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ABSTRACT

Simulation Program Generators
developed using object-oriented
environments may be designed to have a
number of capabilities not available in
traditional SPGs. One such capability is
the description of an object’s behavior
from scratch without any programming when
such behavior does not exist in the
knowledgebase of the SPG. SmarterSim is
an SPG that is currently being developed
to provide the user a number of object-
oriented tools including libraries of
elemental operations, actions/requests,
states, and rules and a number of
function block templates to create new
behavior using the existing primitive
elements. The behavior of objects in a
robotic manufacturing cell is described
using SmarterSim. Like its predecessor
SmartSim, SmarterSim supports a
hierarchical, modular modeling for
building of subsystems (coupled models)
from model objects (atomic models) using
subsystem management features. The paper
also discusses the use of object oriented
environments for traditional SPGs and
simulation programming languages.

(SPGs)

1. INTRODUCTION

There are several problems with the
currently available programmer-free icon-
based simulation environments (Conway and
Maxwell 1987, Gilman and Watremez 1986,
Tumay 1987, Kilgore and Healy 1987,
Harshell and Dahl 1988). They are not
extensible. If an object must be modeled
that is not provided for by the
environment, then the environment cannot
pe used. A programmer has to be involved
to add the object to the simula;ion
program and this generally requlres a
large amount of programming. The same is
also true if a new behavior is to be
modeled for a currently available object.
Programmer-free simulation environments
pased on object-oriented languages such
as Smalltalk (Knapp 1986, 1987, Ulgen and
Thomasma 1986, 1987a, 1987b, Thomasma and
Ulgen 1987, 1988) are much easier to
extend due to their class/object/message
and inheritance structures but still
require a programmer to incorporate the
new behavior or object into the
environment.
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This paper will describe a
programmer-free, icon-based intelligent
simulation environment called SmarterSim
that is extensible. Like its
predecessor SmartSim (Ulgen and Thomasma,
1986, 1987a, 1987b, Thomasma and Ulgen
1988), it is based on the object-
oriented programming language Smalltalk,
but it also provides an environment for
description of new objects and new
behaviors without any programming. The
environment we describe in this paper has
a structure analogous to the structure of
the REGENT (Encarnacao and Schlechtendahl
1983) integrated system for computer
aided design in mechanical engineering
(Figure 1) . Figure 2 shows how this
would be adapted to the situation of
simulation modeling in CAD for
manufacturing systems engineering.
Simulation models at level 1 of Figure 2
are the end results of simulation
programming. At present, these are
built, on the whole, from scratch. The
program generators that exist are at
level 2 of Figure 2, except that they do
not allow logic governing behavior of
objects to be modified. The toolkits and
environments we discuss in this paper are
intended to be at level 3 of Figure 2.

A fundamental feature of SmarterSim
is the capability for user to review and
modify the material handling control
logic. Methods for specifying control
logic include ladder diagrams (Lukas

1986, pp. 55-57), problem oriented
languages, function block diagrams (Lukas
1986, pp. 49-60), operation networks

(Muller 1985),
(Muller 1985),

time-position diagrams
rule sets with position

diagrams (PROMOD 1988), activity cycle
diagrams (Hutchinson 1981), Petri nets
(Peterson 1981), and state transition
diagrams (Edelberg 1988). Petri nets are

the most satisfactory of these, but in
order to express decision rules, the
states in the Petri nets must be
understood as states of the entire
system. No mechanism is provided for
combining states of individual components
to form full-system states. Also, state
transitions are most naturally
communicated in terms of animation:
changes in visual characteristics over
time. The state transition types of
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systems engineering

diagrams communicate relationships
between states by means of spatial
locations. Other specification
techniques are stronger than Petri nets
in some respects. Function block
diagrams are better for indicating
decision logic. Pure position diagrams
(without rule sets) describe systems with
the least amount of abstraction, in terms
that are closest to the real system, but
they are very incomplete. Time-position
diagrams give the clearest static view of
timing relationships.

SmarterSim uses function block
diagrams, combined with state and
elemental operation tables, to specify
the behavior of objects in the model.
Once the object is defined fully with its
behavioral characteristics, an icon is
assigned for it and is archived. Copies
of it can be made and it can be coupled
with other icons to form subsytems
(Thomasma and Ulgen, 1988).

In the next section of the paper, we
give a classification of object oriented
simulation environments and briefly
describe the tools required to build
them. In the following section, we
describe SmarterSim. A robotic
manufacturing cell is used to describe
some of the features of SmarterSim. The
last section of the paper gives the
advantages and disadvantages of the
intelligent simulation environments
suggested in the paper.

