Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

ANIMATING SIMULATIONS IN RESQME

Anil Aggarwal
Kurtiss J. Gordon
James F. Kurose
Dept. of Computer and Information Science
University of Massachusetts
Ambherst, Mass. 01003

ABSTRACT

The RESearch Queueing Package Modeling Envi-
ronment, RESQME, is a graphical environment for
creating and modifying queueing models and for evalu-
ating and analyzing the results. An animation facility is
a natural adjunct to the graphics-oriented capabilities
of this system. In such an environment, animation pro-
vides a powerful tool for effectively visualizing massive
amounts of information. This makes it easier for the
modeler to relate events in the model with processing in
the real-world system. Animation enhances the
modeler’s ability to debug the model, to understand the
model interactions and the impact of model changes,
and to communicate the results to others. In this paper,
we describe the animation facility in RESQME.

1. INTRODUCTION

The RESearch Queueing Package Modeling Envi-
ronment, RESQME (Gordon et al. 1986, 1987, 1988,
Kurose et al. 1986), is a graphical environment for cre-
ating and modifying queueing models and for evaluating
and analyzing the results. An animation facility is a
natural adjunct to the graphics-oriented capabilities of
this system. In such an environment, animation of the
simulation provides a powerful tool for visualizing mas-
sive amounts of data, thus reducing the modeler’s need
to translate from the syntax and semantics of the com-
puter software to that of the real-world system. Models
may be more easily debugged due to the modeler’s en-
hanced ability to visually trace the movement of jobs
and resource allocation in the model. By observing the
evolution of the system, the modeler may also obtain a
qualitative understanding of complex phenomena, which
then complements the quantitative performance results
provided by most software. The ability to observe the
evolution of the system also offers the possibility of ob-
serving and discovering, “in the lab,” phenomena which
otherwise would have been “washed out” in the average,

612

Robert F. Gordon
Edward A. MacNair

IBM Thomas J. Watson Research Center
Yorktown Heights, New York 10598

steady-state statistics. Finally, animation provides an
enhanced ability to communicate the model design and
the model results to others. To paraphrase: if a picture
is worth a thousand words, a moving picture is most
certainly worth a million words.

Animation capabilities have been present in
graphics-oriented simulation tools for some time now
(e.g., Melamed and Morris 1985, Conway et al. 1987,
O’Keefe 1987, Standridge Pritsker and Stein 1987, Cox
1987, Miles, Sadowski and Werner 1988, Russel 1988).
The particular design decisions made in developing the
animation component of RESQME have been influ-
enced by several of these earlier efforts, shaped by the
semantics of the RESQ language (Sauer, MacNair and
Salza 1980), and guided by RESQME's underlying de-
sign principle that a single graphical representation of
the model should be the sole interface between the
modeler and the modeling tool. As we will see, in this
latter respect, our approach towards animation differs
from that of CINEMA (Kilgore and Healy 1987, Miles
Sadowsky and Werner 1988), TESS (Standridge,
Pritsker and Stein 1987), and GPSS/PC (Cox 1987) in
that the graphical model definition itself is used as the
basis for the animation. Once a model has been con-
structed in RESQME, it can be immediately animated
without any further effort on the part of the modeler -
there is no distinction between the graphical model de-
scription and the pictorial model representation used
during animation. In contrast, a mechanism such as a
facility builder, position window, or static/dynamic ani-
mation layout are used in other tools to couple the
graphical rendering used for animation to the different
(but often graphical) model definition. The advantage
of maintaining a single graphical representation of the
model is the ability to move through all phases of the
modeling lifecycle (from model creation, to evaluation,
to output analysis, to animation) through a consistent
model interface. A disadvantage, however, is that dur-
ing animation the graphical model diagram is visually
more primitive that the impressive 3-D renderings that



can be created using the sophisticated sketching capa-
bilities provided by some of the other animation pack-
ages.

An approach towards animation which insists upon
a single, consistent graphical model representation has
also been adopted in XCELL + (Conway et al. 1987)
and PAW (Melamed and Morris 1985) and our work
has been influenced by these earlier efforts (particularly
the latter). Our present effort differs from these efforts
in several ways, but primarily in the explicit support we
provide for animating large, hierarchically-structured
models,

Some of the basic capabilities provided by the
RESQME animation facility that will be discussed in
this paper include:

. the animation of job and token movement in a hi-
erarchical model.

e  the ability to modify animation variables, such as
speed, color and size of the animated objects or use
of event versus linear time.

