Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

GUIDELINES FOR SELECTING AND USING
SIMULATION MODEL VERIFICATION TECHNIQUES

Richard B. Whitner

Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, Colorado 80525

ABSTRACT

There is a lack of sufficient understanding and realization of
the importance of simulation mode! verification in the simulation
community. The demands placed on the software which serves as a
computer-executable representation of a simulation model are in-
creasing. In the field of software engineering, there is an abundance
of software verification techniques that are applicable for simula-
tion model verification. This paper is intended to reduce the com-
munication gap between the software engineering and simulation
communities by presenting software verification techniques appli-
cable for simulation model verification in a terminology under-
standable by a simulationist. A taxonomy of verification techniques
is developed to guide the simulationist in selecting and using such
techniques. Characteristics, advantages, and disadvantages of verifi-
cation techniques under each category are described.

1. INTRODUCTION

Software verification is a major concern of today's software en-
gineering community. It is a well known fact among software de-
velopers that over 50 percent of the development effort and resourc-
es go into the verification process. This process encompasses the
entire software development life cycle from inception to implemen-
tation.

In the area of simulation, verification is also a crucial process.
The simulation model life cycle, monitored by 13 credibility assess-
ment stages (CASs), has a much broader scope than does the gener-
al software life cycle (Balci 1987). This paper deals with the Pro-
grammed Model Verification (PMV) which is one of the 13 CASs.

There is much confusion concerning the difference between
validation and verification. Validation is substantiating that the in-
put-output transformation of the model has sufficient accuracy in
representing the input-output transformation of the system. When-
ever a model or model component is compared with reality, valida-
tion is performed. Verification, on the other hand, is substantiating
that a simulation model is translated from one form into another,
during its development life cycle, with sufficient accuracy. PMV is
substantiating that the Programmed Model (the executable simula-
tion model) is translated from the simulation model specification
(Communicative Model) with sufficient accuracy. Valida;iop deals
with building the right model, verification deals with building the
model right. .]

The perfunctory view of the PMV has caused many simulation
experts to overlook the area of PMV. Quite often, neither suff1c1§nt
time nor resources are allocated for it. As simulation models contin-
ue to grow in size and complexity, the simulation community is be-
ginning to recognize the dire need for engineering quality models.
This awareness has been brought about in large part by th‘e nceq to
retain and maintain the programmed models used for a simulation
study for extended periods of time. .

All software verification techniques are applicable to PMV.
Only the usefulness and practicality of the techniques may vary be-
tween the two domains. Some techniques which are not considered
practical software engineering verification alternatives serve model
verification very well. Other techniques serve both communities
equally well.]

Section 2 presents a taxonomy for PMV techniques. Software
verification techniques are described for PMV in Section 3. Con-
cluding remarks are given in Section 4.

559

Osman Balci

Department of Computer Science

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

2. A TAXONOMY FOR SIMULATION MODEL VERIFI-
CATION TECHNIQUES

Programmed Model (executable simulation model) Verifica-
tion is concerned with the accuracy of transformation of the detailed
model specification (communicative model) into the programmed
model. Techniques to perform verification can be categorized by
the basis with which the accuracy is justified. The taxonomy pre-
sented in this paper categorizes the verification process into six dis-
tinct verification perspectives: informal, static, dynamic, symbolic,
constraint, and formal analysis. The taxonomy is shown in Figure 1.
It should be noted that some of these categories are very close in na-
ture and in fact have techniques which overlap from one category to
another. There is, however, a fundamental difference between each
classification, as will be evident in the discussion of each.

Underneath each category, the techniques used to perform the
verification are listed. The level of mathematical formality of each
category continually increases from very informal on the far left to
very formal on the far right. Likewise, the effectiveness of each in-
creases from left to right. As would be expected, the complexity
also increases as the method becomes more formal. The two catego-
ries, dynamic analysis and constraint analysis, are instrumentation-
based, i.e., they utilize extraneous information present in the code to
assist and/or enhance the analysis, particularly in an automated
sense. Automated analysis usually results in higher computer re-
source cost but lower human resource cost.

The taxonomy provides a number of perspectives of PMV. In
informal analysis, the perspective of human reasoning and subjec-
tivity is captured. Static analysis verifies on the basis of characteris-
tics evidenced in the code of the programmed model itself. Dynam-
ic analysis captures the execution behavior of the programmed
model, while symbolic analysis justifies the selection of the dynam-
ic test sets and verifies the transformation of model inputs to out-
puts. Constraint analysis verifies conformance of the programmed
model to model assumptions. Constraint analysis also serves as a
validation reference by assuring that the model is functioning with-
in the model domain. Formal analysis provides the ultimate baseline
for PMV efforts.

Table 1 summarizes a number of characteristics of the general
nature of each category: (1) the basis for verification, (2) the rela-
tive level of mathematical formality, (3) the complexity of the asso-
ciated techniques, (4) cost in terms of human time and effort, (5)
cost with respect to computer resources (e.g., execution time, mem-
ory utilization, storage requirements, etc.), (6) the relative effective-
ness of the method in general, (7) whether or not the category is
considered instrumentation-based, and (8) the relative importance
of the associated techniques to PMV. The comparison among the
categories (e.g., Level of Formality) is intended more to give a rela-
tive view among the spectrum of categories rather than to measure
against some known standard.

By applying verification.techniques categorically, the modeler
not only realizes a verified model, but also he has categorical evi-
dence from a broad range of verification perspectives to substan-
tiate his claims. The taxonomy is beneficial to the modeler: (1) by
categorically identifying techniques which will allow him to verify
the programmed model, and (2) by guiding the modeler with an ef-
fective, well-organized format for assessing the credibility of simu-
lation results.

PROGRAMMED MODEL VERIFICATION TECHNIQUES

Informal Static Dynamic Symbolic Constraint Formal
Desk Checking Syntax Analysis Top-down Tesling Symbolic Execution Assertion Checking Proof of Correctness
Walkthrough Semantic Analysis Bottom-up Testing Path Analysis] Inductive Assertion LamQa Calculus
Code Inspection Structural Analysis Black-box Tesling Cause-effect Grqphlng Boundary Analysis Predfcale Calculus '
Review Data Flow Analysis White-box Testing Partition Analysis Predicate Transformation
Audit Consistency Checking Stress Testing Inference
Debugging Logical Deduction
Exccution Tracing Induction
Execution Monitoring
Execution Profiling
Symbolic Debugging
Regression Testing
Figure 1: A Taxonomy for Programmed Model Verification Techniques
Table 1: Characteristics of the PMV Techniques Under Each Category
Informal Static Dynamic Symbolic Constraint Formal
Analysis Analysis Analysis Analysis Analysis Analysis
Analyzing through | Analyzing charac- | Analyzing results | Analyzing the trans- Comparison of Formal mathe-
Category i;hfgg;"ﬁlggg‘ge:;gg teristics of the gathered during {r?;; "}2%8’2}3&%;“;22‘; exegﬁ:;‘;l\ g’l;’g:‘lm h matical proof of
2L . ; "

Definition development activities | Static source code | model execution | 240 oo tion paths assumptions correctness
Level qf Very Informal to Informal to Formal Formal to Very
Formality Informal Formal Formal Very Formal Formal
Complexity Low Moderate Moderate to High High to Very High

High Very High
Human Very High Low to Moderate to High High Very High
Resource Moderate High
Computer Very Low Moderate Very High Moderate High Very Low
Resource Cost to High
Effectiveness Limited Moderate Moderate High to Very High Highest,
to High to High Very High if Attainable
Instrumentation No No Yes No Yes No
Based
Importance to High High High Very High Very High Highest,
PMV if Attainable

560

3. TECHNIQUES FOR PROGRAMMED MODEL VERIFI-
CATION

In this section, each category in the taxonomy is discussed in
detail. The basis for each type of verification is discussed, and tech-
niques to perform the verification are presented. Advantages and
disadvantages of each are cited.

