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1. OVERVIEW

It is often appropriate to analyze the
output of a simulation study by looking at
more than one measurement. In a traditional
queuing model, it might be appropriate to look
at three outputs:

1. the average time through the system
for a customer,
2. the average number of balks per
hour,
3. the average utilization of the
servers.
These outputs measure different quantities

which are usually related in their movements.
Some pairs will be positively related, in that
one variable will increase as the other
variable increases. Likewise some will be
negative related. The relationship can also
be more complicated. For example, a recent
simulation of a mining operation (Villanueva,
1989) measured, among other gquantities, the
amount of traffic in a mine tunnel leading to
an ore shaft and the number of loads of ore
removed through that shaft per hour.
Initially, as the traffic increased, more
loads of ore were removed. But as the tunnel
became more and more crowded, the number of
loads began to drop because of the traffic
congestion.

Simulation models are often written to
study nonlinear structure of the type
described above, and it is useful to attempt
a mathematical or graphical description of the
relationships. This 1is particularly useful
when simulation models are used to adjust the
input parameters in order to optimize some
particular output. The relationships between
outputs can cause unintended side effects when
one is adjusting the inputs of a model to
optimize a single output. Attempts at
optimizing one output while making an ad hoc
attempt to control other outputs within a
given range can be frustrating without a clear

understanding of the relationships in the
outputs.

The literature of multivariate statistics
presents several techniques that can be used
for exploring multivariate relationships in
data. Examples include principal components

and canonical correlation. As in much of
trad}tional statistics, these techniques
require that the data have gaussian

distributions and that the relationships be
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linear. These assumptions 1limit their
usefulness to simulation studies. In practice
this means that the data have to be

transformable in to something that is close to
gaussian. Often simulation outputs are count
data rather than continuous data. Their
distribution frequently resemble asymmetric
Poisson distributions rather than symmetric
gaussians. Also, as demonstrated above, the
relationships are often nonlinear.

To study the structure of a simulation
model, we develop a principal components model
of simulation output that is appropriate for
count data. Let us start with some notation
to describe the setting. The output of a
simulation is data contained in a matrix

, .. N,
1, .., P.
Each column of the matrix holds measurements
on some given

item while each rows holds a collection of
measurements taken

at a specific time. We will often refer to
this model as a collection of P columns
denoted X,, ..., X,. Using the above examples,
the columns would represent variables such as
the number of customers through the system or
the number of balks. While in general, the
model presented here does not require the rows
(observations) to be independent the following
treatment will assume that they are
independent or nearly uncorrelated.

2. STANDARD TOOLS

In trying to put a structure on count

data there are two tools that we shall
combine: Poisson Regression and Pr@nc%pal
Components. The traditional Principal

Components analysis of a matrix attempts to

find a linear structure in the data. This
linear structure takes the form of P
orthogonal vectors. The first of these

vectors is the linear combination of the data
columns which line which posseses the greatest
amount of variability. The second of these
combinations accounts for the second largest
fraction of variability and so on. For
example, suppose we have three columns in.our
matrix X, X,, X,, X; and the first principal
component is i

(0.24, 0.6, 0.6) and that this vector explains
60% of the variation. This direction implies
that the three columns are positively related.
The columns X, and X3 move in the same amounts



whereas X, moves only 0.4 as much as the other
columns.

Principal components
forming the eigenbasis of the sample
covariance matrix. For gaussian data, the
mean and the covariance matrix are enough to
completely specify the distribution. However,
that is the only multivariate distribution
which may be specified by just the mean, first
order structure, and the covariance matrix,
second order structure. If the data are
counts and each variable has a Poisson
distribution, then there is no multivariate
distribution that can be specified using just
the means and the covariance matrix. Hence
traditional principal components will have at
best a dubious mathematical underpinning when
applied to count data. We shall avoid this
problem, in the sections below, by an
algorithm that looks for nonlinear structure
and operates directly on the data rather than
on the covariance matrix.

are computed by

Poisson Regression is a regression model
for count data that is fit using maximum
likelihood. Poisson Regression, attempts to
fit linear structure to the expected value or
intensity function of possion data. In the
basic formulation of poisson regression there
is a vector of n response variables Y and a
matrix of explanatory variables X. Each of
Y., i 1, ..., n is an independent poisson
random variable with intensity parameter E(Y;).
The poisson regression model is g(E(Y)) XB
where g() is a link function which links the
intensity parameters to the linear
combinations of the explanatory variables.
Note this is not an additive model, like the
standard least squares regression model.
There is no added poisson error. Instead the
response variable has a poisson distribution
with a intensity parameter that is a function
of the covariates. The 1link function is
usually chosen to be 1n() and in that setting,
the model becomes a multiplicative one.

