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ABSTRACT

The symbolic and subsymbolic paradigms each offer ad-
vantages and disadvantages in constructing models for un-
derstanding the processes of cognition. A number of re-
search programs at UCLA utilize connectionist modeling
strategies, ranging from distributed and localist spreading-
activation networks to semantic networks with symbolic
marker passing. As a way of combining and optimizing
the advantages offered by different paradigms, we have
started to explore hybrid networks, i.e. multiple process-
ing mechanisms operating on a single network, or multi-
ple networks operating in parallel under different
paradigms. Unfortunatcly, existing tools do not allow the
simulation of these types of hybrid connectionist architec-
tures. To address this problem, we have developed a tool
which enables us to create and operate these types of net-
works in a flexible and gencral way. We present and de-
scribe the architecture and use of DESCARTES, a simulation
environment developed to accomplish this type of intcgra-
tion.

1. INTRODUCTION AND MOTIVATION

Connectionist nctworks have recently been the subject of
a tremendous rebirth of interest, as rescarchers have begun
to explore their advantages for cognitive models ranging
from low-level sensory abilities to high-level reasoning.
Connectionist models employ massively parallel nct-
works of relatively simple processing elements.  These
models draw their inspiration from ncurons and
neurobiology, as opposed to existing symbolic artificial
intclligence (AI) models, which are generally bascd on
scrial Von Neumann architectures.

A few designers have implemented connectionist networks
dircctly in hardware to achieve the nctworks’ true paral-
lelism (e.g. [Akers & Walker, 1988] and (Lazzaro et al,
1988]). Hardware implementations of specific networks,
however, are far too inflexible and cxpensive for the ex-
ploration and testing of different types of modcls. Because
of this, there is a great need for software tools to allow re-
searchers to design and simulate the many kinds of connee-
tionist network models.

1.1. Symbolic and Subsymbolic Conncction-
ist Models

While there are several existing connectionist simulators,
none allows the simulation of hybrid networks that inte-
grate elements from more than one paradigm ol connce-
tionist modelling. This paper describes the simulation of
hybrid connectionist nctworks composed of heteroge-

ncous elements in DESCARTES (Development Environ-
ment for Simulating Connectionist ARchiTEctureS) [Lange
et al, 1989a].

Conncctionist networks are made up of a large number of
relatively simple computing elements, called nodes, which
are connected together by links , [Feldman & Ballard,
1982]. Within the connectionist approach there are three
paradigms, each having its own advantages and disadvan-
tages: Distributed Connectionist Networks (DCNs), Local-
ist Connectionist Networks (LCNs), and Marker-Passing
Networks (MPNs).

DCNss (such as the models described by [Rumelhart & Mc-
Clelland, 1986]) use simple, ncuron-like processing ele-
ments which represent knowledge as distributed patterns of
activation across those elements. Each node in a DCN has
a numeric activation level, computed by an activation
function applied against the node’s weighted input links.
This activation is communicated to the rest of the network
by spreading through its output links after being passed
through the node’s output function.

DCNs, sometimes known as Parallel Distributed Process-
ing or Subsymbolic models, are interesting because they
have lcarning rules that allow statistical category general-
ization, they perform noise-resistant associative retrieval,
and they exhibit robustness to damage. Distributed mod-
els, however, have (so far) been sequential at the knowl-
cdge level, lacking both the representation of structure
needed to handle complex conceptual relationships and the
ability to handle dynamic variable bindings and to com-
pute rules.

L.CNs (as exemplified by the models of [Waltz & Pollack,
1985]) and [Shastri, 1988]) also use simple, neuron-like
processing clements with numeric activation and output
functions, but represent knowledge using semantic net-
works of conceptual nodes and their interconnections. Un-
likc DCNGs, localist networks are parallel at the knowledge
level and have structural relationships between concepts
built into the connectivity of the network. Unfortunately,
they lack the powerful learning and gencralization capabil-
itics of DCNs. They also have had difficulty with dynamic
variable bindings and most other capabilities of symbolic
models.