3.1 Informal Analysis

Informal analysis techniques are among the most commonly
used verification strategies. Verification by informal analysis is
based on the employment of informal design and development ac-
tivities. This category of analysis is referred to as informal because
the tools and techniques used rely heavily on human reasoning and
subjectivity without stringent mathematical formalism-not because
of any lack of structure and formal guidelines for the use of the
techniques. The informal analysis approach is a very intuitive one.

Informal analysis involves evaluation of the model using the
human mind. This can be done by the modeler, a modeling team, a
multidisciplinary study development group, or an independent test-
ing organization. It includes not only evaluating the resulting model
for completeness, consistency, and unambiguity of translation, but
also seeks justification for the various design and development deci-
sions made. The evaluations can be made by mentally exercising
the model, reviewing the logic behind the algorithms and decisions,
and examining the effects the various implementations will have on
the overall outcome of the model. Five informal analysis techniques
are discussed below.

3.1.1 Desk Checking

Desk checking is probably the most commonly used verifica-
tion technique. Simply put, desk checking is the process of review-
ing one's work to check its logic, consistency and completeness. It
is particularly useful in the early stages of design, before the task
becomes unmanageable. Most modelers perform a version of desk
checking as they develop their model and then examine it to see
why it doesn't work. To be truly effective, desk checking should fol-
low tighter guidelines than this.

First of all, desk checking should be performed before the mod-
el is tested. What this means is that desk checking is not an execu-
tion debugging technique. Before energy is expended getting a
model into execution, it should be thoroughly desk checked.

Secondly, desk checking should be performed by a second par-
ty (Adrion et al. 1982). This enhances the completeness and relia-
bility of the technique simply because the modeler often becomes
blinded to his own mistakes. The second party is much more likely
to detect subtle errors.

3.1.2 Walkthrough

Walkthroughs are a more formal approach to verification than
desk checking. The walkthrough is similar to desk checking in that
the design and character of the model's code are examined in detail.
The logic of the model is analyzed, its con§istcncy is verified, and
its completeness is determined. In an organized manner, the exam-
iners walk through the details of the design or source code to per-
form the verification; hence the term walkthrough.

Unlike the loose structure of desk checking, the walkthrough is
carried out under specific guidelines. It is an organized activity of
the modeling organization. There are many terms associated with
the concept of the walkthrough. Among such terms are code inspec-
tions, reviews, and audits, each of which are dlsqusscd as separate
activities in later sections. The term walkthrough itself has been re-
lated to a variety of verification techniques, few of which have at-
tained any measure of standardization. The exception is the struc-
tured walkthrough introduced by Yourdon (1985) and is what is
discussed below. o

The walkthrough is carried out by a team of individuals asso-
ciated with the development process. The intent is to review and
discuss the model in an effort to locate flaws in the design and/or
source code. The model in review can be a high-level specification,
a detailed design, or even an actual coded submodel of the pro-
grammed model. The walkthrough itself is the meeting of the team

561

members.

The walkthrough team is composed of the modeler and study
peers, most of whom are in some way familiar with and related to
the simulation study. The walkthrough is a fact-finding venture. Its
outcome is intended to help the subsequent development and verifi-
cation of the model. It is not a forum for rating modeler perfor-
mance. As such, managers should be excluded from the activities of
the walkthrough. (The review, described later, opens avenues for
managerial involvement.) Either the manager or a member of the
simulation project will establish the walkthrough team, depending
on the project organization.

Yourdon identifies several roles in a structured walkthrough:
(1) the presenter, who most often is the modeler; (2) the coordina-
tor, who organizes, moderates, and follows up the walkthrough ac-
tivities; (3) the scribe, who documents the events of the meeting; (4)
the maintenance oracle, whose responsibility is to consider long-
term implications of the model; (5) the standards bearer, who is
concerned with adherance to standards; (6) a user representative to
reflect the needs and concerns of the sponsor; and (7) other review-
ers as desired to give general opinions of the model (e.g., an audi-
tor).

Before the meeting, the coordinator assures that the team mem-
bers have all materials necessary. The members study the materials
prior to the walkthrough. During the meeting the presenter leads the
other members through the model. The model is typically “execut-
ed” by the walkthrough team using a set of prepared test cases. The
content and functionality of the model are presented and the review-
ers provide constructive criticism. The source code is examined for
correctness, style, and efficiency. Comments are made only to the
point of identifying errors and questionable practices. It is the re-
sponsibility of the modeler to digest these comments with an open
mind and later seek to resolve the issues. The events of the meeting
are documented and maintained as part of the on-going study docu-
mentation. As necessary, the modeler cycles back through the de-
velopment process and at some point in the future, reschedules an-
other walkthrough.

3.1.3 Code Inspection

Code inspections were introduced by Fagan (1976) as an alter-
native to walkthroughs. The code inspection is intended to be a
more formalized approach to reducing errors in model develop-
ment.

Buck and Dobbins (1983) identify three levels of the develop-
ment process during which inspections are to be performed: the
high level design, the low level design just prior to coding the mod-
el, and after coding when a clean compilation has taken place (prior
to testing). Fagan (1976) originally specified five distinct inspection
phases: overview, preparation, inspection, rework, and follow-up.
The inspection process has been refined and streamlined over the
years, but basically the phases are the same. Only the planning
phase, prior to the overview, has been added to the process (Dob-
bins 1987; Ackerman et al. 1983).

The inspection team is comprised of members who play partic-
ular roles. The moderator manages the team and provides leader-
ship. The moderator is responsible for all meeting logistics and co-
ordinates activities during the meeting. The designer is the
developer (modeler) responsible for producing the program design,
while the coder/implementor is the programmer (modeler) responsi-
ble for translating the design to code. The tester is responsible for
the testing activities of the model. Although four members have
been found to be a workable team size, the team may have more
members.

During the overview the designer gives a brief description of
the (sub)model to be inspected. The model's purpose, logic, inter-
faces, etc. are introduced and necessary documentation distributed
to team members to study. With the notification of the inspection
meeting, the preparation phase begins. Time is given for the mem-
bers to study the materials and prepare for their roles in the upcom-
ing meeting.

The inspection meeting follows an established agenda, con-
ducted by the moderator. Following introductions, a designated
reader narrates the design as expressed by the designer. The pur-
pose of the reading is to identify and discuss previously undetected
defects. Errors detected are documented and classified according to

their nature and severity. '

The designer or coder/implementor resolves problems during
the rework phase and, if necessary, re-inspection takes place. The
follow-up phase is completed by the moderator to assure that all de-
fects have been corrected and the results documented. Usually there
is a specifically defined exit criteria which must be met.

A key factor in the success of the inspection process is the edu-
cation of the team members in the guidelines and expectations of
the process. The code inspection is intended to be a more rigorous
alternative to the walkthrough, accomplishing this end primarily be-
cause the process is well-defined and to a certain extent, standard-
ized. With the increased formality, inspections tend to vary less and
produce more repeatable results. Like the walkthrough, the code in-
spection is effective for early error correction, provides an excellent
source of documentation, and removes responsibility for the model
from the individual and spreads it among the members of the team.

3.1.4 Review

The review is a technique similar in nature to the code inspec-
tion, but which is intended to give management and study sponsors
evidence that the development process is being done according to
stated system objectives (Hollocker 1987). Its purpose is to evaluate
the model in light of development standards, guidelines, and speci-
fications. As such, the review is a higher level technique more con-
cerned with the design stages of the life cycle. Reviews are fre-
quently termed as “design” reviews.

