor has a checkpoint process which
periodically saves copies of the processor’s local state space
in checkpoint records. These checkpoint records are
utilized when a processor has to synchronize itself due to
submodel interaction.

Rollback processing is the synchromization mechanism
used by HR. With the aid of saved checkpoint records, a
processor is able to step back its local simulation time in
order to synchronize itself during submodel interaction.

These three components are discussed in detail in the
following sections.

4.1 Time Management

Simulation time is maintained at three different levels:
local, subtree, and global. Each processor (ie, submodel)
has its own local simulation clock which corresponds to its
local time. Processor P(i)’s local time is maintained in
the following data structure:

P(i).local_time Current value of P(i)’s local simulation
clock.

As simulation events are executed within a processor,
local simulation time increases. In the event of a
rollback, a processor may have to step back its local time.

Subtree time is also maintained at the processor level
and reflects the progress made by the subtree rooted at
that processor. For example, if processor P(i)’s subtree
time is ¢, then all processors within the subtree rooted at
P(i) have successfully completed their local simulation up
to time t.

The following two data structures are used to
compute subtree time for processor P(i):
P(l).child_time(J) Last known subtree time of P(i)’s j—th
child processor.
P(i).subtree_time P(i)’s current subtree time.

Prior to examining its input channels for messages,
P(i) computes a temporary subtree time as follows:

temp_time = MIN(P(i).local_time,P(i).child_time(*))

If this new subtree time is not less than P(i).subtree
time, then P(i) declares that it has a new subtree time by
updating P(i).subtree_time with temp_ time and sending a
TIME message to P(i).parent with the new subtree time.
When P(i)’s parent, say P(k), receives the TIME message,
it will update P(k).child_time(i) with the new time.

A processor’s current subtree time also controls the
transmission of DATA messages up the processor tree.
Processor P(i) may transmit a DATA message to
P(i).parent if the message time is not greater than
P(i).subtree_time.

Subtree time forms a monotonically nondecreasing
sequence. By propagating subtree time up the processor
tree, the root node will know how far the entire
simulation has progressed. Thus, subtree time for the
root node in the processor tree corresponds to global
simulation time which will be discussed shortly.

624

Subtree time updates are performed by all processors
in the processor tree. Eventually, the root node in the
processor tree will receive TIME messages from all of its
children and update its subtree time. But, in addition to
calling it a new subtree time, it will also set a new global
time.

When global time is updated, the root processor will
send TIME messages with the new global time to all of
its child processors. It child processors, upon receiving a
global time update message from its parent, will send
TIME messages to all of its child processors with the new
global time. The propagation of global time updates
continues until all leaf nodes in the processor tree have
updated their global time.

TIME messages are used to update subtree and global
time. TIME messages flowing up the processor tree signal
subtree updates while TIME messages flowing down the
tree signal global time updates. Thus, there is a
continuous flow of TIME messages up and down the
processor tree. And since subtree time forms a
monotonically nondecreasing sequence, global time forms a
monotonically nondecreasing sequence.

4.2 Checkpoint Processing

Each processor has a checkpoint process which is
responsible for generating and saving copies of the
processor’s local state space in a set of checkpoint records.

The checkpoint process is controlled by the following
two parameters:

1.
2.

Checkpoint interval.
Maximum number of checkpoint records that may be
saved.

The checkpoint interval is a nonzero value that
determines the frequency of checkpoints. Following
processor initialization, the first checkpoint record is
written at local time zero. The checkpoint processor is
then scheduled to generate a new checkpoint record
whenever local time has advanced the specified checkpoint
interval. Thus, if the checkpoint interval is ckpt_interval,
then checkpoint records will be generated at times
n*ckpt_interval, where n=0,1,2,...

The second checkpoint process parameter specifies the
maximum number of checkpoint records that may be
saved. (Note that there must be at least one saved
checkpoint record.) If the checkpoint process is requested
to generate a checkpoint record and the maximum number
of saved checkpoints currently exist, the processor will be
unable to advance its local time until at least one
checkpoint record is released.

Each checkpoint record contains a time stamp in
addition to a copy of the processor’s local state space. If
the time stamp is t, then the checkpoint record contains a
copy of the processor’s local state space after all time t
processing has completed.