MPNs (as exemplified by the models of [Charniak, 1986]
and [llendler, 1988]) also represent knowledge in semantic
nctworks and retain parallelism at the knowledge level.
Instcad of spreading numeric activation values, MPNs
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Figure 1: The sentence “John put the pot in the dishwasher because the police were coming.” illustrates the utility of
integrating semantic networks (Network-A) and distributed nctworks (Network-B). The darkest area represents the

most highly-activated set of nodes representing the nctwork’s plan/goal analysis of the scntence. Not all markers
are shown. Location role nodes and other parts of the network are also not displayed.
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Figure 2: DESCARTES Processing Architecture applicd to Hiding Pot. Shown in each nctwork are a few of their
nodes, with the class of cach node being declared in parentheses below their names. PDP-Nodes “pot” and “john” are

shared by both networks.

propagate symbolic markers, and so support the variable
binding nccessary for rule application, while preserving
the full power of symbolic systems. On the other hand,
they do not possess the lcarning capabilities of DCNs or
exhibit the constraint-satisfaction capabilitics of LLCNs.
1.2. Hybrid Connectionist Modecls

Research at UCLA has spanned the range from subsym-
bolic to symbolic connectionist models [Dyer, 1989]. A
number of us have begun to construct hybrid architectures
which use what we term Multiple Interacting Networks, or
MINs; heterogencous conncctionist networks that commu-
nicate via shared elemcnts. A ncurophysiological ap-
proach [Nenov & Dyer, 1988] cffectively uses MINs for
visual/verbal association by modcling hcterogencous ncu-
ronal characteristics in scparate nctworks. We have also
been exploring the use of MINs for higher cognitive tasks,
such as planning, creativity, story invention, and politi-
cal ncgotiations. In political negotiations rescarch, for
instance, MINs are used to simulate the multiple perspee-
tives of ncgotiating parlics.

Another approach is to build modcls that combine the
bottom-up processing features of DCNs with the top-down
processing features of LCNs and MPNs. Figure 1 shows
Hiding Pot, an example whercin clements from cach
paradigm are combined using MINs. This allows us to ap-
proach a problem that would be difficult, if not impossi-
ble, using a single paradigm. Hiding Pot shows a sim-
plified nctwork built to understand the sentence, “John put
the pot inside the dishwasher because the police were com-
ing.” Network-A in Figurc 1 utilizes an MPN 1o do role-
binding and an LCN to activate and combine cvidence for
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individual schemas. These then combine their functional-
ity to support predictions and perform inferencing and dis-
ambiguation.

One might also want to combine differcnt connectionist
approaches by having separate networks that communicate
with cach other, where cach one performs a different cogni-
tive task. Network-B in Figure 1 is a DCN, trained to rec-
ognize words from line scgments [McClelland & Rumel-
hart, 1986, chap. 1]. DBy integrating these two ap-
proaches, we can simulate cognitive processes at the dif-
ferent levels of abstraction necessary for modeling reading
and understanding.

Network-A intcracts with Network-B through shared lexi-
cal nodes. Once a word has been recognized, it passes ac-
tivation to the concepts related to the word. For example,
the node for concept John gets activation from the word
node “John" which is shared by both networks. Activation
then propagates along the chain of related concepts in the
network as contextual evidence for disambiguation. Mark-
crs are passed over the role nodes across marker passing
links between corresponding roles to represent role-bind-
ings and perform the nceded inferencing.

While there are several existing conncectionist simulators,
none allows the simulation of multiple interacting hybrid
networks, as in Hiding Pot, that integrate clements from
more than one paradigm of connectionist modelling. We
have developed the DESCARTES simulation environment
specifically to address this kind of integration. DESCARTES
cnables researchers to design, simulate, and debug hybrid



(Simple-SA-Node Transfer-Inside :in-links (SA-Link

(Simple-SA/MP-Node Transfer-Inside”~Actor :in-links

("put*” 0.75)
(Inside 1.00)
(Transfer-Inside”Actor 0.50)
(Transfer-Inside”Obj 0.50)
(Transfer-Inside”Loc 0.50)))

(SA-Link (Transfer-Inside 1.0))
(MP-Link Inside”Planner))

Figure 3: Creation of Transfer-Inside and Transfer-Inside*Actor nodes, with forward-referencing.

connectionist architecturcs that combine clements of dis-
tributed, localist, and marker-passing nctworks.

2. DESCARTES ARCHITECTURE

DESCARTES is a package designed for simulating nctwork
processing, nctwork interaction, and integration of net-
works into an overall processing environment.  The sys-
tem consists of two intcractive components: network ele-
ments, such as nodes and links, their associations, and
their functionality, and processing controllers, which or-
ganize network elements and coordinate their processing.
The components of this architecture, as applied to Hiding
Pot, are shown in Figure 2.

