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ABSTRACT

When making an inference from a simulation output,

the problem we usually encounter is the autocorrelation
among observations. In this paper we proposed a techni-
que using regenerative methods to overcome this problem
and establish simultaneous confidence intervals for some
correlated variables to a prespecified relative precisi-
simulation models are used to test the

on level. Five

performance of this technique and the coverage rate is

the criterion. From the empirical results, the perform-

ance of this thchnique is quite satisfactory.

1. INTRODUCTION

Among those developed methods for establishing con-
fidence intervals for simulation results,scholars seldom
study the multivariate method : @ method which considers

several variables’ joint effect while building up its

joint confidence intervals. But we strongly believe that
in this world,it is not one but many variables which are
factors of decision-making applied in the simulation te-
chnology in order to solve practical problems. By consi-
dering the total effect from those variables can we make

the best decision while dealing with practical problems.

When one wanted to estimate several population par-

ameters during a simulation run, the old method to do

this is to build up each variable’s confidence interval

individually. For example, if we want to observe five

variables, we then build up each variable’s 90 percent
confidence range; but under this situation, the probabi-

lity of covering the system’s true value from each vari-

able’s confidence interval is only greater than or equal
to 0.%. This can be proved by Bonferroni Inequality.
Suppose that | | I =1,2, ...., K are the 1-

o

confidence interval (or the measure of performance 4 1
Ihen the probability that all K confidence intervals si-
multaneously contain their respective true measures sat-

1sfies the inequality
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K
P{uyel,, foralll=1,2 ..., K 2 1'1210‘1
whether or not the I’'s are independent.
This result is known as the Bonferroni inequality.

of wvariables we want to

all

Thus we know, when the number

observe increases, the probability for variables’

confidence intervals to cover the system’s true values

decreases. This will influence the quality of decision-
making seriously. So, using a multivariate method to
build up a simultaneous confidence interval is indeed
necessary.

In the field of multivariate simulation output ana-

lysis, Dr. Robert Chen in 1985 and 1986 had developed a
batch means

This t-

technique to examine whether multivariate

vectors are independent from each other or not.
echnique has made possible the use of multivariate batch

means method to build up a joint confidence interval.

Consequently, S.J. Liue and L.Y. Wu, who under Dr.

Chen’s guidence,examined multivariate batch means method

empirically by using a sequential method and a fixed-

sample-size method. Their results were satisfying.

Ihe original idea of regenerative method was brough

up by Cox & Smith in 1961, but did not have any in-depth

research until Crane & Iglehart (1974, 1975) and Fishman

(1973, 1974) gave a series of studies in regenerative

method and established a theoretical structure.

Seila (1982) had developed the theory of univariate

regenerative method into a multivariate one, but did not

do empirical test in his article. However, his artical

is the base of this research. In this research, we not

only improve the theorem of multivariate regenerative

method, but also deveolp an algorithm for practical use.
lo those models which possess regenerative characterist-

1Cs, we analyze their multivariate statistics from the

simulation output, and build up its multivariate confid-

ence interval. lo our awareness, the concept of precis-

ion If the

's very important in a confidence interval.



interval is too wide which means the precision is too

low, then the interval has little value to the decision

makers. In our research, we use a sequential method to
control the width of the confidence interval

0.1.

and set up

a relative precision v = This research could help

those simulation experimenters concentrate on their mod-

el-building. Once the model was built up and the data

were collected,experimenters could utilize the procedure

proposed in our research to analyze their multivariate

statistics from their simulation runs. This not only

saved the operating time and energy but also helped to

approch a better decision-making.

In our research, we adopted Bonferroni, Roy-Bose,

and Hotelling T2 multivariate joint confidence region,

and utilized M/M/1,Tandem Queue, Priority Queue, Central

-Server Computer, and (s,S) Inventory models to examine

the effect of the proposed technique. Among those eval-

uating criteria,the most important one is coverage rate.