As opposed to walkthroughs and code inspections, which have
more of a correctness determination flavor, reviews seek to ascer-
tain tolerable levels of quality are being attained. The review team
is more concerned with design deficiencies and deviations from
stated development policy than it is with the intricate line-by-line
details of the implementation. This does not imply that the review
team is free from the responsibility of discovering technical flaws in
the model, only that the review process is geared towards the early
stages of the development cycle. The review is also intended to
identify subjective aspects such as performance improvement and
economic aspects. It would seek to indicate that the preliminary and
detailed programmed model designs are sufficiently valid, well-
designed, and effective representations of the real-world system.
The formal review gives the modeler evidence that the programmed
model conforms to proven quality standards.

The review is conducted in a similar fashion as the code in-
spection and walkthrough. Each review team member examines the
model prior to the review. The team then meets to evaluate the
model relative to specifications and standards, recording defects
and deficiencies. Ould and Unwin (1986) provide a design review
checklist depicting some of the critical points to look for in a de-
sign. The result of the review is a document portraying the events of
the meeting, deficiencies identified, issues resolved by manage-
ment, and review team recommendations (Hollocker 1987). Appro-
priate action may then be taken to correct any deficiencies.

3.1.5 Audit

The audit seeks to determine through investigation the adequa-
cy of the overall development process with respect to established
practices, standards, and guidelines. The audit also seeks to estab-
lish traceability within the development process. Given an error in a
part of the model, the error should be traceable to its source in the
specification via its audit trail. The audit verifies that model evolu-
tion is proceeding logically and that it is evolving in accordance
with stated requirements. In doing so it gives visibility to the spon-
sor of what is being built, it provides a basis for communication
among study participants, and it helps the modeler assess the scope
of the study. This last item is particularly useful in helping the mod-
eler avoid the Type III error, i.e., the error of solving the wrong
problem.

Hollocker (1987) contrasts the audit and the review. The audit
is accomplished through a mixture of meetings, observations, and
examinations. It is performed by a single auditor. Auditing can con-
sist of other audits, reviews, and even some testing, and it is carried
out on a periodic basis.

562

3.1.6 Advantages and Disadvantages of Informal Analysis

Informal analysis techniques are valuable from the early stages
of Model Formulation throughout the entire programming process.
In particular is the ability of informal analysis techniques to evalu-
ate the spbjectlvc and multifaceted aspects of a simulation study.

' Besndes the advantage of allowing human reasoning in the veri-
fication process, informal analysis techniques are not difficult to
perform and require virtually no computer resources. On the other
hand, the techniques used are very time consuming and require very
high human resource allocation. Because of their reliance on human
evaluation they are prone to human error. Success depends on the
level of knowledge and expertise of the individual. The human time
and effort required coupled with the likelihood of error result in
limited effectiveness of informal analysis. Though their effective-
ness improves as their guidelines for use become more structured
and formal, informal analysis techniques cannot be relied upon in
themselves to verify the programmed model.

3.2 Static Analysis

Static analysis is concerned with verification on the basis of
characteristics of the static model source code. Static analysis does
not require execution of the model. Its techniques are very popular
and widely used, with many automated tools available to assist the
analysis. The language compiler is itself a static analysis tool. Static
analysis can be performed throughout the entire simulation model
development process. The following sections explore the verifica-
tion capabilities of static analysis techniques.

3.2.1 Syntax Analysis

Any model that is to undergo translation from a higher form to
a machine-readable form must first pass a syntax check. This check
assures that the mechanics of the language are being applied cor-
rectly. This fundamental analysis of the source code is by far the
most widely utilized verification technique. It is unfortunate that
most often this verification tool is utilized in the minimal way-
getting the source code to successfully compile.

During the course of a compilation, as the syntax is checked
and the source statements “tokenized,” a symbol table is built which
describes in detail the elements, or symbols, which are being ma-
nipulated in the model. This includes descriptions of all function
declarations, type and variable declarations, scoping relationships,
interfaces, dependencies, and so on. The symbol table is the “glue”
which holds the compilation together, growing dynamically as the
source code is scanned. Obviously there is a wealth of information
about the static model available in the symbol table. Just listing the
table itself is a tremendous source of documentation.

In addition to the symbol table, cross-reference tables are easily
generated which provide such information as called versus calling
submodels, where each data element is declared, referenced and al-
tered, duplicate data declarations (how often and where occurring),
and unreferenced source code. Submodel interface tables reflect the
actual interfaces of the caller and the called, particularly useful
when using a compiler that does not perform strict type checking
nor verify external calls. Also readily created are maps which relate
the generated runtime code to the original source code. All of this
information is useful for documentation purposes. It is even more
useful as the underpinnings for debugging.

3.2.2 Semantic Analysis

Semantic analysis attempts to determine the modeler's intent in
writing the code. The goal is to obtain an accurate translation of
modeler's intentions. In truth, the only meaning which can be de-
rived from the source code is that which is self-evident in the code.
It is dangerous to let the compiler make any other assumptions
about modeler's intentions. It therefore becomes beneficial, even to
the point of being essential, to tell the modeler what it is that he has
programmed in the source code (i.e., what his code means). The
same principle can be applied to specifications. It is then up to the
modeler to verify that the true intent is being reflected.

32.3 Structural Analysis

Structural analysis examines the model's structure and deter-
mines if it adheres to structured principles. This is accomplished by
constructing a graph of the model control structure. This graph de-
fines model control flow and as such is called a control flow graph.
The control flow graph is analyzed for anomalies, such as multiple
entry and exit points, excessive levels of nesting within a structure,
and questionable practices such as the use of unconditional branch-
es (i.e., GOTOs). The anomalies can be flagged so that they may be
scrutinized further. Many of today's high-level languages are, by na-
ture, structured. These structured languages not only encourage the
use of structured programming techniques, they increase the ability
to perform structural analysis. Structural analysis may also reveal
commonalities of particular model structures. Steps may be taken to
reduce the structure if possible. The control flow graph is an effec-
tive verification document. It documents the model's control flow in
a clear and concise way. A well-structured model naturally has a
“clean-looking” control flow graph. A “clean” graph not only indi-
cates a sound structure, it is easily understood and readily accepted
even by the layman. It is a graphic illustration of the saying, “a pic-
ture is worth a thousand words.”

3.2.4 Data Flow Analysis

Data flow analysis is concerned with the behavior of the pro-
grammed model with respect to its use of model variables. This be-
havior is classified according to the definition, referencing, and un-
referencing of variables (Adrion et al. 1982), i.e., when variable
space is allocated, accessed, and deallocated. A data flow graph can
be constructed to aid in the data flow analysis. The nodes of the
graph represent statements and corresponding variables. The edges
represent control flow.

Data flow analysis can be used to detect undefined or unrefer-
enced variables (much as in static analysis) and, when aided by
model instrumentation, can track minimum and maximum variable
values, data dependencies, and data transformations during model
execution. It is also useful in detecting inconsistencies in data struc-
ture declaration and improper linkages among submodels.