2.1. Processing Controllers

When DESCARTES is loaded and running, the required pro-
cessing controllers are a meta-controller (a supcrvisor for
all elements and sub-controllers present in the run-time
system) and at least onc network controller (a supervisor
for an individual network and its elements). The architec-
ture described in Figure 2, and implemented in Hiding
Pot, is controlled by a meta-controller (Meta-Control)
which coordinates the two networks (Network-A and
Network-B). Each of these nctworks has a local network
controller which coordinates the processing of its cle-
ments. In this case the controller for Network-A is of
class SA/MP-Control, which combines both spreading-ac-
tivation and marker-passing functionality.

2.2. Network Elements

DESCARTES has a number of predefined node classes with
different functionalitics. Three of these node classcs are
used in the Hiding Pot cxample: (1) Simple-SA-Node,
used in Hiding Pot for conceptual clements, such as
Human and Transfer-Inside, (2) Simple-SA/MP-Node,
used for roles, such as Transfer-Inside*Actor, and (3)
PDP-Node, used for feature detection in Network-B, such
as the node represcenting the lexical entry “pot”. Figure 3
provides an example of node creation for the Simple-SA-
Node and Simple-Sa/MP-Node classes.

Simple-SA-Node is a basic class of spreading-activation
nodes with dcfault activation and output functions. Sim-
ple-SA/MP-Node is another standard node class, which
combines the functionality of Simple-SA-Node with that
required for marker passing. Finally, PDP-Node is the
simplest class of DCN-type nodes — spreading-activation
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nodes that modify the weights on their input links by
backpropagation [Rumelhart et al., 1986, chap. 8].

Many other common node and link types are predefined,
with a variety of activation, threshold, and output func-
tions. More complicated classes are also available, includ-
ing gated nodes and links, along with more neurally-realis-
tic nodes that communicate via output spikes, such as the
artificial ncural oscillators of [Vidal & Haggerty, 1987].
The functionality of DESCARTES objects can easily be ex-
tended by combining the default class definitions of the
object hierarchy with user-defined modifications, a process
described in [Lange et al., 1989b].

2.3. Structured Networks

Somec connectionist models have a consistent structure be-
tween groups of nodes in the network. In a semantic net-
work, for example, a node representing the head of a frame
might always be connected via a certain type of link to
cach of its roles, which in turn might always have a node
for their fillers. Groups of nodes forming winner-take-all
networks are always completely interconnected with con-
stant inhibitory weights. Rather than force the user to
repetitively define all nodes and connections for each such
structured group, DESCARTES has a facility that allows the
programmer to optionally define a structured growing
mcthod for cach node class. A node’s growth mecthod au-
tomatically crcates the node’s expected structured incom-
ing and outgoing nodes and connections. This feature al-
lows knowledge base dcfinitions to act as keys for network
creation rather than as exhaustive listings of the networks'
nodes and their connectivity.

2

4. in DESCARTES

Simulation
Once the networks have been designed and built, the user
starts the simulation by (1) optionally defining the cy-
cling, termination, and display sequence for each network,
(2) initializing the meta-controller to clear out all activa-
tion and markers, (3) activating or marking the desired
nodes, and (4) starting the cycling sequence and specifying
the number of global cycles to run. An example of this
process is shown in Figure 4, but for a complete descrip-
tion sce [Lange et al., 1989b].

Figure 4 shows the initial activation and markers needed
to process the phrase “John put the pot inside the dish-
washer because the police were coming.” The first define-
cycling command in the figure specifies that the meta-
controller spread activation in Network-A once per global



cycle, while only passing markers once per every three
global cycles. Both activation and markers will cycle
until stability, their default termination condition. [or
analysis of the network’s activity, the user has defined that
a trace of the markers’ propagation be shown and that the
status of the nodes be displayed every ten cycles. The
second define-cycling command defines that Network-B is
not to be cycled in this example.

(define-cycling %Network-A :sa-cycle-every 1 ;1
:marker-cycle-every
:marker-trace T
:display-every 10)

(define-cycling %Network-B isa-cycle-every NIL)

(init meta-control) ;2

(clamp-output %w-put 1.0) ;3

(clamp-output $w-Jjohn 1.0)

(clamp-output %w-pot 1.0)

(clamp-output %$w-dishwasher 1.0)

(clamp-output %w-police 1.0)

(clamp-output %$w-were-coming 1.0)

(mark $transfer-inside~actor $marker_John)

(mark %transfer-inside~obj %marker_Marijuana

(mark %transfer-inside”obj %$marker_Cooking-Pot)
(mark %transfer-inside”loc %$marker_Dishwasher)

(mark %transfer-self”actor $marker Police)

(cycle 50) ;4

Figure 4: Example of DESCARTES’ control language.