4.3 Rollback

During the course of execution, it may be necessary
for a processor to perform a rollback in order to
synchronize itself with its neighbor processors. Specifically,
a processor will perform a rollback when it receives a
DATA message sent by another processor with time stamp
not in its local future (message time is less than or equal
to the processor’s current local time).

Rollback processing is driven by a parameter called
rollback time. When a tardy DATA message is received,
rollback time is defined as the time stamp on the DATA
message. Rollback time identifies the precise point in
time where a processor must go in order to synchronize
itself.

Rollback time partitions a processor’s execution
history into three disjoint time intervals. Suppose
processor P(i) receives a DATA message m and m.time is
less than P(i)’s current local time, P(i).local_time. P(i)
must perform a rollback in order to process m at the
proper time. P(i)’s execution history is partitioned into
the following three time intervals:

I1=[0,m.time), 12=[m.time], [3=(m.time,P(i).local_time]

Interval I1 contains all processing performed by P(i)
prior to the rollback time. Rollback will not affect any of
the processing already performed by P(i) during I1.

I2 contains a single point in time, namely the rollback
time. Since message m must be executed during 12, P(i)’s
processing will change during its reexecution of I2 because
of the additional processing required by message m.

I3 contains all processing performed by P(i) after the
rollback time. Since I2 processing will change due to the
introduction of message m, so will I3. Therefore, all of
the processing already performed by P(i) during I3 is
invalid and must be canceled.

Therefore, to perform a rollback to accept a tardy
DATA message m, processor P(i) must

1. Restore its local state space to what is was at some
time during I1.

2. Add message m to its input buffer so that it will be
executed during I2.

3. Delete all remnants of I3 processing.

The following sections describe how P(i) performs
each of these tasks.

Interval I1 processing. P(i) has saved copies of its
local state space in checkpoint records. Recall that the
checkpoint record written at time t contains a copy of
P(i)’s local state space after all time t processing was
performed. Thus, P(i) must find and restore a checkpoint
record with time stamp less than m.time. P(i) is
guaranteed to find such a checkpoint record since one was
written immediately after initialization at time zero.

625

Suppose P(i) selects a checkpoint record with time
stamp ckpt_time. P(i) will restore the selected checkpoint
record which effectively moves P(i)’s local clock back to
time ckpt_time. In addition to restoring the checkpoint
record, P(i) will delete all saved checkpoint records with
larger time stamp since they will be rewritten when P(i)
resumes forward execution.

Examine how this checkpoint record restore partitions
interval I1 into the following two intervals:

I1’=([0,ckpt_time], I1"=(ckpt_time,m.time)

When P(i) resumes forward execution its local clock
will be set to ckpt_time. Since the restored checkpoint
record was written after all ckpt time events were
processed, the first event reexecuted by P(i) will have
event time greater than ckpt_time. That is, P(i) will
resume forward execution in I1".

Since P(i) has already executed during I1", all output
messages it previously generated and input messages it
previously received and executed will be in its output and
input buffers, respectively. The input messages will be
processed as they were during the previous execution of
I1". And, as P(i) regenerates output messages, it will
notice that these messages are already in the output buffer
and the regenerated output messages will be discarded.

Interval I2 Processing. P(i)’s reexecution during 12 is
identical to its reexecution during I1" with the exception
of the new message m. I2 processing will proceed exactly
as it did during the previous execution until message m is
selected from P(i)’s input buffer for processing. Since m
is the last message in the input buffer with time stamp
m.time, P(i)’s execution history will diverge from its
previous execution with the processing of m.

Interval IS Processing. In order to cancel the effect of
the previous execution of I3, P(i) must examine its and
output buffer to determine whether other processors will
also have to rollback.

During P(i)’s previous execution during I3, it may
have generated output messages to be sent to other
processors. Furthermore, the output messages it generated
may have already been transmitted. This implies that
P(i)’s rollback may affect the local processing performed
by other processors.

P(i) begins by examining its output buffer for DATA
messages with time stamp in 3. Suppose P(i) locates
such a message, call it m*.

CASE 1: m* has not been transmitted. Since m* has not
yet been transmitted, P(i) simply deletes the message from
its output buffer.

