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ABSTRACT

This paper identifies two correlation-based
strategies for designing a simulation experiment to estimate a
second-order metamodel of the relationship between the
levels of the input factors and the response of interest. Both
strategies are shown to be superior to the method of
independent random number streams. In the npast,
correlation-based strategies for metamodel estimation in
simulation experiments has focused on first-order
metamodels. However, in many simulation experiments it is
reasonable to expect that the relationship between the levels
of the input factors and the response of interest is better
approximated by a second-order metamodel. Thus second-
order metamodels are, typically, of more interest to the
simulation analyst. Both proposed strategies use the variance
reduction technique of common random numbers to induce
positive correlations between responses across design points
and antithetic variates across replicates. For a large class of
experimental designs and with respect to a varicty of
optimality criteria, both strategies are shown to give better
estimates of the vector of unknown coefficients in the
metamodel than the method of independent random number
strecams across all design points. A numerical example is
given to illustrate this point and to show that in practice, the
sccond strategy yields better metamodel estimates than the

first strategy.
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1. INTRODUCTION

The variance reduction techniques of common
random numbers and antithetic variates have been used
successfully in simulation experiments that are designed to
estimate an hypothesized metamodel of the mean response of
interest and levels of the input factors set by the simulation
analyst.  (Discussions of these two variance reduction
techniques are given by Bratley, Fox, and Schrage (1983)
and Law and Kelton (1982).) Schruben and Margolin (1978)
showed that, for first-order metamodels, the method of
applying common random numbers across all design points
in the experiment yields superior estimates of the unknown
parameters in the relationship to the method of conducting all
simulation runs with independent, randomly selected random
number streams. Furthermore, they proposed an assignment
rule that, for first-order relationships that are orthogonally
blockable into two orthogonal blocks, assigns a combination
of common and antithetic random number streams across the
design points in the experiment. This assignment rule is
superior to both the use of common random number streams
alone and, of course, to the use of independent, randomly
selected random number streams. The requisite assumptions
as well as performance evaluations for this assignment rule
have been fully documented by Schruben (1979), Schruben
and Margolin (1978), Tew (1986, 1989) and Tew and Wilson
(1989 a, b).

The major contribution of the Schruben and
Margolin assignment rule was to show how common random

numbers and antithetic variates could be successfully



combined in one simulation experiment. However, their
Our

computational experience has suggested that for many

results are restricted to first-order metamodels.

simulation experiments, a second-order metamodel offers a
better approximation to the true underlying relationship
between the mean of the response of interest and the selected
levels of the input factors. In this paper we suggest two
correlation-induction strategies for simulation experiments
designed to estimate a second-order metamodel. In keeping
with the spirit of the Schruben and Margolin assignment rule,
both strategies combine the use of common random numbers
and antithetic variates in one experiment. They are shown,
under certain conditions, to be superior to both the method of
using independent, randomly selected random number
streams across all design points and the method of common

random numbers across all design points.

2. BACKGROUND AND NOTATION

In this section we provide the statistical framework
necessary to formally define a simulation experiment and its
associated metamodel. We also identify the second-order

metamodel used to evaluate the correlation-induction

strategics presented in Section 3.
2.1. Simulation Experiment

Consider a simulation experiment consisting of:
(a) a univariate response variable of interest, y, (b) m distinct
design points, and (c) r replications performed at each design
point. A particular design point is identified by the settings
of d input factors, or decision variables, denoted by ¢ = (01,
Oz, ..., ©4)” that are established without error by the simula-
tion analyst. We assume that, in gencral, the relationship
between the response and the sclected setting of ¢ has the

following form:
y= u(?) + &,

where the error term € represents the inability of p to

determine y.
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A simulation model is usually driven by generated
streams of random numbers. These streams are sequences of
real numbers scaled to the interval [0, 1] and constructed to
appear random in nature. If g random number streams are
used to drive the simulation model and we let Rij be the set of
g random number-streams used at the ith design point and jth
replicate where

)

i = (T T o Ty

fori=1,2,..,mandj=1,2,..,71,

rijI

infinite, sequence of random numbers used to drive the

= (rij”, L L) (=1, 2, .., g) is the Ith, potentially

simulation model at the ith design point and jth replicate,

then the model above can be rewritten as
yij(Ri,-) = P-(q__)l) + Ejj (Rij )

fori=1,2,..,mandj=1,2, .., (1)
where Yi is the response from the ith design point and the jth
replicate, % is the setting of the d factors at the ith design
point, and g; is the error at the ith design point and jth
replicate. Typically, p is unknown and needs to be es-
timated. The estimation process usually involves two steps:
(a) hypothesize a functional approximation of g and (b)
estimate any unknown parameters in the hypothesized

approximation.