Poisson regression is one member of the
family of Generalized Linear Models (Nelder
and Wedderburn, 1972). The parameters are fit
using maximum likelihood and a modification of
the least squares algorithm called iterated
reweighted least squares. It is a very
powerful tool, but it is not always the most
appropriate tool for exploring the structure
of a data set. It 1is common, as in our
setting, to have P columns of data,

Xys +.., X,, none of which is obviously the
response vector.
3. SMOOTHING

Smoothing is a technique for analyzing
structure in data that has recently received
a great deal of attention (Buja, Hastie and
Tibshirani, 1989). Given two vectors of data,
X and Y, smoothing strives to fit a smooth
function to data, Y f(X). There are no
constraints placed on f() other than it be
smooth, that is f() 1is continuous and some
number of derivations of f() are assumed to
exist and be continuous. The exact estimate
of the function depends on the algorithm to
smooth the Y vector as a function of X. An
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easi;y unqerstood smoothing technique is the
runnlnglllnes method. The vectors X and Y are
sorted in parallel so that X is in ascending
order: To find the value of the smooth
functlpn at some point X;, a line is fit to the
data in some bandwidth, say of length k
around x; but at the same time excluding the
p01nt (X;, Y;). The value of the function at
X; 1s the point on the 1line at x.. This
smoothing technique is illustrated iﬁ

Figure 1.

Linear Line Smoothing
Figure 1

Besides running line smoothers, there are many
techniques of smoothing including running
means, smoothing splines, regression splines,
running medians, and kernel density smoothers.
Indeed, linear line fitting or standard linear
regression can be viewed as a very restrictive
form of smoothing. Smoothing, on the other
hand, can be viewed as an extension of the
standard regression methods. Indeed there is
much current effort to extend all the tools of

linear least squares regression to a
nonparametric regression framework using
smooths.

4. GAUSS-SEIDEL BACKFITTING ALGORITHMS

Smoothing is an efficient technique for
estimating functions of a single variable but
they rapidly become intractable for functions
of more than one variable. The reason for
this is the so-called "curse of
dimensionality" (Friedman and Steutzle, 1981).
This term refers to the problem that the
number of points required to "fill" high
dimensional space increases exponentially as
the dimension increases. In the unit interval
in one dimensional space, 10 equally spaced
points are required if no two points are to be
more than 0.1 units apart. In the unit
hypercube in P space, 10 points are required
to meet the same condition. In practice, this
means that in most reasonable data sets, there
simply 1isn't enough data to get a good
estimate of a function of P variables using a
multivariate smoother.



One
Stuetzle,

proposed solution
1981) is the

(Friedman and
additive model.
Instead of attempting to approximate the
function Y £(Xy, X5, ..., X;), the estimation
problem is restricted to functions of the form

Y=£f,(X;) + + £.(Xp) . In this setting, the
functions can be estimated one at time, thus
sidestepping the curse of dimensionality. The

algorithm that does this fitting is called a

"Backfitting Algorithm" or the "Gauss-Seidel
Backfitting Algorithm" to indicate its
relationship to the Gauss-Seidel Algorithm for
solving linear equations. The algorithm
estimates each of the f,() sequentially and
then goes back and adjusts its estimates
iteratively. This algorithm is given in
Algorithm 1.