CASE 2: m* has already been transmitted. The processor
receiving m* must be notified that the message needs to
be canceled.

CLAIM: P(i) sent m* to ome of its child processors.
DATA messages are sent up the processor tree only if the
DATA message time is not greater than the subtree time
of the sending processor. Thus, since P(i) just received a
message with time stamp m.time, it could not have
previously received a message with time stamp m®*.time,
where m*.time is greater than m.time. Therefore, m* was
sent by P(i) to a child processor.

P(i) will create a DATA message to send to the child
processor that received m*, say P(j). The new DATA
message m’ will be initialized as follows:

m’.sender = P(i)
m’.receiver = P(j)

m’.type := DATA
m’.text := NULL
m’.time = m*.time — 1

Message m’ is being used to force P(j) to cancel the
effect of message m* that it received earlier from P(i). In
order to accomplish this, the event packaged in the
message is NULL and the message time is set to one time
unit less that the time stamp on the message to be
canceled. When P(j) receives the message, it will cancel
all processing performed as a result of its earlier receipt of
m* using rollback.

P(i) examines of its output buffer for messages
representing child processors that must also perform a
rollback. For each such message found, a NULL DATA
message is created and all other messages in the output

PROCEDURE Main

Initialize

buffer with larger time stamps that were sent to that
child processor are deleted. Eventually, P(i) will have
deleted all remnants of interval I3 processing.

6. HIERARCHICAL ROLLBACK: THE ALGORITHM

Each processor P(i) in the processor tree executes the
local program shown in Figure 1.

Following the initialization of local data areas, the
processor enters a loop which continues until the
simulation terminates. P(i) begins by examining its input
channels for messages sent by other processor. Next, it
executes its local simulation until either an output message
is generated or the checkpoint process writes a checkpoint
record, whichever occurs first. P(i) then sends all
messages awaiting transmission that it can from its output
buffer. And finally, P(i) updates its local subtree time.
Procedures Receive messages and Send_Messages will
described in the following sections.

6.1 Receive_Messages

Procedure Receive_Messages will receive all messages
sent to P(i) by other processors. P(i) will only receive
messages awaiting reception; that is, if there is not a
message to be received, P(i) will not wait for one. The
processing performed when a TIME or ACK message is
received as been described earlier. DATA message
reception is performed by the procedure
Receive_ DATA_Message shown in Figure 2.

WHILE termination criterion not met DO

Receive_Messages
Update_Local_State

Send_Messages

Update_Subtree_Time

ENDWHILE

Figure 1: PROCEDURE Main

PROCEDURE Receive_DA’I‘A_Message(DATA_msg)

CASE(P(i).state(j))

#normal#: IF DATA_msg.time <= P(i).local_time
THEN Local_Rollback(DATA_msg.sender,

DATA_msg.time)

Accept_DATA_Message(DATA_msg)

ftreact#f:

IF DATA_msg.time > P(i).last_msg_time(j)

THEN delete DATA_msg
ELSE IF DATA_msg.time < P(i).last_msg_time(j)
THEN P(i).state(j) := #normal#
Loca.l_Rollback(DATA_msg.sender,

ENDCASE

DATA_msg.time)

Accept_DATA_Message(DATA_msg)

Figure 2: PROCEDURE Receive_DATA_Message

626

Assume P(i) receives a DATA message from P(j).
P(i)’s local processing is dependent on whether P(i) is
waiting for P(j) to return an ACK for a previously
transmitted DATA message. I P(i) is not awaiting an
ACK, P(i).state(j) equal to #normal#, then P(i) compares
the DATA message time stamp with its local time. If the
message time is in P(i)’s local future, then P(i) calls
Accept_DATA_Message to add the event contained in the
message to its event list and creates an ACK message to
return to P(j). If the DATA message time stamp is in
P(i)’s local past or present, P(i) will perform a rollback by
calling Local_Rollback. After rollback processing has
completed, P(i) will call Accept_ DATA Message to
complete reception of the DATA message.