3.2.5 Consistency Checking

Consistency checking is essential to the integrity of the model.
It is intended, as Saib et al. (1977) put it, to prevent “apples being
assigned to oranges.” Consistency checking is concerned with veri-
fying that the model description does not contain contradictions. All
specifications must be clear and unambiguous so that each person
viewing the model sees the same thing. All model components must
fit together properly. Consistency checking is also concerned with
verifying that the data elements are being manipulated properly.
This includes data assignment to variables, data use within compu-
tations, data passing among submodels, and even data representa-
tion and use during model input and output (e.g., input prompts and
output descriptions accurately reflect the meaning and use of the
data). Much of consistency checking is accomplished by using the
documentation produced by syntax and semantic analysis (listings,
cross-references, etc.) as material to guide code inspections and
walkthroughs. As the specification becomes more formally stated,
more of the work can be automated. Data elements and interfaces
can be checked as they are actually used to ensure their consistent
usage.) o

All studies should maintain as part of their specification and
documentation a data dictionary. The data dictionary defines the
purpose and composition of each data item. By having the data dic-
tionary on-line in a data base during development, consistency
checking can be greatly enhanced. Language sensitive editors can
query the dictionary each time a data element is declared or used,
verifying that conflicts do not occur. Additionally, the data diction-
ary serves as a cross-reference source during compilation and simi-
lar analysis, and further aids subsequent phases of PMV.

3.2.6 Advantages and Disadvantages of Static Analysis

Most static analysis techniques have automated tools which
support their use. As a result, the human resource cost 1s apprecia-

563

bly low. Since model execution is not involved, computer resource
cost is moderate compared to instrumentation-based verification ap-
proaches. These techniques are limited, however, in what they can
actually verify. For instance, static analysis can verify that the syn-
tax used conforms to the defined syntax of the language. It can
make conclusions about the semantics of the model and inferences
on aspects of the model's execution. It cannot insure that the inten-
tions of the modeler are being met nor can it algorithmically exam-
ine a model to determine its execution behavior (Fairley 1978). Fur-
ther, the basis for performing the verification must be shown to be
correct (e.g., the compiler must be correct).

Overall, static analysis has proven to be an effective verifica-
tion method. Its strength lies in the number of well-known tech-
niques which are supported by a variety of commercially available
tools, most of which are highly automated. Further, static analysis
complements other methods of verification, such as symbolic exe-
cution and execution profiling, to name a couple.

Especially important to the simulation study is the extensive
documentation generated through static analysis. Graphs which de-
pict the model's logic and data flow are easily understood even
through the layman's eyes. The construction of the model can be
shown to be structurally sound and free of any anomalies which
might arouse questions about the model's integrity.

3.3 Dynamic Analysis

Verification by dynamic analysis is accomplished by evaluat-
ing the model during its execution. As the model is exercised, its
behavior is observed and information about its execution gathered.
Eleven dynamic analysis techniques are described below.

3.3.1 Top-down Testing

To best understand top-down testing, one must discuss top-
down model development. In top-down development, the modeler
defines a global picture of the model which he then breaks into sub-
models. For each submodel, the process is repeated. When the mod-
el has been designed, implementation begins at the global (top) lev-
el of the model. When that level has been developed, the modeler
similarly develops each submodel, until the model development is
complete.

Top-down testing follows the same pattern as top-down devel-
opment (although the two need not parallel each other). Top-down
testing would begin with testing the global model and then proceed
to testing the submodels. When testing a given level, calls to sub-
levels are simulated using submodel “stubs.” A stub is a dummy
model which has no other function than to let its caller complete the
call. Fairley (1976) lists the following advantages of top-down test-
ing: (1) model integration testing is minimized, (2) early existence
of a working model results, (3) higher level interfaces are tested
first, (4) a natural environment for testing lower levels is provided,
and (5) errors are localized to new submodels and interfaces.

Some of the disadvantages of top-down testing are: (1) thor-
ough submodel testing is discouraged (the entire model must be ex-
ecuted to perform testing), (2) testing can be expensive (since the
whole model must be executed for each test), (3) adequate input
data is difficult to obtain (because of the complexity of the data
paths and control predicates), and (4) integration testing is ham-
pered (again, because of the size and complexity induced by testing
the whole model). (Fairley 1976; Panzl 1976)

3.3.2 Bottom-up Testing

Bottom-up testing follows bottom-up implementation. In bot-
tom-up implementation, the system is coded from the submodel lev-
el up. As each submodel is coinpleted, it is thoroughly tested. When
the submodels comprising a model have been coded and tested, the
submodels are integrated and integration testing is performed. This
process is repeated until the complete model has been integrated
and tested. The integration of completed submodels need not wait
for all “same level” submodels to be completed. Submodel integra-
tion and testing can be, and often is, performed incrementally. With
the bottom-up strategy, the model is constructed from supposedly
correct components.

This strategy encourages extensive testing at the submodel lev-

el. Since most well-structured models consist of many submodels,
there is much to be gained by bottom-up testing. The smaller the
submodel and more limited its function, the easier and more com-
plete its testing will be. Bottom-up testing is particularly attractive
for testing distributed systems. o

One of the major disadvantages of bottom-up testing is the
need for individual submodel drivers to test the submodels. These
drivers, more commonly called test harnesses, simulate the calling
of the model and pass test data necessary to exercise the submodel.
The task of developing harnesses for every submodel can be quite
large. In addition, these harnesses may themselves contain errors.

Another disadvantage, as Panzl (1976) points out, stems from
the fact that once testing rises above the lower level submodels, bot-
tom-up testing faces the same cost and complexity issues as does
top-down testing past the higher levels. In both strategies, exhaus-
tive testing of the interior submodels to opposite-end submodels
(e.g., in top-down testing, the lower level submodels) is costly and
difficult-if not impossible.

Mixed testing is a compromise to the top-down and bottom-up
strategies. Under this approach, bottom-up testing is performed on
submodels that cannot be tested top-down with mere stubs.

3.3.3 Black-Box Testing

Black-box testing is concerned with whar the model or sub-
model does, i.e., what its function is. Black-box testing, also called
functional testing, views the model as a black box. The concern is
not what is in the box; rather, what is produced by the box. Testing
of the model is accomplished by feeding inputs to the model and
verifying the corresponding outputs. The model specification is
used to derive test data (Myers 1979; Howden 1980).

It is virtually impossible to test all inputs to the model. Rather
than verifying that the model produces the correct output for each
input, the modeler is more interested in finding inputs that produce
incorrect outputs. Determining if the test set is complete is the main
drawback to black-box testing. Black-box testing is typically used
at the global model level, when all of the submodels have been thor-
oughly tested with another approach.

3.3.4 White-Box Testing

As opposed to black-box testing, which tests the function of a
model, white-box testing tests the model based on its internal struc-
ture (how it is built). White-box testing uses data flow and control
flow graphs to verify the logic and data representations of the mod-
el. The focus of testing here is breadth of coverage of model paths.
As many execution paths as possible should be tested.

White-box testing is the most common mode of testing. It is the
only reliable means of detecting redundant code, faulty model struc-
ture, and special case errors. An effective test plan determines
which approach best fits the varied needs of the model and applies
them accordingly. In most cases, all approaches will be used in
some way, blended together in a well-orchestrated, concerted man-
ner.

3.3.5 Stress Testing

A characteristic of simulation software is a dependency on
time. Quite often real-time requirements and tight synchronization
are involved. Testing these time-dependent situations is a difficult
task. Many testing techniques are not adequate for these particular
needs.

An approach to time-sensitive testing needs is stress testing.
Stress testing is similar in nature to boundary analysis (see Section
3.5.3), with the critical parameter being time (Dunn 1987). Stress
testing tests the model on the borders of its time critical compo-
nents. It pushes the model to and beyond its limits. As an example,
consider a simulation model of a traffic intersection which specifies
a maximum arrival rate of 50 cars per minute in a lane. A typical
stress test would be a lengthy test forcing cars to arrive at or near
the maximum arrival rate. In effect, the intersection becomes flood-
ed with cars and the model's response in this situation can be moni-
tored. Another test might be to exceed the maximum arrival rate for
an extended period of time. As Myers (1979) points out, such tests
are valuable because (1) such “never-will-occur” situations may, in

564

reality, occur, and (2) system response under such conditions is of-
ten indicative of errors that might occur under “normal”, less stress-
ful conditions.