. the ability to interrupt the animation to modify the
model diagram display (move, pan, zoom, layer)
or to change animation options.

. selective animation of subsets of nodes, queues, or
chains.

. the ability to trace an individual job as it moves
through the model and its submodels.

o the ability to (re)start an animation at any point,
step through the simulation based on checkpoints,
and to stop an animation at breakpoints.

Animation in RESQME consists of displaying the
movement of the jobs and tokens through the network.
As the jobs and tokens move, the queue length and to-
ken availability at the nodes and queues are updated
and displayed textually and graphically. Elements dis-
play the simulation time and event count and identify the
job currently being moved.

Animation is currently accomplished in RESQME
in an after-the-fact manner. This is a consequence of the
fact that RESQME is run on a workstation connected
to a mainframe computer. All user interaction, graph-
ical specification and display, is done on the work-
station, while the computation-intensive simulation is
run on the mainframe. This cooperative processing en-
vironment is relatively transparent to the user, in that
files and commands are automatically transmitted be-
tween the workstation and the mainframe.

613

To provide animation in this environment, we create
a trace file, containing a partial event history of depar-
ture and arrival events. This file is created on the
mainframe during the execution of the simulation and
is then transferred to the workstation. The innermost
"loop” of the animation component of RESQME simply
takes an event (such as, the departure of a job from one
node in the model and its subsequent arrival at another
node) from the trace file and animates that event on the
graphical network. As a result, a given simulation can
be animated numerous times without actually re-
simulating a model. An advantage of this approach is
that the simulation can be replayed with the same timing
and sequencing of events. Furthermore, portions of the
simulation can be skipped over, while others can be ex-
A disadvantage is that the
modeler cannot interact directly with an on-going simu-
lation via the animation facility; we expect to provide
this capability in the future when we can execute simu-
lations directly on the workstation.

amined in slow motion.

We will demonstrate the use of the animation facility
in this paper through an example. The example is a
hierarchical model of an interactive computer system.
The main model consists of a fixed number of jobs (25)
initially at the terminals, which go in turn to one of two
host computers for processing and then return to the
terminals for further input before being sent to one of the
host computers again for further processing. The host
computer system is modeled as a submodel consisting
of page frames of memory that must be held while a job
cycles a given number of times through the processor-
sharing cpu and through either a hard disk or a floppy
disk. The number of page frames and processing times
for the cpu and the disk drives are parameters of the
submodel whose values are independently provided by
each of the two invocations. Figure 1 shows the main
model level with the terminals and the two invocations
of the submodel.

2. INITIATING ANIMATION

When setting up the model for simulation, all that
needs to be added to get animation is to ask that a trace
file be created. To do this, the modeler selects the trace
menu item and specifies in a pop-up window the period
of simulated activity for which animation is desired.
This period can be specified in terms of starting and
stopping simulation time or events. We specified to start
the trace at event 0 and stop it after event 1000.



terminals

L/
nost1

-

host2

KRN —

e
2
o
s

Select Model | Get H: Trace | —

Create/Edit Animation

Evaluate

Output Anal.

Help
Figure 1. Central Server Model
During the simulation of the model on the screen management menu on the right border.

mainframe, the trace file is created and when the simu-
lation run is completed, the trace file is downloaded to
the workstation. At that point, the modeler can view the
animation. The modeler selects the animation menu
item to enter the animation facility, as shown in Figure
1. In order to be able to skip forward and backward in
the animation a checkpoint file is created that contains
snapshots of the system states.
produced that links the snapshots to the appropriate re-
cord in the trace file. This method provides an efficient
and flexible way of processing what is typically a large
trace file. We can then quickly restore the state using
the snapshot information in the checkpoint file, and then
through the use of the pointer file, we can begin ani-
mating events until the desired simulation time has been
reached.

A pointer file is also

Figure 2 shows the resulting RESQME screen lay-
out when the animation facility is entered.

Consistent with other tasks in RESQME, the model
diagram is displayed in the main modeling area with the

614

The
model diagram has the initial queue lengths and token
pool values displayed above the appropriate nodes, and
the nodes are also shaded to reflect their initial queue
lengths.