I P(i).state(j) is equal to #treact#£, then P(i) is
waiting for P(j) to return an ACK for a previously
transmitted DATA message. This means that P(i) and
P(j) have simultaneously exchanged DATA messages. P(i)
must compare the time stamp on the DATA message it
received from P(j) with the time stamp on last DATA
message it sent to P(j). I the time stamp on P(j)’s data
message is greater than the time stamp on P(i)’s DATA
message, then P(i) knows that P(j) will have to perform a
rollback when it receives P(i)’s DATA message. That
rollback will require the cancelation of the DATA message
just received by P(i), so P(i) may safely delete the P(j)’s
DATA message.

If the time stamp on P(j)’s DATA message is less
than the time stamp on P(i)’s DATA message, then P(i)
will have to perform a rollback since its DATA message
was sent without knowing that it would receive an earlier
P(j) DATA message. Furthermore, P(i) must simulate
the receipt of an ACK from P(j) since P(j) will not be
returning one (because of reasoning used earlier).

If the time stamp on the two DATA messages are
equal, then P(i) will add P(j)’s DATA message to its
input buffer and return an ACK to P(j). But before
doing so, P(i) will make sure that its local state is reset
so that P(j)’s DATA message will be processed at the
proper time.

As seen in Receive_DATA_ Message, there are two
cases where P(i) calls Local_Rollback when a DATA
message i8 received. This procedure is shown in Figure 3.

Local_Rollback performs the processing necessary for
P(i) to reset its local state in order to receive a DATA
message. In addition to local processing, it was noted
earlier that P(i) may have to request that other processors
perform a rollback in response to P(i)’s rollback. This is
performed by procedure Secondary Rollback in Figure 4.

PROCEDURE Local_Rollback(rollback_initiator,rollback_time)
IF rollback_initiator = P(i).parent
THEN delete all DATA messages in P(i).input_buffer from
P(i).parent with time stamp > rollback_time
IF rollback_time <= P(i).local time
THEN Restore_Checkpoint_record(rollback_time)
Secondary_Rollback(rollback_initiator,rollback_time)
Delete all DATA messages from P(i).output_buffer with message
time > rollback_time

Figure 3: PROCEDURE Local_Rollback

PROCEDURE Secondary_Rollback(rollback_initiator,rollback_time)
FOR all k in P(i).child(k)
IF k <> rollback_initiator
THEN IF P(i) sent P(i).child(k) a DATA message with time
stamp greater than rollback_time
THEN Build NULL DATA message to sent to P(k)
Purge P(k)’s messages from input buffer with
time stamp > NULL DATA message time stamp

Figure 4: PROCEDURE Secondary_Rollback

627

6.3 Send_Messages

The procedure used by P(i) to send messages to other
processors is shown in Figure 5.

P(i) will attempt to send as many messages as
possible when Send_Messages is called following the rules
for processor communication. Suppose P(i) selects a
DATA message to send to P(j). P(i) will only send the
DATA message to P(j) if it does not currently have an
outstanding unacknowledged DATA message already sent
to P(j). I the DATA message may be sent, then P(i)
will send the message, set P(i).state(j) to indicate that it
is awaiting an ACK from P(j), and save the DATA
message time stamp. If the time stamp on the
transmitted data message is m.time, then P(i) must check
to see whether it has already processed a P(j) DATA
message with time stamp greater than m.time. If so, then
P(i) must undo the processing performed as a result of
that DATA message. This instance of a rollback is
caused by the delayed transmission of a DATA message
by a processor.

6. DISCUSSION

Hierarchical rollback is a new technique for
distributed simulation which contains feature common to
both the conservative and optimistic approaches. The
algorithms used are fully distributed so that there is no
notion of a central simulation controller. Hierarchical
rollback attempts to take advantage of the strengths of
the conservative and optimistic approaches while
minimizing their deficiencies.

PROCEDURE Send_Messages

The conservative approach has the advantage of never
wasting processing time by having to perform a rollback.
However, processor throttling may impede progress and
deadlocks may occur. The optimistic approach encourages
concurrent

submodel execution by not using a throttling mechanism
to control the progress made by each submodel. But,
when a synchronization problem does arise, rollback may
waste processor time, and it is possible for a rollback to
cascade through the entire network of processors.

Hierarchical rollback uses subtree time as its
throttling mechanism. This throttle only limits the
transmission of simulation events to higher level processors
in the processor tree, it does not limit the progress made
within a processor. Subtree time also limits the
propagation of rollbacks to a subtree. It is impossible for
the entire processor tree to be affected by a rollback
initiated by a single processor.