OBJECT ORIENTED TOOLKITS FOR SPGS

Object oriented simulation
environments can be useful at three
different levels of application. At the
highest level of application, an object
oriented environment can be built around
a traditional SPG ,e.g., MAST (Lenz
1983), GENTLE (Ulgen 1983), PROMOD
(PROMOD 1989), SIMFACTORY (Tumay 1987),
that is built using a procedure oriented
language such as FORTRAN or C. Figure 3
shows a structure for an object based
interface for a traditional SPG. The
simulator of the traditional SPG in
Figure 3 is assumed to be based on the
SIMAN simulation language and the pre-,
co- and post-processors may be written in
FORTRAN or C. The object oriented
environment around the SPG is composed of
a number of graphics interfaces based on
a common graphics interface. The main
advantages of such an environment
include reduction in time in training the
user, model development, and model
analysis. The features required from the
environment include copying and archiving
of icons (icons may represent operations,
Storages, etc.); grouping of icons into
subsytems and copying and archiving of
subsystems (subsystems may represent
similar operation and storage sequences,
repair loops, etc.); icon-objects having
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Figure 3: Architecture of an intelligent
simulation environment for a
traditional SPG

close resemblance to real objects in
rough detail (e.g., machine icon, robot
icon, conveyor icon, etc.).

The object oriented environment for
a traditional SPG may be custom-built
using an object oriented language such as
Smalltalk or it may be built using
generic object oriented tools designed
for this purpose. The generic tools
required to build such an environment are
shown in Figure 4. These tool kits would
allow the user to assemble new simulation
objects, rather than program them, out of
objects and tools that are designed for
this purpose. In other words, these
tool-kits are programmer-free interfaces
to build user-friendly graphical
interfaces for traditional SPGs. The
following is a list of objects that may
be provided with the toolkit of Figure 4
with a brief description.

part browser: allows different kinds of
parts to be archived and reused.
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object/subsystem browser: allows
simulation objects and subsystems to be
archived and reused.

icon: provides all the visual display for
the simulation objects.

menu: provides all user interfacing
capabilities for the simulation objects.

behavior: includes all the control logic
specifying the object’s states, state
transitions, time advance, etc.

tally: collects statistics about the
execution of the simulation and knows how
to carry out statistical analysis and
present the information graphically.

subsystem: allows simulation objects to
be grouped and then viewed and interacted
with as a single entity in the model.

table: provides a capability for looking

at particular sets of statistics or
parameter settings in tabular form.
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Figure 4: A generalized object-builder
tool kit for building intelligent
simulation environments for
simulation programs and simulation
program generators



At the second level of application
of an object oriented simulation
environment, one can build an object
oriented SPG around a traditional
simulation language such as SIMAN, SLAM,
SIMSCRIPT or GPSS. Figure 5 shows an
object oriented SPG around a SIMAN based
simulator. The pre-, co-, and post-
processor graphics interfaces are all
based on object oriented paradigm.
Similar to the previous graphics
interfaces, they can be custom-built or
may be built using generic object
oriented tools described above. The same
advantages as above are also expected of
this object oriented environment.

At the third or lowest level of
application, an object oriented
environment is built around an object
oriented simulator. At this level of
application, one may be able to create
objects and behaviors not previously
stored in the knowledge base of the
environment. The SmarterSim environment
described in the next section provides
such a medium for a programmer-free,
icon-based, and extensible simulation
environment.

J Pre-Gl
User
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J Post-Gl |«
Legend:
CGl ——— Common Graphics Interface
Pre-GI ——— Pre-processor Graphics Intertace
Co-GI  ——— Co-processor Graphics Inteface
Post-GI —— Post-Processor Graphics Interface

Figure 5: Architecture of an intelligent

simulation environment for a
simulation language

596

SMARTERSIM SIMULATION ENVIRONMENT

SmarterSim simulation environment
provides a number of tools for defining
new objects and behaviors, including
tables/libraries of elemental operations,
states, rules, and requests. The
heart of the SmarterSim environment is
the
description of behavior which is defined
by choosing elemental operations,
requests and rules and then relating them
using function block diagrams.

An elemental operation is an
indivisible activity that requires some
amount of time to accomplish. Each
elemental operation corresponds to a
state which is the state of undergoing
that operation. When an operation is
completed, a new operation or state is
started, based on the rules associated
with the completion of the previous
elemental operation.

Determination of when an operation
begins or ends can be done in one of the
following three ways;

(i) according to an event schedule, (A
rule can schedule the beginning or ending
of an elemental operation at some time in
future.)

(ii) according to a rule associated with
end of previous operation,

(iii) according to a rule associated with
a request.

Behaviors also include requests. A
request has a name, by which the
simulation object can recognize it. A
request triggers a rule at the object
that receives it. 1In general, each
simulation object is capable of sending
some requests and each is capable of
responding to some requests.

Rules defining behavior are similar
to rules in an expert system. The
lefthand side contains a logical
condition in which predicates are
descriptions of states of simulation
objects and/or requests. The righthand
side consists of messages. These
messages can be of three kinds, as given
below:

(1) requests sent to other simulation
objects,

(ii) immediate start of new elemental
operations,

(iii) scheduled start or end of elemental
operations or scheduled requests.