Stress testing, while in no way considered an exhaustive testing
technique, is valuable for giving evidence (along the lines of
strength in numbers) that a model will behave as desired if, after nu-
merous stressful tests have been performed, no errors arise. Lack of
errors do not imply correctness; however, stress testing provides an
alternative to not having any functional evidence at all. It is impor-
tant that any test plan involving stress testing be strongly supported
with a solid structural testing program.

3.3.6 Debugging

Debugging is often confused with testing, much as testing is
confused with verification. Testing reveals the presence of errors,
debugging finds them and removes them. Debugging is an expen-
sive technique. As Dunn (1987) points out, 10 minutes of testing
can result in 10 hours of debugging. Every effort should be made to
remove defects before coding ever begins. Debugging, however, is
an inevitable step of the simulation model development life cycle.

Given that errors have been detected by testing, debugging in-
volves locating the source of error, determining the needs for cor-
recting the error, making the correction, and then retesting the mod-
el to ensure successful modification. Probably the most difficult one
of these tasks is isolating the true source of the error. Frequently,
what may appear to be the source of the error is but an extension of
a deeper problem. If the true source is not found, not only does the
model remain incorrect, proposed “solutions” may in fact introduce
other problems. The following sections discuss techniques which
make debugging more effective.

3.3.7 Execution Tracing

Often times one of the best means of locating model defects is
by “watching” the line-by-line execution activity of the model.
This technique is known as execution tracing. Tracing is a very
powerful means of verifying a model. The modeler can view the
model's execution, determine what factors cause the traversal of
particular paths, follow model data flow, determine in what order
data elements combine and how the data is treated, and so on. Trac-
ing is like creating a window into the execution environment. The
modeler can see what is happening at specific locations in the mod-
el, recreate the events of the simulation, and easily track the source
of errors.

Execution tracing is most often associated with interpretive
languages. Interpretive languages offer source level tracing by sim-
ply displaying the source statement being interpreted at the given
moment. Quite often development will be done using an interpre-
tive version of the source language, then converting to a compiled
version when development is complete. The tracing features and
closeness to the source code of interpretive languages make this an
attractive alternative. In compiled languages, tracing can be facili-
tated via model instrumentation.

An execution trace can become very large very quickly. For
this reason virtually all languages with any trace capability provide
a mechanism for turning tracing on and off. Some languages, either
directly or through instrumentation, pre-processing, etc., have facili-
ties for generating traces only when certain exceptions occur, when
certain model states are realized, or at specified points in the model
code. Trace data can be displayed during execution or routed else-
where for subsequent analysis and use. Fairley (1975,1976) sug-
gests maintaining the trace data in a data base in order to enhance
further verification activity.

Although execution tracing can be used to verify the model,
other techniques are often easier to use, with the same or greater ef-
fectiveness. Typically, tracing is used to aid debugging by isolating
known errors in the code.

3.3.8 Execution Monitoring

As a model executes, it is useful to monitor execution activity.
Like tracing, execution monitoring provides a description of what
the model is doing during execution. However, instead of giving a
line-by-line account, monitoring gives information about activities

and events which took place during execution.

Monitoring is accomplished by first instrumenting the code
with statements or submodels to perform the monitoring activity. In
order to minimize the execution slowdown, the monitoring may be
done in a statistical manner. Instead of capturing every detail of
model execution, the monitor submodels may take a sample at fixed
intervals. During the interrupt, a quick recording of model state is
made. The greater the sample size, the more detailed and reliable
the result will be — at the expense of model execution speed.

3.3.9 Execution Profiling

Execution profiling is a technique similar to execution monitor-
ing. Profiling, however, is not as concerned with low level details as
monitoring might be. Rather, profiling constructs a model profile
which views matters on a much higher plane. While a monitor
might check the number of times a communication signal was re-
ceived, a profile would determine how many times the source code
procedure which handles incoming signals was executed. The pro-
file gives its results directly in terms of the source definition. The
monitor, on the other hand, is more likely to provide memory ad-
dresses and port designations which will then have to be mapped to
their source level equivalent.

Profiling requires instrumentation of the model to map the run-
tme code to the corresponding source statement. When execution
takes place, the instrumented model counts the number of times
designated lines of the source code were executed or how often var-
iables were referenced. A good profiling tool will allow the modeler
to specify what level of profiling should be done. Useful informa-
tion might be the number of times a submodel was entered, (i.e.,
how many times it was called), the number of times each line in a
submodel was encountered, or the number of times a set of varia-
bles was referenced (e.g., global variables). This information, cou-
pled with the knowledge of the test data that generated it, can verify
proper control flow and data access, as well as show where the
model is spending its time and what improvements and/or correc-
tions can/must be made.

Perhaps surprising to some, execution profiling tends to be
more costly than execution monitoring. This is because a count
must be kept of each line or element designated. Each time a line is
encountered, execution must be interrupted and the count incre-
mented. Since the profile is intended to be an actual count, it cannot
be aided with statistical methods to increase its performance. Fur-
ther slowdown occurs when mapping activity to the source level.
Like monitoring, effective use of profiling requires care and consid-
eration.

3.3.10 Symbolic Debugging

Symbolic debugging is a technique which uses a debugging
tool that allows the modeler to manipulate model execution while
viewing the model at the source code level. By setting “‘break-
points”, the modeler can control the conditions u_nder whlc_h he in-
teracts with the model. He may want to interact with the entire mod-
el one step at a time, or, as is more commonly the case, at
predecided locations or under specified conditions. When using a
debugger, the modeler is not merely a spectator. He may alter”mod-
el data values or cause a portion of the model to be “replayed”, i.e.,
executed again under the same conditions (if possible). Typically,
the modeler will utilize the information from execution history gen-
eration techniques, such as tracing, monitoring, and profiling, to
isolate a problem or its proximity. He will then proceed with the de-
bugger to understand how and why the error occurred.

The earliest debuggers operated at the machine level, or at best,
the assembly level. Using the debugger meant hours of tedious pe-
rusal of core dumps and conversion of hexadecimal codes. Current
state-of-the-art debuggers allow viewing the runtime code as it ap-
pears in the source listing, setting “watch” variables to monitor data
flow, viewing complex data structures, and even communicating
with asynchronous I/O channels. The use of symbolic debugging
can greatly reduce the debugging effort while increasing its effec-
tiveness. Symbolic debugging allows the modeler to locate errors
and check numerous circumstances which lead up to the errors.

565

3.3.11 Regression Testing

By definition, life cycle implies change. As model develop-
ment progresses the model is going to evolve: evolve to incorporate
design changes, evolve to correct mistakes. Verification is also a
continuous process, flowing with the tide of change. It is impera-
tive, however, that verification not get lost in this sea of change.
PMYV must be able to keep abreast of the ebbs and flows of develop-
ment.

When mistakes are corrected, the corrections often result in ad-
verse side-effects to the existing model. If care is not taken, the cor-
rection of an error in one place leads to an error in another. The lat-
er in the life cycle error correction takes place, the greater the
likelihood of harmful side-effects occurring. Regression testing
seeks to assure that model corrections do not initiate other prob-
lems. Regression testing is usually accomplished by retesting the
corrected model with a subset of the previous test sets used. This
makes retaining and managing old test data essential. Successful re-
gression testing is as much a matter of planning and configuration
control (simulation project library management, version control,
traceability, etc.) as it is anything else. Thus a plan for performing
regression testing must be incorporated in the overall model design.
Waiting until the first (sub)models begin undergoing correction and
revision is too late to think about regression testing.