The screen management menu is used throughout
all tasks in RESQME to modify the view of the model
by zooming, panning, centering on a node, or layering
to a submodel view. Its functions are made available
within the animation facility as well, since RESQME
determines the job and token movements from the
endpoint node names of each traversed arc and not
from its graphical position. This late binding allows the
modeler to change the positions of the nodes and arcs
during animation, and RESQME will animate the jobs
and tokens along the revised paths.

Furthermore, if the Layer Down menu item were
selected from the screen management menu, and for
example, the user pointed to the hostl invocation, the
animation within that invocation would be displayed in
the modeling area, as shown in Figure 3.



Fal
. ¥
host1 S P
-
/ ]
\f/— ?
terminals | 3
host2 "y
™
2
-
5
Start Animat ||
Anim Options Time Event Job Id
Sel. Activity Current |0.000000E + 000 0
Return Breakpoint
Help Snapshot Trace
Figure 2. Initial Animation Display

3. ANIMATION DETAILS

The main animation menu and the animation con-
trol panel are displayed in the bottom quarter of the
screen. The main animation menu, located in the lower
left-hand corner of the screen, contains the commands
to start the animation, to change the animation options,
to select specific nodes to animate, to return to the other
tasks of RESQME, and to request context-sensitive help.
The animation control panel is a 3-by-3 matrix of ele-
ments. The control panel is used to both display and to
set time, event, and job id information for the animation.

Selecting the menu item, Start Animation, will start
or restart the animation of the displayed model begin-
ning at the current time and current event number dis-
played in the animation control panel. The animation
will continue until either a breakpoint is reached, the end
of the trace file is reached, or the modeler interrupts the
animation. When the animation is stopped, the modeler
can select a command from any one of the menus or
change a value in one of the control panel elements.
For example, the modeler can zoom in on the model
by selecting the appropriate item from the screen man-

615

agement menu, set the time to 2 in the control panel, and
then select the start animation menu item. He will see
the animation of the jobs starting from time 2 on the
zoom-in view of the model diagram.

A user profile contains default values for animation,
such as the desired speed, size and color of the ball to
represent jobs or the rectangle to represent tokens.
These options can be changed between animation se-
quences by selecting the menu item, Animation Options.
A pop-up window displays the underlying animation
options and allows the user to select changes to these
attributes. This follows the same interaction as in the
other tasks of RESQME, such as the interaction to
modify the attributes of a queue or the attributes of a
chart.

In addition to being able to change the character-
istics of the job and token animation, the modeler can
choose timing and selective tracing properties. In par-
ticular, he can choose to display the animation in either
“event time” or “linear time”. If event time is selected,
the events will be animated one after the other with a
fixed pause time between each animated event. In this



................ S I ETIERETRNE ﬁ
memory
; ¥
0 ? g
o 0 . v
.T ! A\ T_ V7_ S
O-ills O O D
getmemory cpu o reememory g
T
-l =
g
lo e
floppy -
Start Animat —
Anim Options Time Event Job Id
Sel. Activity” Current {0.000000Z + 000 0
Return Breakpoint
Help Snapshot Trace

Figure 3. Animation at the Submodel Level

mode, the animated time between events does not reflect
the simulated time between those events.

If linear time is selected, an event will be animated
and then the simulation clock will be incremented by a
fixed amount (option set by the modeler). If no event
occurred between the newly updated simulated time and
the previous simulated time, the simulated time is again
updated in the same manner. This continues until the
simulated time reaches the point at which an event oc-
curred, and that event is then animated. In this way, the
amount of time between the display of two animated
events is approximately proportional to the amount of
simulated time that elapsed between those two events.
There is some distortion due to the time to animate an
event using a moving object, since this depends on the
length of the arc traversed. For this reason, the use of
blinking lines to animate flow in linear time or increas-
ing the speed of the ball tends to produce an animation
whose timing more closely corresponds to the actual
time behavior of the simulation.

If the modeler chooses the Select Activity menu item,
he can selectively specify (by pointing to them) the

616

nodes, queues, and chains for which animation activity
will be shown. Nodes and queues for which animation
activity will be shown are displayed in green, while those
where the animation will be suppressed are displayed in
yellow.