In general, the networks’ cycling scquences nced only be
set once per session (if at all), although all sequencing and
displaying parameters may be re-specificd in mid-simula-
tion. Activations and markers of nodes may bc changed at
any time.

3. IMPLEMENTATION

DESCARTES is implemented in CoMMoxLIsP, the ANSI Lisp
standard, and the COMMONL1sP Object System, CLOS, which
provides hierarchical inhcritance for DESCARTES classes
and ensures flexibility by allowing the user to utilize pre-
defined functional classes to customize nctwork semantics.

DESCARTES’s control language is simple and cffective, cn-
abling the designer to casily sct up and test different net-
work configurations using cither pre-defined or user-
defined elements. At the same time, the system has been
designed with ease of nctwork dcbugging in mind, with
history and output facilities that offer rescarchers valuable
methods for interpreting nctwork behavior.

As previously stated, all nodes, links, controllers and
markers in DESCARTES arc objects; specifically, instances
of DESCARTES classes. Presented below is a detailed de-
scription of a single nodc and a single link in Iliding Pot;
a detailed description of the simulation cycle; and an ex-
ample of a network with four nodes and six links, which
demonstrates basic concepts of DESCARTES
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3.1. Nodes and Links

DESCARTES functionalily can be illustrated with a single
node (Inside) and a single link (L18) from the Hiding
Pot nctwork. Figure 5 shows the internal organization of
the node Inside, as created from the definition in Figure 3.
Inside is an instance of the class Simple-SA-Node, and
contains the slots defined in (or inherited by) Simple-SA-
Node. Figure 5 shows these slots and their values for the
node Inside.

Node Inside, class Simple-SA-Node, sa-asleep-since NIL
INTERNAL-ID....: "Inside"

IN-LINKS.......: (*L15" “Ll6" "L17" "L18" "L19" "L20")
OUT-LINKS......: ("L2" "L21" "L28" "L35" "L41" "Lé68")
ACTIVATION.....: 2.291 (0.725 0.788 0.335 0.500)
THRESHOLD......: 0.05

DECAY-RATE.....: 0.8

Figure 5: Display on node Inside.

The internal-id slot is common to all user-accessible
objects in DESCARTES, serving as a handle for the object.
In-links and out-links contain the lists of input and output
links, respectively. They connect the node to other nodes
in the network, and allow activation and markers to be
passed. The activation slot contains the node’s current
activation, as well as its activation history. In Figure 5,
Inside is shown after cycle 7 of the simulation, so the first
value shown is the current (unnormalized) activation, the
ncxt one (the first value in parentheses) is the activation
on cycle 6, and so on. The threshold slot contains the
minimum activation required for Inside to have an output,
an aclivation functionality provided in DESCARTES's class
hicrarchy. Finally, the decay-rate slot holds the value of
the activation's lincar decay coefficient. Thus, Simple-
SA-Node's activation is calculated by its activation
function as follows:

Anew = (1-0) *Aold + T wi*a;

where Apew is the new activation, Aoig is the activation
from last cycle, d is the node's decay-rate, and ¥ wi*a; is
the sum of weighted activations over the node’s in-links.

Networks, such as the ones described here, are inherently
parallcl computational models. Since most computers are
still quite scquential, DESCARTES provides a functionality
to speed up network processing on sequential
architectures.  This functionality allows the controller to
only process those nodes, whose activation or markers
change during a cycle. Thus a node whose activation re-
mains constant at cycle W, need not be processed on that
cycle. Such a node is said to be asleep at cycle W. It is im-
portant to note that in a typical semantic network, most
nodes’ activation and output remain constant on any given
cycle. By declaring those nodes as asleep, the number of
nodes processed during a given cycle is reduced, which
improves DESCARTES performance on large networks.