3.3.12 Advantages and Disadvantages of Dynamic Analysis

Dynamic analysis is not without its limitations. The potential
cost in computer resources can be very high. If not managed proper-
ly, dynamic analysis can needlessly consume the time of the model-
er. Secondly, dynamic analysis cannot show model correctness. It
can only reflect how the model behaves for a given set of test data.
The possible test sets for a model can be infinite. Thus complete
testing is rendered impossible for virtually all practical models of
any speakable size. Adequate test coverage is a problem as well.
The required scope of coverage broadens in exponential fashion as
the model increases in size. Dynamic analysis does not possess the
capability to manage this situation.

On the other hand, dynamic analysis techniques thoroughly
document a given test execution. It can provide conclusive proof
that a model functioned as intended. Dynamically executing the
model is the only way to test (or ““see”) how the model behaves on a
given hardware, or when operating on distributed hardware. The ex-
ecution history not only enhances error detection and correction, it
serves as a reference of model structure which can be used to en-
hance and maintain the model. Combining dynamic analysis with
other verification techniques helps reduce some of the problems as-
sociated with dynamic analysis.

3.4 Symbolic Analysis

Symbolic analysis is an approach to verification that provides
symbolic inputs to a model and produces expressions for the output
which are derived from the transformation of the symbolic data
along model execution paths. The basis for the verification is the
transformation of inputs to outputs during execution. Symbolic
analysis, like dynamic analysis, seeks to determine the behavior of
the model during execution. It is a formal way of determining cause
and effect relationships within the model. Some symbolic analysis
techniques verify classes of input test data while others reduce the
verification needs through the generation of effective test data.

The simulation model is constructed in accordance with certain
assumptions about the system being modeled. After the model is
built, it undergoes experimentation. If the assumptions of the model
are violated during experimentation, the model may become in-
valid, even though the programmed model may function in a seem-
ingly normal manner. As will be discussed in more detail later,
symbolic analysis, when used in conjunction with constraint analy-
sis, is a powerful tool for verifying conformance with model as-
sumptions.

34.1 Symbolic Execution

Symbolic execution is the primary means of performing sym-
bolic analysis. It is performed by executing the model using sym-

bolic values rather than actual data values for input. During execu-
tion, the symbolic values are transformed as defined by the model
and the resulting expressions are output.

When unresolved conditional branches are encountered, a deci-
sion must be made which path to traverse. Once a path is selected,
execution continues down the new path. At some point in time, the
execution evaluation will return to the branch point and the previ-
ously unselected branch will be traversed. All paths eventually are
taken.

The result of the execution can be represented graphically as a
symbolic execution tree (King 1976, Adrion et al. 1982). The
branches of the tree correspond to the paths of the model. Each
node of the tree represents a decision point in the model and is la-
beled with the symbolic values of data at that juncture. The leaves
of the tree are complete paths through the model and depict the
symbolic output produced.

A big advantage of symbolic execution is in showing path cor-
rectness for all computations regardless of test data (Westley 1979).
One symbolic representation replaces a potentially infinite number
of actual test cases. Symbolic execution is also a great source of
documentation. The resulting execution tree is in essence a symbol-
ic trace of model function along its execution paths.

There are some problems with symbolic execution. Foremost is
the issue of size. The execution tree explodes in size as the model
grows. If the model is structured, then this problem can be relieved
by analyzing subtrees of the model (Westley 1979). Loops cause
difficulties with symbolic execution. Since all paths must be tra-
versed, loops make thorough execution impossible. This problem
can usually be resolved by inductive reasoning, with the help of
constraint analysis (Westley 1979; Adrion et al. 1982). Symbolic
execution is also limited in its use with complex data structures be-
cause of difficulties in symbolically representing particular data ele-
ments within the structure. Since symbolic execution can be so dif-
ficult and cumbersome, its use is advocated only in systems with
stringent reliability requirements (Ould and Unwin 1986) — much
like a simulation model.

3.4.2 Path Analysis

The path analysis testing strategy (Howden 1976) attempts to
verify model correctness on the basis of complete testing of all
model paths. To perform path analysis, it is first necessary to deter-
mine the model's control structure (e.g., through structural analy-
sis). This is followed by generating test data which will cause select
model paths to be executed. Symbolic execution can be used to
identify and group together classes of input data based on the sym-
bolic representation of the model. The test data is chosen in such a
way as to provide the most comprehensive path coverage possible.
Among the coverage criteria sought are: (1) statement coverage, (2)
node coverage (encounter all nodes), (3) branch coverage (cover all
branches from a node), (4) multiple decision coverage (achieve all
decision combinations at each branch point), and (5) path coverage
(traverse all paths) (Prather and Myers 1987). By selecting appro-
priate test data, the model can be forced to proceed through each
path in its execution structure, thereby providing comprehensive
testing.

In practice, only a subset of possible model paths are selected
for testing. Recent work has sought to increase the amount of cover-
age per test case or to improve the effectiveness of the testing by se-
lecting the most critical areas to test. The path prefix strategy
(Prather and Myers 1987) is an “adaptive” strategy that uses previ-
ous paths tested as a guide in the selection of subsequent test paths.
Prather and Myers (1987) prove that the path prefix strategy
achieves total branch coverage.

The identification of essential paths (Chusho 1987) is a strate-
gy which reduces the path coverage required by nearly 40 percent.
The basis for the reduction is the elimination of non-essential paths.
Paths which are overlapped by other paths are non-essential. The
model control flow graph is transformed into a directed graph
whose arcs (called primitive arcs) correspond to the essential paths
of the model. Non-essential arcs are called inheritor arcs because
they inherit information from the primitive arcs. The graph pro-
duced during the transformation is called an inheritor-reduced
graph. Chusho presents algorithms for efficiently identifying non-
essential paths and reducing the control graph into an inheritor-

566

reduced graph, and for applying the concept of essential paths to the
selection of effective test data.

34.3 Cause-Effect Graphing

Cause-effect graphing (Myers 1979) is a technique that aids in
the testing of combinational input data by providing systematic se-
lection of input condition subsets. Cause-effect graphing is per-
formed by first identifying causes and effects stated in the model
specification. Causes are input conditions, effects are transforma-
tions of output conditions. The causes and effects are listed, and the
semantics are expressed in a cause-effect graph. The graph is anno-
tated to describe special conditions or impossible situations. Once
the cause-effect graph has been constructed, a limited-entry deci-
sion table is constructed by tracing back through the graph to deter-
mine combinations of causes which result in each effect. The deci-
sion table is then converted into test cases.

A typical cause-effect graph and corresponding decision table
will have numerous causes and effects. For this reason, the submod-
el must be dissected into segments small enough to be workable.
This working size is dependent on the nature of the model. The out-
come of cause-effect graphing is a relatively small set of high-yield
test cases, as well as a unique graphical description of the model.
Myers (1979) provides a very detailed example of cause-effect
graphing.

3.4.4 Partition Analysis

Partition analysis (Richardson and Clarke 1985) is a means of
verifying the consistency of a model against its specification while
at the same time generating comprehensive test data. It is, in a
sense, a method of submodel testing. Partition analysis is accom-
plished by (1) partitioning the model domain into submodels, (2)
comparing the elements and prescribed functionality of each sub-
model specification with the elements and actual functionality of
each submodel implementation, and (3) deriving test data which
will extensively test the functional behavior of the submodel.