The animation control panel provides the modeler
with elements that display the time, event numbers and
job id’s during the animation and also serves as an input
panel for the modeler to change these values in order to
restart the animation at another point. The first row of
the panel, labelled “current”, displays the above-
mentioned information for the job currently in motion.
Either the simulated time or the event can be directly
entered by the modeler by picking one of the appropri-
ate elements and entering the desired value. This will
cause the animated time and event count to be moved
forward or backward to that point in the simulation.
Selecting the Start Animation menu item then starts the
animation at the displayed simulated time. Either an
absolute or a signed value can be entered for the current
time or event. In the latter case, the signed value is
taken as an offset from the previously displayed absolute
value and the new absolute value is computed accord-



ingly. For example if the current simulated time were
displayed as 1.377 and +.5 is entered into the current
time element, the new displayed value of the current time
would be the time of the first event after 1.877. On re-
start, that is where the view of the animation would start.

The entries in the second row in the animation con-
trol panel are used to set breakpoints. Entering an ab-
solute time value, event count, or job Id will cause an
on-going animation to stop when that breakpoint is
reached. A positive signed quantity can also be entered
in the time and event breakpoint windows. As above,
a signed value is taken as an offset from the current time
or event. When the animation proceeds, this breakpoint
offset value is visually counted down until it reaches 0.
Note that entering a + 1 in the event breakpoint element
and continually selecting the Start Animation menu item
will have the effect of single stepping the animation event
by event.

The third row in the animation control panel serves
a dual function. If the Snapshot mode has been selected
(by pointing to the word Snapshot and clicking with the
mouse), elements will be shown in the first two columns.
If any value is entered into either of these elements, job
movement will not be animated. Instead, the state (i.e.,
occupancy counts) of the model will be displayed at
fixed intervals of either simulated time or number of
events. For example, if the current simulated time is
2.277, entering a value of 3.0 in the snapshot time ele-
ment and starting the animation would cause the state
of the model at simulated times 5.277, 8.277, 11.277, etc.
to be displayed. In this manner, one can construct an
animated “movie” of the time evolution of the occupan-
cies of the various nodes and queues in the model. The
use of snapshots as an animation control capability was
introduced by Melamed and Morris 1985 in PAW.

If the Trace mode has been selected (by clicking the
mouse on the word Trace), the third element (Job Id)
on the bottom line will be displayed. Entering a job Id
in this element will cause the animation facility to ex-
plicitly trace the activity of this single job. The ani-
mation facility will show this job in a different color, will
show its occupancy at nodes with a different shading
color, and will follow the job as it moves between the
submodel layers of the model. Animation of the other
jobs in the model can be selectively turned on or off
during this tracing.

As an example, suppose when running the ani-
mation we see from the first row of elements that at time

617

2.77 and event 30 job Id 16 moves from the terminals
node to the host2 invocation node. We could stop the
animation, select trace and enter job Id 16, move the
simulation time back by entering 2.0 in the time element
and restart the animation. The animation automatically
layers up to the main model layer as job 16 moves from
the terminals to the host2 invocation node. It then lay-
ers down to the host2 invocation display to follow the
movement of job 16 through this invocation of the sub-
model (see Figure 4). Job 16 is shown in a different
color from the other jobs moving in this invocation of
the submodel and when it is waiting at a node, the
shading of that node is in a different color. When job
16 reaches the output node of the submodel, the main
model is redisplayed to show job 16 leaving the sub-
model and returning to the terminals node.

The animation provides visual information about
job and token flow and node and queue occupancy
counts. Frequently, particularly when debugging a
model, the modeler requires more detailed information
about the simulation.
be interested in the evaluation of the boolean ex-
pressions involved in a routing statement or the value
of a random number generated at a particular time in
the simulation. At any point the modeler can toggle to
the mainframe to view the detailed trace file.
ample, suppose the animation has been interrupted at
time 8.456 (at which time, the job in motion had moved
from the cpu node to the floppy disk node on the basis
To see the truth values for the
various boolean expressions, one would toggle to the

For example, the modeler may

For ex-

of a boolean value).

mainframe and view the trace file with the complete state
information at time 8.456.

4. SUMMARY AND FUTURE WORK

We have described the animation facility in
RESQME. It provides the modeler with a display of the
movement of jobs through the queueing network. Indi-
vidual jobs can be traced through the nodes and sub-
model invocations of the network hierarchy. To
produce an animation, the modeler need only specify
that a trace file be created during the simulation. No
special symbols nor graphics layout is required. The
one graphic diagram serves the dual roles of model
specification and output analysis. The output analysis
includes performance measure graphs and the ani-
mation discussed in this paper.