Figurc 6 shows the internal organization of link L18, one
of Inside’s input links, connecting Inside*Planner to
Inside. Link L18 is an SA-LINK, which indicates it can



Link L18, class SA-LINK

INTERNAL-ID.: “L18”
SOURCE...... : “Inside”Planner”
SINK........: “Inside”
ACTIVATION..: 0.11
WEIGHT...... : 0.5

Figure 6: Display on link L18.

pass weighted spreading activation. Its source slot
points to Inside”Planner (the actual valuc stored in that
slot is a pointer to a CLOS object), the node from which
L18 originates. The link's sink slot points to Inside, the
node to which L18 dclivers activation or markers. The
weight slot specifies the link's weight--the strength of the
connection between source and sink. Finally, the
activation slot indicates the value that will be passed to
the sink node during the Update procedure (sce below).
Activation on a link is calculated as follows:

Activationpink = WeightLink * OulpullinkSource

Activation of a link becomes one of the inputs of its sink
node on the subsequent simulation cycle. The cycling
mechanism is used to simulate parallel processing on the
network(s) and is described below.

Most of the slots on Simple-SA-Node and SA-LINK are
common to the other classes of nodes and links in
DESCARTES; as previously mentioned, all user-accessible
objects have an Internal-1D slot, all links have source and
sink slots, etc.. Other classes, however, often add their
own specific slots for processing (such as markers) or
redefine the functionality of a class.

3.2. The Simulation Cycle

DESCARTES is designed in such a way that nctworks can be
cycled in parallel or serially. The meta-controller provides
for timing coordination between the networks.  Networks
cycled in parallel behave as if they were a single net, even
though they need not operate at the same [requency or
functionality. A particular model may have a nctwork of
inhibitory nodes cycling at a faster rate than a nctwork of
excitatory nodes with which it interacts, at the same time
as symbolic markers are being passed over cach, and
backpropagation is being performed within sub-nctworks
of the modcl. With serial cycling, onc network may wait
until another network completes a specified number of
cycles or rcaches stability before starting to cycle itsclf.

Each global network cycle is comprised of four steps: (1)
determination of which nctworks need to be cycled, (2) up-
date of active nodes in the cycling nctworks, (3) spread
from active nodes in the cycling networks to their out-
links, and (4) report any requested output.

Determining Active Networks: The meta-controller
determines which of the networks in the system need o
be cycled in parallel on the given cycle, according to
defaults and any define-cycling commands. In Fig-
ure 4, sprcading-activation nodes in Network-A will
be cycled on cvery global cycle, while marker-passing
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nodes will be cycled only on global cycles 1, 4, 7, and
so on, until termination (stability).

Update: Each active node in the cycling networks queries
its incoming links for new activation and/or markers.
Spreading-aclivation nodes calculate their new activa-
tion by applying their activation function, while
marker-passing nodes store any new markers they have
received.

Spread-To-Out-Links: Each active node in the cy-
cling networks calculates its output (either activation
or markers) and sends it to its outgoing links. The out-
put of spreading-activation nodes is calculated by ap-
plying their output function, while the output of
marker-passing nodes is generally their new markers.
The links receive input from their source nodes and
wake up (declare active) their sink nodes, if they are
asleep (inactive).

Report Output: The final step of a cycle entails query-
ing the cycling networks for results. Each network
controller can optionally display the status of impor-
tant nodes at specified cycles (Network-A’s status will
be displayed every 10 cycles in Figure 4) or trace new
activation and/or markers. DESCARTES currently has a
number of output options uscful for system design and
debugging.

3.3. A Simple Example

To illustratc how activation actually spreads through the

network, consider Figure 7. It shows the first four cycles

of a simulation of a simple network. This network
contains two classes of nodes: max-nodes and sum-nodes.

Max-nodes and sum-nodes are very similar to Simple-SA-

Nodes, except that the activation function for max-nodes

is the maximum activation of its in-links, while the

activation function of sum-nodes is the sum of the
activations of its in-links.

Al cycle 1, node A is clamped with activation of 1.0,
which mcans that A will keep its output at 1.0, regardless
of its inputs. The other nodes in the network are asleep,
and therefore are not updated. A then sends its output to its
out-links, which will wake up node B. On cycle 2 A goes
10 slecep because its activation remains unchanged. B
cheeks its input links and calculates its activation. B is a
max-node, so its activation is the maximum of all of its
inputs, in this case, 0.5. B then sends activation to its
out-links, waking C and D.

At cycle 3, B goces 1o slecp, and both C and D are awake.
They cach calculate their activation by summing the inputs
and pass it through their out-links. Node D then goes to
sleep on cycle 4. Node C, however, remains active, since
its input link had notified it that there is new activation
from node D. Note that node A remains asleep, since it is
clamped at a specific value, and inputs will not change its
activation or output. Node B, however, becomes active,
and will recalculate its activation at cycle 4 by taking the
maximum of its inputs.