Partitioning is done by decomposing both specification and im-
plementation into functional representatives. The decomposition is
derived through the use of symbolic evaluation techniques, which
maintain algebraic expressions of model elements and show model
execution paths. Once partitioned, the functional representations are
compared. These functional representations are the model computa-
tions. Two computations are equivalent if they are defined for the
same subset of the input domain which causes a set of model paths
to be executed, and if the result of the computations is the same for
each element within the subset of the input domain (Howden 1976).
Standard proof techniques are used to show equivalence over a do-
main. When equivalence cannot be shown, partition testing is per-
formed to locate errors — or, as Richardson and Clarke (1985) state,
to increase confidence in the equality of the computations due to the
lack of error manifestation. By involving both the specification and
the implementation in the analysis, partition analysis is capable of
providing more comprehensive test data coverage than other test
data generation techniques.

3.4.5 Advantages and Disadvantages of Symbolic Analysis

In itself, symbolic analysis is an expensive method of verifica-
tion. The generalizations of input data can be difficult to obtain and
deriving the symbolic expressions can be an extremely complex
task. Even if the symbolic expressions can be derived, their com-
plexity may render them meaningless. Human resource cost can
casily become unreasonably high, both in deriving symbolic results
and in interpreting the results.

The effectiveness of symbolic analysis lies not in its standalone
use, but as an auxiliary for other verification methods. Cause-effect
mapping and partition analysis, for example, can generate effective
test data for use with dynamic analysis. Symbolic execution can
verify classes of test data, making dynamic analysis more effective
in other areas of verification — areas where other methods may be
less effective or less practical. The complementary relation of sym-
bolic analysis and constraint analysis will be discussed in the fol-
lowing section.

3.5 Constraint Analysis

Constraint analysis verifies on the basis of comparisons be-
tween model assumptions and actual conditions arising during mod-
el execution. It additionally provides a level of validation. Con-
straint analysis has formal foundations, though not so formal as to
be impractical to apply. Because of its formality, it has very power-
ful verification capability. Short of formal proof of correctness, con-
straint analysis provides the highest degree of PMV. Assertion
checking, inductive assertions, and boundary analysis are the three
techniques of Constraint Analysis which are discussed next.

35.1 Assertion Checking

Assertion checking verifies that the programmed model is per-
forming according to its specification. It does this by comparing ac-
tual model state information with intended model behavior. Asser-
tion checking accomplishes this by using assertions placed in the
model to monitor model activity.

An assertion is a statement that should hold true as the pro-
grammed model executes. The purpose of an assertion is to check
what is happening against what the modeler assumes is happening.
Consider, for example, the following pseudo-code:

Base := Hrs * PayRate;
Gross := Base * (1 + BonusRate);

In just these two simple statements, many assumptions are be-
ing made. It is assumed that Hrs is non-negative; the same is as-
sumed for PayRate and BonusRate. If the assumption is not true,
Gross is meaningless, or even worse for some innocent employee,
disastrous! Asserted code for this same segment might look like:

Assert(Base > 0 and PayRate > 0 and BonusRate > 0);
Base := Hrs * PayRate;
Gross := Base * (1 + BonusRate);

Clearly, the assertion serves two important needs. First, the as-
sertion statement verifies that the model is functioning within its
given domain. Secondly, the presence of the assertion statement
documents the intentions of the modeler.

Assertion statemnents which have been placed into the model's
code as part of the runtime model are called dynamic or executable
assertions. Placing assertions into the code is a form of instrumenta-
tion. This type of instrumentation is not likely to be automated.
Placement of assertions requires deliberation on the part of the
modeler. The more formal the model specification, the easier this
task will be. Symbolic analysis is helpful in determining effective
placement of assertions. Symbolic analysis results in a graphical
representation of model control flow, making it easier to locate ef-
fective places to put the assertions. Balci (1987) demonstrates the
use of assertion checking in GPSS/H code.

Assertion checking is expensive to implement. Expense comes
in both human and computer resource cost. It is, however, a power-
ful verification technique. It provides the modeler a means to verify
conformance to model specifications. It also provides documenta-
tion of modeler's intentions within the source code. When combined
with symbolic analysis techniques such as symbolic execution, as-
sertion checking becomes a very comprehensive means of verifica-
tion. Assertions at the entry and exit points of a submodel verify the
transformation of input to output states. Symbolic analysis can be
used to verify what takes place between the assertions.

35.2 Inductive Assertion

The use of inductive assertions provides the most “formal”
constraint analysis verification and is, in fact, very close to formal
proof of model correctness. This method requires the modeler to
write input-to-output relations for all model variables. These rela-
tions are then written as assertion statements and placed into the
model along model paths. The assertions are placed along [h?. paths
in such a way as to divide the model into a finite number of “asser-
tion-bound” paths, i.e., an assertion statement lies at the beginning
and end of each model path. The number of paths is made finite by
placing an assertion within each loop in the model. These paths cor-

567

respond to the compile-time traversal of the model rather than the
run-time traversal. Verification is achieved by proving that for each
path, if the assertion at the beginning of the path is true, and all
statements along the path are executed, then the assertion at the end
of the path is true. If all paths plus model termination can be
proved, by induction, the model is proved to be correct.

3.5.3 Boundary Analysis

Boundary analysis is a technique that tests the activity of the
model using test cases on the boundaries of input equivalence parti-
tions. Test cases are generated just within, on top of, and just out-
side of the partition boundaries (Myers 1979). In addition to gener-
ating test data on the basis of input equivalence classes, it is also
useful to generate test data which will cause the model to produce
values on the boundaries of output equivalence classes. The under-
lying rationale for this technique as a whole is that the most error-
prone test cases lie along the boundaries (Ould and Unwin 1986).

3.5.4 Advanrages and Disadvantages of Constraint Analysis

Constraint analysis techniques find their origins in the predi-
cate calculus. The assertions themselves are model predicates. The
activity between entry and exit assertions is the transformation of
the predicates. However, the ability to state and place assertions ef-
fectively relies in large part on formal model specification. Creating
a formal specification is a difficult task. Using assertions is further
complicated by the lack of assertion capabilities in programming
languages. Most languages provide no facility for performing asser-
tion checking. Yet another drawback is high human resource cost.
Likewise, computer resource cost is very high, primarily because
the instrumented model suffers performance degradation.

On the other hand, constraint analysis is a very effective meth-
od of verification. Assertions placed in the source code provide a
good source of documentation. Further, constraint analysis can ac-
tually verify that the model (or some subset thereof) is functioning
correctly, i.e., in accordance with its specification. This is essential
in simulation studies.

3.6 Formal Analysis

Formal analysis is, as the name implies, based on formal math-
ematical proof of correctness. If attainable, formal proof of correct-
ness is the most effective means of verifying software. Unfortunate-
ly, “if attainable” is the overriding point with regard to formal
analysis. Current state-of-the-art model proving techniques are sim-
ply not capable of being applied to even the simplest general model-
ing problems. However, formal techniques serve as the foundation
for other verification techniques. Among the prevalent terms heard
when mentioning formal analysis are: (1) proof of correctness, (2)
lamda calculus, (3) predicate calculus, (4) predicate transformation,
(5) inference, (6) logical deduction, and (7) induction.

3.6.1 Advantages and Disadvantages of Formal Analysis

Attaining proof of correctness in a realistic sense is not possi-
ble with current technology. The complexity of the task is simply
too great. Setting up a proof for even a simple model is an expen-
sive, time-consuming undertaking. Completing the proof would be
just as intense. The matter is further complicated by non-
mathematical considerations such as machine dependencies and
other related idiosynchrosies. However, the advantage of realizing
proof of correctness — complete PMV — is so great that when the ca-
pability is realized, it will revolutionize the verification of software.