There are two main areas in which we would like to
further develop the animation facility. One is to add



................ T ﬂ\
memor ‘
Y y
g
O L d
. §
2 : 0 —
: ]
TR, J |
@il Il
g
getmemory cpu s
=
8
[
5
Start Animat —
Anim Options Time Event Job Id
Sel. Activity Current |2.773236E + 000 30
Return Breakpoint
Help Snapshot Trace 16
Figure 4. Tracing an Individual Job
more display information. The new display information the package. We are grateful to the many other col-

would include showing performance measures during
the animation, so that the modeler can see, in moving
graphs and gauges, the changes in the output statistics
which now are available only at the end of the run.

The second area involves our plans to port the host
simulation code to the workstation. This will give the
modeler an alternative to host processing for small
problems or pilot runs. With the simulation on the
workstation, we can provide animation during simu-
lation. This would provide the added value of allowing
the modeler to change parameter values during the run
and then be able to directly view the impact.

ACKNOWLEDGEMENTS

We would like to express our thanks to Peter Welch
for his support and encouragement of this work, and to
Charles Sauer for his work on RESQ and his continued
interest in RESQ and RESQME. We would also like
to thank Al Blum, Gary Burkland, Janet Chen, Paul
Loewner and Geoff Parker for their work in improving

618

leagues and RESQME users who have helped improve
this package.

REFERENCES

Conway, R., Maxwell, W., McClain, J., Worona, S.
(1987). User's Guide to XCELL+ Factory Modeling
System. The Scientific Press, Redwood City, CA.

Cox, S. (1987). The Interactive Graphics and Ani-
mation of GPSS/PC. Proceedings of the 1987 Winter
Simulation Symposium, Atlanta, GA, 276-285.

Gordon, R. F., MacNair, E. A., Welch, P. D., Gordon,
K. J. and Kurose, J. F. (1986). Examples of Using
the RESearch Queueing Package Modeling Environ-
ment (RESQME). Proceedings of the 1986 Winter
Simulation Conference, Washington, D.C., 494-503.

Gordon, R. F., MacNair, E. A., Gordon, K. J. and
Kurose, J. F. (1987). A Visual Programming Ap-
proach to Manufacturing Modeling. Proceedings of



the 1987 Winter Simulation Conference, Atlanta, GA,
465-471.

Gordon, R. F., MacNair, E. A., Gordon, K. J. and
Kurose, J. F. (1988). Higher Level Modeling in
RESQME. Proceedings of the European Simulation
Multiconference 1988, Nice, France, 52-57.

Kilgore, R., Healy, K. (1987). Animation Design with
Cinema. Proceedings of the 1987 Winter Simulation
Conference, Atlanta, GA, 261-268.

Kurose, J. F., Gordon, K. J., Gordon, R. F., MacNair,
E. A. and Welch, P. D. (1986). A Graphics-Oriented
Modeler's Workstation Environment for the
RESearch Queueing Package (RESQ). /986 Pro-
ceedings Fall Joint Computer Conference, Dallas,
719-728.

Melamed, B. and Morris, R. J. T. (1985). Visual Sim-
ulation: The Performance Analysis Workstation.
IEEE Computer 18, 87-94.

Miles, T., Sadowski, R., Werner, B. (1988). Animation
with Cinema. Proceedings of the 1988 Winter Simu-
lation Conference, San Diego, 180-187.

O’Keefe, R. (1987). What is Visual Interactive Simu-
lation. Proceedings of the 1987 Winter Simulation
Symposium, Atlanta, GA, 462-464.

Russel, E. (1988). SIMSCRIPT II.5 - and
SIMGRAPHICS: A Tutorial. Proceedings of the
1988 Winter Simulation Conference, San Diego,
115-124.

Sauer C., MacNair, E., Salza, S. (1980). A Language
for Extended Queueing Network Models. [BM
Journal of Research and Development 24, 747-75S.

Standridge, C., Pritsker, A, Stein, C. (1987). A Tutorial
on Tess, The Extended Simulation Support System.
Proceedings of the 1987 Winter Simulation Confer-
ence, Atlanta, GA, 238-246.