[: max node - awake o sum node - awake

e
Y asleep node

1,00 node activation

link weight and activation

Figure 7: An example of a simple spreading-activation network.

This network will cycle 12 times before it reaches sta-
bility, at which time all nodes will be quiescent.

4. SIMULATION OF HIDING POT

Returning to the Hiding Pot example, figure 8 shows an
interactive session in DESCARTES after the initialization of
Figure 4 for “John put the pot inside the dishwasher
because the police were coming”. After the cycle com-
mand is given, the markers originally marked on the role
nodes of Transfer-Inside and Transfer-Self propagate
along the connections shown in Figure 1, marking new
nodes every third cycle. Concurrently, activation spreads
along the Simple-SA-Nodes of the network until the ten
cycles are completed. At this point the activations (first
values) and activation histories of the last few cycles (in
parentheses) of the desired nodes are displayed. Notice
that the activation of node Cooking-Pot (0.235) slightly
exceeds that of Marijuana (0.208) early in the simulation
run. The display-connections command shown is one
way to allow the user to “debug” the network, by
displaying the incoming links that affect a node’s
activation (Transfer-Inside in this case).

The next (cycle 100 :display-on-exit-p T) command tells
the meta-controller to cycle 100 times (or by default until
termination) without displaying either the trace or network
status until complete. The marker-passing portion of the
network becomes stable (and thus stops cycling) when the
markers have propagated throughout the network by cycle
18.

Activation continues to spread until the network becomes
spreading-activation stable at cycle 42. The path of most
highly-activated nodes runs, in this case, through nodes
Transfer-Inside, Inside, and Inside-Opaque, forming
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part of the network's interpretation that John was trying
to hide his Marijuana rather than clean his Cooking-Pot.
5. SIMULATOR INFORMATION

A complete description of DESCARTES's functionality and
test-bed cases can be found in [Lange et al., 1989b]. The
largest test case simulated to date is an implementation of
a ROBIN [Lange & Dyer, 1989b] network in the domain of
Hiding Pot. It consists of two interacting LCNs built

from four node classes and five link classes, with a total of
12,400 nodes and 40,000 links.

DESCARTES will be made available to all interested users.
Enquiries about access to the simulator should be sent to
<DESCARTES@CS.UCLA.EDU>.

6. RELATED WORK

Some of the recent tools constructed for building and simu-
lating connectionist architectures are (1) the Rochester
Connectionist Simulator (RCS) [Goddard et al., 1987],
(2) the PDP Software Package [McClelland & Rumelhart,
1988], (3) MIRRORS/II [D’Autrechy et al., 1988], and
(4) GENEsIS [Wilson et al., 1988]). RCS is a spreading-
activation simulator which allows units to have any
amount of associatcd data. There is no specification lan-
guage for construction of the net, but the system provides
a library of commonly used network structures and units.
The PDP Software package includes a number of programs
for simulating the DCN models in [Rumelhart & McClel-
land, 1986]. MIRRORS/II and GENESIS, the most recent of
the four systems, have both features: a high level non-pro-
cedural language for network construction and an indexed
library of commonly used networks.



> (cycle 10)
Cycling...

Newly marked nodes in Network-A on cycle 4:

Inside”Planner.................: (<Marker_John>)

Inside™ObJ i iieniinneenneennnnnt (<Marker_Marijuana> <Marker Cooking-Pot>
Inside”LoC....vueecureuunaana..: (<Marker_Dishwasher>
Proximity-To-Object”Actor......: (<Marker_Police>)

Newly marked nodes in Network-A on cycle 7:
Goal-Avoid-Detection”Planner...: (<Marker_John>

Goal-Avoid-Detection”Obj.......: (<Marker_Marijuana> <Marker_Cooking-Pot>)
Goal-Clean-Dish~Planner........: (<Marker_John>)
Goal-Clean-Dish"Obj............: {(<Marker Marijuana> <Marker_Cooking-Pot>)
Goal-Fight-Crime~Planner.......: (<Marker Police>
Inside-Dishwasher”Planner......: (<Marker_John>)
Inside-Dishwasher”Obj..........: (<Marker_Marijuana> <Marker_Cooking-Pot>)
Inside-Dishwasher”Loc..........: (<Marker Dishwasher>)
Inside-Opaque*Planner..........: (<Marker_John>)