4. CONCLUDING REMARKS

There is a definite problem within the simulation community
concerning PMV. There is a lack of sufficient understanding and
appreciation of PMV, and there is a shortage in the literature of
techniques and guidelines for performing PMV.

For many modelers, the verification process ends the moment
the model specification is relegated to the software engineering
group for programming, then validation resumes when the pro-
grammed model is returned for experimentation. Unfortunately, the

modeler and the programming team each have their own (colliding)
assumptions about how the verification is to be managed. The lack
of communication between the two groups is one of the major con-
tributors to increased testing requirements and cost. For modelers
who must create the programmed model themselves, PMV is sim-
ply viewed as debugging the code. This view has been shown to be
extremely inaccurate.))

While there is ample literature on software verification, that lit-
erature is targeted towards the software engineer. The overwhelm-
ing majority of simulation practitioners are not software engineers,
do not speak the software engineering “language,” and thus do not
reap the benefits of verification technology available from the soft-
ware engineering field. Not only is the current simulation communi-
ty affected, newcomers to the field are affected by not getting ade-
quate exposure to PMV. The modeler needs to recognize the full
scope of the PMV process, needs techniques which satisfy PMV
needs, and needs guidelines for applying the techniques to perform
PMV.

REFERENCES

Ackerman, A. F., Fowler, P. J., and Ebenau, R. G. (1983). Software
inspections and the industrial production of software. In: Soft-
ware Validation: Inspection, Testing, Verification, Alterna-
tives, Proceedings of the Symposium on Software Validation
(Darmstadt, FRG, Sept. 25-30), (Hans-Ludwig Hausen, ed.),
13-40.

Adrion, W. R., Branstad, M. A., and Cherniavsky, J. C. (1982). Val-
idation, verification, and testing of computer software. Com-
puting Surveys 14, 2 (June), 159-192.

Balci, O. (1987). Guidelines for successful simulation studies: part I
and II. Technical Report TR-85-2, Department of Computer
Science, Virginia Tech, Blacksburg, Va., Mar.

Buck, R. D. and Dobbins, J. H. (1983). Application of software in-
spection methodology in design and code. In: Software Valida-
tion. Inspection, Testing, Verification, Alternatives, Proceed-
ings of the Symposium on Software Validation (Darmstadt,
FRG, Sept. 25-30), (Hans-Ludwig Hausen, ed.), 41-56.

Chusho, T. (1987). Test data selection and quality estimation based
on the concept of essential branches for path testing. /EEE
Transactions on Software Engineering SE-13, 5 (May), 509-
517.

Dobbins, J. H. (1987). Inspections as an up-front quality technique.
In: Handbook of Software Quality Assurance (G.G. Schul-
meyer and J.I. McManus, eds.). Van Nostrand-Reinhold Com-
pany, New York, N.Y., 137-177.

Dunn, R. H. (1987). The quest for software reliability. In: Hand-
book of Software Quality Assurance (G.G. Schulmeyer and J.1.
McManus, eds.). Van Nostrand-Reinhold Company, New
York, N.Y., 342-384.

Fagan, M. E. (1976). Design and code inspections to reduce errors
in program development. /BM Systems Journal 15, 3, 182-211.

Fairley, R. E. (1975). An experimental program-testing facility.
IEEE Transactions on Software Engineering SE-1, 4, 350-357.

Fairley, R. E. (1976). Dynamic testing of simulation software. In
Proceedings of the 1976 Summer Computer Simulation Confer-
ence (Washington, D.C., July 12-14). Simulation Councils, La
Jolla, Calif., 708-710.

Fairley, R. E. (1978). Tutorial: static analysis and dynamic testing
of computer software. Computer 11, 4 (Apr.), 14-23.

Hollocker, C. P. (1987). The standardization of software reviews
and audits. In: Handbook of Software Quality Assurance (G.G.
Schulmeyer and J.I. McManus, eds.). Van Nostrand-Reinhold
Company, New York, N.Y., 211-266.

Howden, W. E. (1976). Reliability of the path analysis testing strat-
egy. IEEE Transactions on Software Engineering SE-2, 3
(Sept.), 208-214.

Howden, W. E. (1980). Functional program testing. /EEE Transac-
tions on Software Engineering SE-6, 2, 162-169.

King, J. C. (1976). Symbolic execution and program testing. Com-
munications of the ACM 19,7 (July), 385-394.

Myers, G. J. (1979). The Art of Software Testing. John Wiley &
Sons, New York, N.Y.

568

Ould, M. A. and Unwin, C. (1986). Testing in Software Develop-
ment. Cambridge University Press, Great Britain.

Panzl, D. J. (1976). Test procedures: a new approach to software
verification. In Proceedings of the 2nd International Confer-
ence on Software Engineering, San Francisco, Calif., 477-485.

Prather, R. E. and Myers, J. P. (1987). The path prefix software test-
ing strategy. IEEE Transactions on Software Engineering SE-
13,7 (July), 761-766.

Richardson, D. J. and Clarke, L. A. (1985). Partition analysis: a
method combining testing and verification. /EEE Transactions
on Software Engineering SE-11, 12 (Dec.), 1477-1490.

Saib, S. H,, Benson, J. P., and Melton, R. A. (1977). A methodolo-
gy for program verification. In Proceedings of the Summer
Computer Simulation Conference, Chicago, Ill., 713-720.

Westley, A. E. (1979). Infotech State of the Art Report: Software
Testing, Volume 1: Analysis and Bibliography. Infotech Inter-
national Limited, Maidenhead, Berkshire, England.

Yourdon, E. (1985). Structured Walkthroughs, 3rd Edition. Your-
don Press, New York, N.Y.

AUTHORS' BIOGRAPHIES

RICHARD B. WHITNER is a software engineer at Hewlett-
Packard Company. He received a B.S. degree in mathematics from
Clinch Valley College (Virginia) in 1983 and an M.S. degree in
computer science from Virginia Polytechnic Institute and State Uni-
versity in 1988. His areas of interest center on software quality as-
surance and software productivity, object-oriented software devel-
opment, and simulation and modeling. He is a member of ACM.

Richard B. Whitner
Hewlett-Packard Company
3404 East Harmony Road
Fort Collins, Colorado 80525

(303) 229-3821

OSMAN BALCI is an associate professor of Computer Science
at Virginia Polytechnic Institute and State University. He received
B.S. and M.S. degrees from Bogazici University (Istanbul, Turkey)
in 1975 and 1977, and M.S. and Ph.D. degrees from Syracuse Uni-
versity (N.Y.) in 1978 and 1981. He is currently the simulation and
modeling category editor of ACM Computing Reviews, the general
chairman of the ORSA CSTS conference on the Interfaces of Com-
puter Science and Operations Research, and the proceedings editor
of the 1990 Winter Simulation Conference. He has served as a
member of the organizing committee of the ORSA CSTS confer-
ence on Impact of Recent Computer Advances on Operations Re-
search, the vice-chairman of ACM SIGSIM, the program chairman
and proceedings editor of the SCS conference on Methodology and
Validation, and an associate editor of Simuletter. He has been a con-
sultant for Planning Research Corporation, VM Software Inc., and
Central Intelligence Agency. His current research interests center
on simulation model development environments, credibility assess-
ment of simulation results, software engineering, and performance
evaluation. Dr. Balci is a member of Alpha Pi Mu, Sigma Xi, ACM,
IEEE CS, and ORSA.

Osman Balci

Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

(703) 231-4841