For example, if we assume that  is first-order and
linear in the unknown parameters then the equation above

can be written as
p-1
yi;(Rij) = By + k}ilﬁk Xg (0;) + & (Ry)

fori=1,2,..,mandj=1,2, ...,1; (2)
where Q = (B, B oo Bpl)' is the (p X 1) vector of unknown
metamodel coefficients; x, (k =1, 2, ..., p-1) represent known
functions of these settings; and Yy 9y and g; are defined
above.



Equation (2) can be written in short-hand matrix

notation as:
yj(Rj) =XB + EJ.(Rj), forj=1,2, ..., 3)
where y; = (ylj, Yap o Ya) s X is the (m X p) design matrix
whose first column is all ones and whose (i, j + 1)th clement

s x9) (=12 .,mandj=12 .,pl), Q is defined
above, g = (Elj. € Emj)’, and Rj = (le’ sz, . ij)’.

We also assume that E, (=12, .., r) has the
following multivariate normal distribution:
g~ N.(0,%), forj=1,2,..,1, 4)

where 0 is a (m X 1) vector of zeros and X is a (m X m)

covariance matrix.
From (4) we get that

Y~ N.(XB.Z), forj=1,2,..,1 (5)

Under these assumptions, and for m > p, the
least-squares estimate of Q; which is given by
f=xx)'xy, (6)

Where y =

distribution:

—
I ~
N o]

¥, has the following multivariate normal

B~ NB. (X X)X XX X)), %)

2.2. Second-Order Metamodel

In this section we identify the second-order
metamodel that will be used for purposes of illustration and
evaluation for the four correlation-induction strategies

presented in the next section.

Consider the following second-order, two factor

metamodel:

540

D A A 'Y3¢fi + 'Y4¢;.i +7:0,0, + €

fori=1,2,..,mandj=1,2,..,71, %)
where ¢,; and ¢, are the levels of the two factors at the ith
design point, ¥, (i = 0, 1, .., 5) are the unknown model
coefficients, and ¥; and €, are defined in Section 2.1. Since
(8) is a second order metamodel we should select 3 levels for
each factor in order to obtain estimates of all parameters in

the metamodel.

If we select the levels of ¢, and ¢, so that they are
evenly spaced then we can simplify the estimation of Y= (¥,
Y+ - ¥s)” by a suitable coding of the factors ¢, and ¢,. For
example, if we code ¢, to x; and ¢, to x,, where the x.’s (i =
1, 2) take on a 0 value in the center of the design and -1 and
+1 at the low and high level, respectively, the levels of the ¢
i's (i = 1, 2) being spaced evenly, the design matrix for the

complete 37 factorial experiment is given by

X1 X2i Xi X% X1i X2

rl -1 -1 1 1 1 =
1 -1 0 1 0 0
1 -1 1 1 1 -1
1 0 -1 0 1 0

X = 1 0 0 0 0 0 )]

1 0 1 0 1 0
1 1 -1 1 1 -1
1 1 0 1 0 0

e 1 1 1 1 1 -

The matrix (X'X) is not diagonal when the
metamodel is written in this form. However, if we rewrite
the metamodel as
Vi = By Byxy + Byxy + By (xf - XD +

2 2
+Ba (x5 - X3) + Bsxuixa + &,
(10)

fori=1,2,.,mandj=1,2,..,r1,

where Xf - X‘f are the average values of xfi and x;, respec-

tively. Thus, equation (9) becomes



X1i X24 (x%i-if) (x%i-ig) X1j X4
— 1 -1 -1 173 13 1 =
1 -1 0 13 23 0
1 -1 1 173 173 -1
1 0 -1 23 173 0
X = 1 0 0 23 23 0
1 0 1 -2/3 173 0
1 1 -1 13 173 -1
1 1 0 13 23 0
L1 1 1 173 13 1
(11)
and
=9 000 0 Q=
060000
006000
XX=l 000200 (12)
000020
| .00000 4.