Inside-Opaque”Obj.... . (<Marker_Marijuana> <Marker_ Cooking-Pot>)
Inside-Cpaque”LoC..............: (<Marker_Dishwasher>)
Police-See-Illegal”Planner.....: (<Marker_Police>)

Newly marked nodes in Network-A on cycle 10:

Block-See~“Planner..............: (<Marker_John> <Marker_ Police>
Block-See”Obj.......uvueuue....: (<Marker_Marijuana> <Marker_Cooking-Pot>)
Block-See”LoC......vevvueen....: (<Marker_Dishwasher>)

Status of nodes in Controllerl from cycle 11 thru 7:

11 10 9 8 7
Cooking-Pot.... 0.536 (0.235 0.200 0.251 0.242)
Marijuana....ieeeeiiiiiiniann. : 0.491 (0.208 0.174 0.210 0.199)
Transfer-Inside................: 2.143 (0.946 0.784 1.000 0.843
Inside......vevveriveenenannanat 2,699 (1.000 1.000 0.979 1.000)
Inside-Dishwasher 1.630 (0.723 0.604 0.772 0.582)
Inside-Opaque.....eevveuveeneaaat  1.417 (0.610 0.465 0.571 0.350)

> (display-connections %transfer-inside :length 5)

Node: "Transfer-Inside™, class FRAME, sa-asleep-since NIL

Activation............: 2.115 (2.115 0.784 1.000 0.843

In-Links:

Inside.........ooovvvvt 2.237 (2.237 1.000 0.979 1.000) (<L2 0.9>

Transfer-Inside”Actor.: 0.438 (0.438 0.199 0.218 0.228) (<Marker_John>) (<L3 0.5>)

Transfer-Inside”Loc...: 0.478 (0.478 0.217 0.243 0.253) (<Marker_Dishwasher>)

Transfer-Inside”Obj...: 0.443 (0.443 0.201 0.221 0.229) (<Marker_Marijuana> <Marker_Cooking-Pot>)

W=PUL.utveonnennnnnns : 0.103 (0.103 0.121 0.107 0.114) (<Ll 0.75>)

(cycle 100 :display-on-exit-p T)

Cycling...... Network-A Marker-Passing stable at cycle 18

Cycling.eviviininieiiiennnnnnns Network-A Spreading-Activation stable at cycle 42
43 42 41 40

Cooking-Pot.: 0.506 (0.203 0.209 0.209....)

Marijuana.: 0.580 (0.233 0.233 0.233....)

Transfer-Inside.: 2.106 (0.846 0.846 0.846....)

Inside.: 2.4%1 (1.000 1.000 1.000....)

Insicde-Dishwasher.: 1.543 (0.619 0.619 0.619....)

Inside-Opa 1.573 (0.631 0.631 0.631....)

Figure 8: Example interactive scssion in liding Pot after setup in Figure 4.
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Both have more sophisticated and flexible control
mechanisms than RCS and the PDP Software Package, with
MIRRORS/II emphasizing simulations using LCNs and
GENESIS emphasizing realistic, biologically-based models.

The flexibility and symbolic capabilities afforded by
DESCARTES’ object-oriented implementation in CoM-
MONLISP and CLOS comes at a small expense in simulation
speed in comparison to the C-based implementations of
RCS, the PDP package, and GENESIS. The only case where
the difference in speed should be significant, however, is
in simple backpropagation networks requiring thousands
of leamning epochs, for which the PDP package might be
more appropriate. Except for GENESIS, all of the above-
mentioned simulators are geared toward monotonic dis-
tributed or localist sprcading-activation networks. None
of them have the concept of hybrid multiple interactive
networks as part of their design, especially those which
can pass symbolic markers.

7. CONCLUSIONS

We have presented a development tool, DESCARTES, which
provides researchers with the capability to combine
Distributed Connectionist Networks, Localist Connection-
ist Networks and Marker-Passing Networks within a single
simulation environment. The most important theorctical
contribution of DESCARTES is the concept of Multiple
Interactive Networks with intra- and inter-network
heterogeneity. As a tool, it provides a simple, portable,
and versatile environment for designing and testing
different cognitive models. These capabilities make
DESCARTES a powerful tool for researchers in Artificial
Intelligence, Cognitive Modelling, and Connectionism.
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