AUTHORS’ BIOGRAPHIES

ANIL AGGARWAL received his B.E. Honors de-
gree from Birla Institute of Technology and Science,
Pilani, Rajasthan, India in 1985, and his M.S. in Com-
puter Science from the University of Massachusetts in

1988. He is currently working for Intel in Oregon as a
Software Engineer specializing in the Unix Operating
System.

Anil Aggarwal

Intel Corp.

5200 N.E. Elam Young Parkway
Hillsburo, OR 97124, US.A.
(503) 696-2253

KURTISS J. GORDON received his B.S. in Physics
from Antioch College in 1964, his M.A. and Ph.D. in
Astronomy from the University of Michigan in 1966 and
1969, and his M.S.E.C.E. in Computer Systems from the
University of Massachusetts in 1985. Until 1984, he
taught in the Five-College Astronomy Department, then
was a Senior Postdoctoral Research Associate in the
Department of Computer and Information Science at
the University of Massachusetts in Amherst. Since
1987, he has been Coordinator of Scientific Imaging
Applications in the University Computing Center. Dr.
Gordon’s interests include the display and interpretation
of large bodies of data, modeling and performance
evaluation, and graphical user interfaces. He is a
member of the American Astronomical Society, Sigma
Xi, ACM, and IEEE.

Kurtiss J. Gordon

University Computing Center
University of Massachusetts
Ambherst, Mass. 01003, U.S.A.
(413) 545-2690

JAMES F. KUROSE received a BA degree in
Physics from Wesleyan University in Middletown,
Conn. in 1978 and an MS and PhD degree in Computer
Science from Columbia University in 1980 and 1984,
respectively. Since 1984, he has been an Assistant Pro-
fessor in the Department of Computer and Information
Science at the University of Massachusetts, Ambherst,
MA., where he currently leads several research efforts
in the areas of computer communication networks, dis-
tributed systems, and modeling and performance evalu-
ation. He has also been associated with the
performance modeling methodology group at the [BM
T.J. Watson Research Center as a consultant since 1980
and has served as a consultant for various other com-
panies as well. Professor Kurose is a member of Phi
Beta Kappa, Sigma Xi, IEEE, and ACM. He is an
Associate Editor for IEEE Transactions on Communi-
cations and a Guest Editor for the [EEE Journal on
Selected Areas in Communications.



James F. Kurose

Department of Computer and Information Science
University of Massachusetts

Ambherst, Mass. 01003, U.S.A.

(413) 545-1585

ROBERT F. GORDON is a research staff member
in the modeling and analysis software systems group at
the IBM Thomas J. Watson Research Center. He re-
ceived a B.S. in mathematics and physics from the City
College of New York in 1964, an M.S. in mathematics
from Carnegie Institute of Technology in 1965 and
Ph.D. in mathematics from Carnegie-Mellon University
in 1969. From 1968 to 1974, he was Manager of
Mathematics and Programming for Hoffmann-La
Roche, Inc., where he developed mathematical models
for marketing, production planning and distribution.
From 1974 to 1983, Dr. Gordon was Director of In-
formation Management Services at Avis, where he
headed the operations research, timesharing systems,
and systems and programming groups. Dr. Gordon is
an adjunct professor at Hofstra University. He is a
member of Phi Beta Kappa, Sigma Xi and ORSA.

Robert F. Gordon
IBM Thomas J. Watson Research Center

620

P.O. Box 704
Yorktown Heights, NY 10598, U.S.A
(914) 789-7170

EDWARD A. MACNAIR joined IBM in 1965.
He is a Research Staff Member in the Computer Science
Department at the IBM Thomas J. Watson Research
Center. He is currently in the Modeling and Analysis
Software Systems project developing modeling programs
to solve extended queueing networks. He is one of the
developers of the Research Queueing Package (RESQ),
a tool for the solution of generalized queueing networks.
He is a coauthor with Charles H. Sauer of Simulation
of Computer Communication Systems, Prentice-Hall,
1983 and Elements of Practical Performance Modeling,
Prentice-Hall, 1985. He received a B.A. in mathemat-
ics from Hofstra University in 1965 and an M.S. in
Operations Research from New York University in
1972. He is a member of the ACM, ORSA and TIMS.

Edward A. MacNair

IBM Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, US.A
(914) 789-7561