This method for diagonalizing the XX matrix is called the
method of orthogonal polynomials. (See Chapter 3 of Myers
(1976) for a more complete treatment of orthogonal

polynomials for second order designs.)

The second order metamodel presented in equation
(1) is used in the next section to compare the general efficacy

of the four correlation-induction strategies considered.

3. CORRELATION-INDUCTION
STRATEGIES

In this section we consider the following four
correlation-induction strategies for estimating p = (B, B, ...,
B)” in equation (10): (a) independent streams, (b) common
streams, (c) correlated replicates I, and (d) correlated
replicates II. In comparing these four strategies we show
that, under certain assumptions, the last two are superior to
strategies (a) and (b). Throughout the remainder of this
paper we assume that there are 2r replicates made at each

design point.
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3.1. Independent Streams

If we randomly select Rij i=12,..,mandj=1,
2,..,2r)and we assume that i=1,2, ., mand j=1, 2, ..,
2r):

Var(y;; (R;;)) = 02 .
Cov(y;j(Rjj)y (R ) =0 forizk, j=1;

2
then I, = Cov(y) = g_r I, where I_ is the (m X m) identity
matrix. Substituting this value of X, into (7) yields

—1/9 0 0 0 0 0 0=
0160 0 0 0 0
1 o 0owso 0o 0 o0
cov)=5| o0 0 0120 0 0 (14)
0 0 0 0120 0
000 0 012 0
L0 0 0 0 0 0 1/4_

3.2. Common Streams

If we separate Rij 1=1,2,..,mandj=1,2, .. 2r)
into two mutually exclusive sets of random number streams,
(R“j, Rz;,‘)’ such that R2ij (i=12,.,mandj=1,2, .. 2r)
is independently, randomly selected across all design points
and replicates, then we are assured of the presence of g (=
1,2,...,mandj=1,2, .. 2r)in (10). (See Mihram (1974),
and Tew (1989).) Hence, in inducing correlations across
design points and across replicates, we use only Rn,' i=1,2,
..mand j=1,2 .., 2r). This technique is used for the
present strategy as well as the strategies in Sections 3.3 and
3.4.

In order to induce positive correlations across
design points and retain uncorrelated replicates we use the
random number assignment procedure indicated in Table 1.
Further, we assume that i=1,2, .., m;k=1,2,..,m; j=1,

2,.,2r);and1=1,2, .., 2r):



Table 1: Common Random Numbers

replicate
1 2 oo 2r
1 YRy Ry )y (R Ryp0) YRy Ry )
2 Ya (R Ryp) YRy Ryp)) YRy Ry
design . . . .
poin[ . . . .
m Yot (Rt Romt) Yea(Ry 15 Ry) ** YoaRy Rypn)

Var(y; (Ryj)) = 6%;

Cov (yi (Ry), yij (Ry)) = 62 p.
where0<p, <landizk;

Cov (i (Rj), yu(Rg)) =0
forj= 1.

(15)

This assignment procedure and the assumptions of (15) yield:

a*(1-p,)

olp
2r + *

ZrE

¥, =Cov(y) = (16)

m:’

where E_is the (m X m) matrix of ones. Substitution of z,

into (7) yields

C0v(ﬁ)=
—(9(p++P-)/92+(1'p*)) o 0 0o o o |
0 “%’*_) 0 0 o0 o0
07_ 0 0 w 0 0 0
o 0 0 0 12‘H 00
0 0 0 o (LZM 0
u 0 0 0 0 0 (]_—,:h—)_

(17)
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3.3. Correlated Replicates I

Next, consider the random number assignment
procedure indicated by Table 2. We assume that (i=1, 2, ...,
mk=12.,mj=12,.,2rand1=1,2,..,2r):

Var(y; (Ry)) = 0%; 3
Cov(y;j (Rjj), yij (Ri;)) = 6% p.
where 0<p, <1landi#k;
Cov(y;j(Rjj), yu (Ru)) =02p. > (18)
where-1<p_<0,j=1,3,..,2r-1, and
I=j+1
Cov(yij(Rj), ya(Ra)) =0 otherwise. J

This assignment procedure, coupled with the assumptions of
(18) yields

(19)

o’ (py +p.)
m+ 12 E.