The use of a hierarchical simulation model for
hierarchical rollback encourages the top—down design of
simulation models. It also provides the analyst the
opportunity to lessen the probability and severity of a
rollback by the judicious partitioning of the model tree
into subtrees for processor assignment. The tree structure
of processors also eliminates the possibility of deadlock.

The parameterization of the checkpoint process is
crucial to hierarchical rollback. As the size of the
checkpoint interval increases, so does the potential amount
of time lost due to rollback. A large checkpoint interval
will cause a processor to take large steps back in time
whenever a rollback occurs. On the other hand, a small
checkpoint interval will lessen the amount of processing

m := first message in P(i).output_buffer awaiting transmission

done := (m = NULL)

WHILE NOT done DO
CASE(m.type)
ACK: send message m
delete message m
TIME: send message m
delete message m

DATA: CASE(P(i).state(m.receiver))
#normal#: send message m
P(i).state(m.receiver) := #react#
P(i).last_msg_time(m.receiver) := m.time
IF P(i) processed a m.receiver DATA

message m* with m*.time > m.time
THEN Local_Rollback(m* sender,

m*.time)

Buffer_Purge(P(i). input_buffer,m.time)

ffreact#:
ENDCASE
ENDCASE

done

= TRUE

m := first message in P(i).output_buffer awaiting transmission

done := done OR (m = NULL)

ENDWHILE

Figure 6: PROCEDURE Send_Messages

time lost due to rollback, but more storage is required for
checkpoint storage.

The maximum number of checkpoint records that
may be saved is also a controlling factor. Ablowing a
large number of saved checkpoint records enables a
processor to progress quite far in its local simulation
(similar to a large checkpoint interval). This may also
result in large steps back in time when a rollback occurs.
If a small number of checkpoint records are saved, this
will serve as another throttling mechanism for submodel
progress. It is possible that the proper combination of
checkpoint parameters would cause hierarchical rollback to

approximate the performance of the conservative
approaches.

Experiments were performed to investigate the
performance of hierarchical rollback under varying

submodel interaction intensities, processor populations, and
checkpoint parameters. The results of these experiments
will be the subject of a forthcoming paper.

ACKNOWLEDGEMENTS

The author would like to thank his advisor, Professor
K. Mani Chandy, for the advice and comments he gave
during the course of this research. The research reported
in the paper was supported by a grant from the IBM
Corporation.

REFERENCES

Chandy, KM. and Misra, J. (1979), Distributed
Simulation: A Case Study in Design and Verification
of Distributed Programs, IEEE Transactions on
Software Engineering, Vol. SE-5, No. 5, 440—452.

Chandy, K.M. and Misra, J. (1981), Asynchronous
Distributed Simulation via a Sequence of Parallel
Computations, Communications of the ACM, Vol. 24,
No. 4, 198—205.

Gimare, R.L. and Chandy, K.M. (1985), HSS: A Tool for
Evaluating the Performance of Office Systems,
Proceedings of the Computer Measurement Group
International Conference.

Jefferson, D. (1985), Virtual Time, ACM Transactions on
Programming Languages and Systems, Vol. 7, No. 3,
404—-425.

Misra, J. (1986), Distributed Discrete—Event Simulation,
ACM Computing Surveys, Vol. 18, No. 1, 39-—-65.

Peacock, J.K., Wong, J.W., and Manning, E. (1980),
Distributed Simulation Using a Network of Processors,
Computer Networks, Vol. 3, No. 1, 44—66.

Wirth, N. (1971), Program Development by Stepwise
Refinement, Communications of the ACM, Vol. 14,

No. 4.

629

AUTHOR’S BIOGRAPHY

RICHARD L. GIMARC is a Ph.D. student in the
Department of Computer Sciences at the University of
Texas at Austin. He received his B.A and M.S. degrees
in Mathematics from Texas Tech University in 1974 and
1979, respectively. His current research interests include
systems modeling and performance evaluation. Mr.
Gimarc is currently employed as a Product Development
Manager for Boole & Babbage, Inc.

Richard L. Gimarc
76056 Eastcrest Drive
Austin, Texas 78752
(512) 464—6043