Algorithm 1: Gauss-Seidel Algorithm for

fitting functions of the form

Y = £,(X,) + + £ (Xp)
Step 0. Initialization
0.A Set f;() = 0.0
for i =1, , P

Step 1. Single Iteration

For i 1 to P Do
1.A Set Y equal to Y + f,(X;)
1.B Smooth Y on X; to produce
a new estimate of f,(X;)
1.C Set Y equal to Y - f,(X;)
Step 2. Repeated Iteration
2.A Repeat Step 1 until
convergence

The Gauss-Seidel algorithm is a simple
but computationally intensive method for
fitting models. While there is much practical
experience to show that the estimates produced
by the algorithm converge, there is only a
little general theory that shows the estimates
converge for any smoothers. It can be shown
that the algorithm converges if the smoother
is replaced by the conditional expectation
operator E( |X;), which, in general, is
unknown. The algorithm has been shown to
converge for a class of linear shrinking
smoothers which includes the spline smoothers
(Buja, Hastie and Tibshirani, 1989).

The Gauss-Seidel Backfitting algorithm
has been adapted to fit several different
kinds of models including Generalized Additive

Models (Hastie and Tibshirani, 1987),
Principal Components (Donnell, 1987) and
Principal Curves (Hastie and Stuetzle, 1989).
5. ALGORITHM FOR NONLINEAR PRINCIPAL

COMPONENTS FOR COUNT DATA

Let X;, i =1, ., P be columns of data.
Our intent is to find the functions £,(X;),
i 1, ..., P, subject to the constraint that
f;() 1is smooth for all i, so that the sum
£,(X)+ + f,(X,) has the greatest possible
variability. In practice, this will also

536

maximize the pairwise correlations

cor (£,(X;),£,(X;)), i <> 3.

The algorithm starts with the sum of all
the variables and applies the backfitting
algorithm. For each 1, the variable X; is
subtracted from the sum and the result is
smoothed on X; to get the estimate of f;(X;)
which is most highly correlated with the
remaining sum. This f(X;) is added to the sum
and the process 1is repeated. After the
smoothing process has been applied to each of
the P variates, the entire process is
repeated. The only difference is that now the
current estimated of each function f,(X;) is
removed from the sum before the smoothing
begins. In order to guarantee convergence,
the f;() must be normalized. This can be done
simply by scaling the f; so that it has range
1.0. This restriction is also required in
traditional Principal Components. In that
setting, the norm of the coefficients of the
linear combination is required to be 1.0. The
algorithm is given formally in Algorithm 2.

Algorithm 2: Algorithm for Nonlinear Principal
Components

0. Initialize

0.A Smooth Xz on the constant vector
to get X;

* .
um = X +.. . +X,
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1. Smooth
For i
1.A

1.B

1 to p Do
Sum Sum - f;
Smooth Sum on X; to produce

a new f,
Normalize f; to have range 1.0
Sum Sum + f;

1.C
1.D

2. Iterate
2.A Repeat Step 2 until the f,
converge

2.B 85Q = SSQ., - || sum ||
3. Find Additional Components
3.AJ J + 1
3.B Set f, X; for i 1, ...,
3.C Repeat steps 1 and 2

Algorithm 2 works well for exploring
nonlinear structure that is similar to
principal components in general data (Donnell,
1987). It may be applied to count data,
although it can easily give misleading results
when applied to Poisson data. The variance of
a possion variable equals the mean, and hence
comparing two variables with disparate
magnitudes may be difficult. For example,
suppose we have N observations of two Poisson
random variables, X and VY. The expected
values of X; is E(X;) f;(). For the purpose
of this example 1let f.() be a function in the
range [100,200]. If the expected value of X
1s small compared to f,(), say E(X;) 0.1
f(i), it will be difficult to find any
relationship between X; and X;, even when an



explicit relationship exists. In Poisson
regression, this problem is handled by
transforming the variables to the log scale.
In that setting, the transformation to a log
scale 1s motivated on the grounds that the
sufficient statistics become linear
combinations of the data. While sufficient
statistics are not an issue in our setting and
while it might be more mathematically
defensible to use the square root.
transformation, which is variance stabilizing,
we shall work with the log transformation.
The main defense being the ease of
interpretation of the components and the
parallel with logistic regression.

6. SUMMARY

Principal Components is a useful tool for
exploring multivariate data and the algprithm
presented in this paper is an extenslon.of
that technique to include nonlinear modelling
and count data.
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