2 -
£ = Cov(y) = ZUP)



Table 2: Correlated Replicates |

replicate

4 21 or

design

point

T ynRyn Ry ) YRy Ry YRy 50 Rypy) y14(Rm’ R, e

21 yuRy» Ry yzz(Rm' Ry ¥i5(Ry 15 Ryy) y:»A(Rm' R,) b

m| Yo, (Ryp Ry ymz(ﬁm' R,2) Yos(Ry1s Rypd) ym‘,(ﬁm, Ry

yl.lr-l(Rll,b-l’Rll_Zr-l) YR N Ry o)
112r1

Y2201 (Ry1 20 Rog ) y2,2r(R”'2”’ Ry2)

Yen 201 Rt 2009 Rom ) ym,z,(ﬁnmv R
Substitution of (19) into (7) yields:
(R = G2+
Cov(@) = Var(y; (R;)) = 6%, \
Cov(y;j (Rj), yiy(Ryg)) = olp,
—(9‘{(p++P.(;+(l-p,)) o 0o o o o T where 0<p, <landizk;
(1-p+) Cov(y;; (R;j), yu(Ru)) = 6%p. > o
0 6 (10 ) 0 0 0 for I1-jl=2,4,..,2r-2;
P+
c? 0 0 —-0 0 0 Cov(y; (R;;), yu (Ru)) = 6°p.
a 0 0 0 Qg*—) ) whe.re-15p_50,and
(1-p+) N-j=1,3,..,2r1. Y
0 0 0 0 — 0
(1’P+)
| 0 0 0 0 0 —=_]
(20) This assignment procedure and the assumptions of (21),

3.4. Correlated Replicates IT

Finally, consider the random number assignment

procedure indicated by Table 3, where ﬁijk is the set of

random number streams antithetic to those in Ry, (i=1,2; ]

=1,2,...,myandk=1,2, .., 2r).

We assume that i=1,2, ...,m;k=12,..,m;j=

1,2, ..,2r;and1=1,2, ..., 2r):
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together, yield:

207 2
T =Covyy= TP L O@ TR g

m



Table 3: Correlated Replicates II

1 2 3

replicate

4 eee 2r-1 2r

—

design - . . .
point * . . .

YRy Ry D YR Ryp) Yis(Ryy 1 Ryp9) yia(Rygp, Ry ) oo

21yu(Ry Ryyp) Yzz(ﬁm’ Ry20) ¥13(Rypp, Rypy) y24(§111’ Ryl

M Y1 Ry Rorn) Yoo Ryp1s Rorg) Yia(Ryp1s Ryp) ym4(§lll’ Roma) oo

Y1201 Ry Royo01) y1,2r(§m’ Ry 20

Y2201 (Ry115 Rogor) y2,2r(ﬁl 110 Ryz2)

Yen2e-1(R1115 Rop201) ym,Zr(Elll’ Romar)

Substitution of (22) into (7) yields:

Cov(@):

— . P, 1-p. —
O +Pé+( p-)) o 0 o0 o o
(1'P+)

0 — 0 0 0 0
1-p,

o2 0 0 (—g—) 0 0 0

21 (1-p+)
0 0 0 0] 0 0

1- +
0 0 0 0 ( 5 ) 0
1- +
| 0 o o o o {2

(23)
3.5. Comparison

Inspection of equations (14), (17), (20), and (23)
indicates that in terms of Var(ﬁi Yi=0,1, .. 5), common
streams, corrclated replicates 1, and correlated replicates 11
arc: (a) all equivalent in the estimation of@ =B, By - By
and (b) all superior to the independent streams strategy in the
estimation of B, = (B, B, ..., Bs)". We also sec that under the
assumptions of (18) that Ip| 2 Ip | and p_ < 0 are sufficient

conditions for correlated replicates I to be superior to

common streams and independent streams. Furthermore, we
see that, under the assumptions of (21), correlated replicates
II is superior in the estimation of Q to common streams and
independent streams if p. < 0. In practice we expect the
condition Ip_| 2 Ip,| not to hold in general (see Schruben and
Margolin (1978) and Tew (1986)).