Rules are fired at the ends of
elemental operations.



EXAMPLE: A ROBOTIC MANUFACTURING CELL

A simple robotic manufacturing cell
(Medeiros and Sadowski 1983), shown in
Figure 6, is used to demonstrate some of
the above features of SmarterSim. The
cell contains a robot, a machine, an
input point and an output point. When a
piece is picked up by the robot at the
input point, it is taken to the machine
where the robot holds the piece for
processing. At the end of processing, the
piece is taken to the output point and it
is put down if the output point is empty.
Otherwise, the robot waits for the output
point to be emptied. When the piece is

placed down at the output point, the
robot moves to the input point. If there
is a piece at the input point, the robot

picks it up and travels to the machine.
Otherwise, it waits empty and idle at the
input point until a piece arrives to the
input point.

SmarterSim simulation environment
provides a library of states, elemental
operations, and rules to the user. Table
1 gives the states, rules and elemental
operation libraries for the robot cell.
Some of the elements in these libraries
may not be available initially but they
will be automatically added to the
libraries as they are defined. Figures 7
and 8 show some of the rules for robot
and machine, respectively. Rule 1 for
robot, "Start Picking Up a Piece," is
triggered when a request is made for the
robot to start picking up a piece. The
rule states that the elemental operation
"Picking up a pc" will begin if all the
following three conditions are true:

(i) robot is empty and idle at the input
point,

a piece is waiting and ready to be
and

(ii)
picked up at the input point,

(iii) a request has been made to start
picking up a piece by the robot.

On the other hand, according to the robot
rule 2, the elemental operation "Moving
to Mach" begins when the robot sends a
request to itself to start moving to
machine.

Rules are fired at the ends of
elemental operations. Figures 9 and 10
show the elemental operations of robot
and machine, respectively. In Figure 9,
when the "Picking Up of a Piece"
elemental operation ends, it triggers the
"Start Moving to Machine" rule whose
right-hand side may be executed if all
the conditions are true for that rule.
One should note that, at the end of an
elemental operation, rules of different
objects may be triggered. For example,
when the robot ends the moving the piece
to machine operation, two rules are
triggered. One is for the robot to tell
it to start holdirg for processing and
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Figure 6: A simple robot manufacturing
cell

the other one is for the workstation to
start processing the piece.

SmarterSim function block diagrams
as given in Figures 7 through 10 can be
developed easily by pick and drop keys
and using the library information
available on the rules and elemental
operations.

In a similar way, one may also
create new types of objects for the model
and archive them.

CONCLUSIONS

In this paper, we have described the
different types of object oriented
simulation environments. We also briefly
described some of the main features of
SmarterSim.

Object-oriented programming
technology can be used in various ways in
simulation modeling. It provides a
powerful mechanism for adding an object-
oriented world-view (Burns and Morgeson
1988) to traditional SPGs by means of
which the user can construct and
visualize simulation models. New SPGs
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Figure 7: Rules for robot (partial)

can be constructed using object-oriented
programming as well. The advantages of
doing this are the increased programmer
productivity that results from using
object-orientefd programming languages
and the natural connection that exists
between object-oriented programming
languages and the object-oriented
simulation world-view. Toolkits can be
developed to further assist in the
construction of SPGs.

598

R1: Start Processing

Waiting
for nxt pc
Workstation -
Processing
Robot
Start _processing|
Workstation

R2: Start waiting

Workstation Waiti
Start waiting jz@foralnlgtgpc
M Workstation
Figure 8: Rules for machine
Elemental Operations Bules
= (Robet]
Picking up -
oving to Mach
apc I Start moving h|
Robol[ M
Robot
Moving to Mach Start holding for prc|
[Robol]
Robot
Start processing
[Workstation|
Robot
Holding for prc Start moving to O. P.|
[Robol]

Figure 9: Elemental operations for robot
(partial)



Elemental Operations Bules
Picking up fooe: .
———{Start moving to Mach|
apc
Robot Lﬂgééﬂ
Duration:
Robot
[Moving to Mach Start_holding for prc|
Robot Robot
Robot
Duration Start processing
Workstation
Robot
[Holding for prcf——+{Start moving to O. P |
Robot Robot
Duration
Figure 10: Elemental operations for
machine

If the SPG generates simulation
programs in an object-oriented
programming language, a further advantage
results (most SPGs generate simulation
programs in regular simulation languages
like GPSS or SIMAN). The simulation
programs and SPGs become extensible,
either with no programming, which
SmarterSim attempts to support, or with
minimal programming in a language like
Smalltalk, as with SmartSim.

It has become clear that object-
oriented programming has an important
role to play in simulation modeling.
Much work is still required before we
will know how to best realize the
potential benefits of object-oriented
programming in simulation practice. In
this paper we have outlined some
approaches that we consider likely to

prove fruitful.
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