correlated replicates II to give the best performance in the

Thus, we expect

estimation of E for the second order metamodel given by

equation (10).
4. EXAMPLE

In this section we illustrate the implementation of
the four strategies presented in Section 3. We also compare
the estimators of the metamodel coefficients under these four

strategies.
4.1. The Job Shop System

Consider the job shop example used by Tew and
Wilson (1987) and similar to the one given by Nozari,
Armnold, and Pegden (1987), and depicted in Figure 1. Past

computations have suggested that a first-order metamodel is



inappropriate for this model. Jobs arrive at this shop
according to a Poisson process with an arrival rate of 10 per
hour. All jobs enter the system through station 1. Upon
completing service at station 1, 80% of the jobs go to station
2, 5% go to station 3, and 15% leave the system. A job at
station 2, or station 3, leaves the system upon completion of
service. The shop admits jobs from 8:00 AM. to 4:00 P.M.
every day. However, service at each station continues until
all jobs admitted on one day leave the system. Service time
at station 1 is a constant and service times at stations 2 and 3

are uniformly distributed over specified ranges.

m———————————— —_
I 80 I
| —P»] Station 2 -I—>
|
| |
|

Poisson (10)] - I

Station 1 [ |

| I
! 05 |
I —> Station 3 JI_>
I 15
| L
e o e e — — —— —— — —————— —

Figure 1. Job Shop System

The purpose of this example is to estimate the
effects that different service time distributions have on some
function of the expected system sojourn time for a job. Thus,
the performance measure of interest is the daily average
system sojourn time for all jobs entering the system. This

estimation is done under the four strategies presented.
4.2 The Model of the Response

To study this system we cmploy the 3% factorial
design of Section 2 with the following independent variables
(factors):  service time distribution at station 1 (x;) and
service time distribution at station 2 (x,). We consider the

second-order metamodel given by (10).

In simulating this system we dedicated a separate
random number stream to each of the following four random

components in the model: interarrival times at station 1 (r,),
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probabilistic branching upon completion of service at station
1 (r,), service times at station 2 (r,), and service limes at
station 3 (r,). Under common streams, correlated replicates
I, and correlated replicates II, we randomly selected r, across
all design points and replicates in order to ensure the

presence of g in (10).

Next, we consider the estimation of E under each of
the four strategies for conducting simulation experiments
mentioned above. In each case, 18 estimates of E are
obtained by replicating the basic 9-point experiment 18

times. The sample covariance matrix based on these 18

estimates is used as an external estimate of the covariance
matrix of the estimator of E

4.3. Numerical Results

For the independent streams strategy we get

58.55 -6.85 279 076 -53.09 -25.96
-6.85 36.05 11.05 3874 -29.40 24.03
A A 279  11.05 64.41 2686  19.08 1886
Cov(p) =
= 0.76 3874 2686 26626 -26.95 -6.09
-53.09 -29.40 29.08 -26.95 23631 -14.90
-25.96 2403 1886 -6.09 -1490 7745
For the common streams strategy we get
569.85 156.29 113.00 -237.85 -46.25 -150.28
156.29 79.35 2162 -6474 179 -31.75
A A 113.00 21.62 3045 -41.87 -581 -35.54
Cov(P) =
~ -237.85 -64.74 -4187 124.08 2255 56.78
-46.25 7.79 -5.81 2255 31.79 13.64
15028 -31.75 -35.54 5678 1364 4545
For the correlated replicates I strategy we get
257.40 37.58 44.61 -11556 -61.14 -67.35
3758 5129 319 247 1825 -4.25
A A 461 319 1752 -0.88 -7.94 -19.18
Cov(p) =
~ -115.56 247 -0.88 111.80 47.97 16.01
61.14 1825 -7.94 4797 3621 14.73
-67.35  -4.25 -19.18 16.01 1473 25.11

Finally, for the correlated replicates II strategy we get

359.27 3336 20.10 -279.81 -146.53 -65.17

33.36 312 1.86 -26.00 -13.61 -6.03

C6V(ﬁ) - 20.10 1.86 1.15 -1565 -8.17 -3.66
~ -279.81  -26.00 -15.65 218.02 114.15 50.74
-146.53 -13.61  -8.17 11415 59.87 2656

-65.17  -6.03 -3.66 5074 2656 11.86



S. CONCLUSIONS

Although any statistical comparison of the sample
covariance matrices in Section 4.3 will have low power duc
to the relatively small number of replications the results
strongly suggest that the correlated replicates strategies yield
superior performance in the estimation of Q for the
metamodel given by (10). However, caution should be taken
in that the last three sample covariance matrices in Section
43 may be biased because the replicates are correlated.
Nevertheless, the results are promising and warrant further,

more extensive investigation.
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