In general, if the confidence coefficient 1-a is 0.9

when we repeat building up confidence intervals,then the

theoretic coverage rate is 0.9 also.

In each testing model, we also examine system under

several conditions. Consequently, there are thirteen

conditions tested among these five models. In each con-

dition, we conduct 100 independent experiments, and cal-

culate its coverage rate. In the mean time, we list the

average number of observations needed,the average number
of regenerative epochs,and the average operating time of
each experiment reference. The confidence coefficient we

used is 0.9 in all our experiments.

We use Pascal language to write our programs in this

research. Some of the programs were operated on CDC cy-

ber 840 macro computers located in National Cheng-Kung

University, some were operated on 16-bit PC/AT personal

computer. The reason for using two different kinds of

computer is because main frame computers are used for

the academic research ; most business companies do not

have big computing machines. Besides, personal computers

have become cheaper and their functions are advancing

too. This has make personal computer more and more pop-
ular in business companies. Thus, our research also op-
erated on PC with the hope that business companies can

also share our finding and utilize our results.

2. MULTIVARIATE REGENERATIVE METHOD
Suppose that the simulation runs for n cycles, and

let the data generated for s parameters be { (51, El)
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(Xp0 Ny oo (Xpo NV} where Xoo= (Xiy0 Xio0 oo
Xis)’ is the vector whose jth component is the sum or
integral of observations on jth variable in cycle i, and
Ei = (Nil' NiZ"" Nis)' is a vector whose jth component
is the cycle length for parameter j in cycle 1i. Since
the simulation is regenerative, we have
E(X; )
i .
;- I 5=1,2, ..., s
E(Nij)
The regenerative estimator for y 3 is
X.
S
J N !
J
v 1 g = 10
where X, = — X.. , N, = _—— N. .
J n j=1 "I J n igl 13
We will define the multivariate regenerative estimator
A A A A —
to be the vector v = (v 1 Vo2 e v S)'. Let QD be

the diagonal matrix which has ﬁj as the jth diagonal

A
element. y can be written as

P
v="Ny X,
Nl 5 0
3 2 S R Ty
where ED = 0 : N , and 5 = (Xl, X2, , Xs)
s
Now, define Rij = Xij VJNlj , i 1, 2, ,n,
j=1,2, ..., s, and let Ry = (Ril‘ Ri2‘ .y Ris)"
then the sequence (El' R, . Bn) is an i.i.d sequence

of random vectors with mean 0 Denote the covariance

matrix of Ei by z;.

The following theorem has been proved by Carson.

r -1 -1
Sn(y-y) > N, ug Zug ') as n- oo,
where vy T E(ED)
Proof: Since {51, R, oy Bn) is a sequence of i.1.d.

random vectors,we have,by the multivariate central limit

theorem
/R = N(O, ¥) as n - oo ,
—_ n - .1= A
where R = (l/n)ig;lgi , and ﬁD R=vy-v .
Since ﬁj - t(Nij) with probability one, as n 5 oo ,



we have by the continuous mapping thecrem, that

1

- . ) )
J Ny R /nh-v) > N0, s 12/_10 )

Ihis completes the proof.

Applying the theorem above, we can propose the tec-
hnique for constructing multivariate joint confidence
intervals. Now, we show the processes technique, inclu-

ding Hotelling’s T2 , Roy-Bose, and Bonferroni.

2.1. Hotelling‘s T2 Method :

Let S denote the usual estimator of 2;. qiven by

1 n
S=_——" S R. R’ (1)
- n-1 1=1—l -1
Now, define T2 = nE’_'1E ,
- 1 n
where R = — 3 R,
= n i=1""

Since E is approximately a multivariate normal distribu-
tion for large n, we can show, by applying standard mul-
tivariate normal sampling theory.that + = [(n-s)/(n-1)s]
T2 is approximately an F distribution with s and n-s

degrees of freedom 1n the numerator and denominator, re-

spectively. However, since E = EU(JL'lL)' we can write
1¢ as
T2 Do) NS TN ()
(v) =nly-v)'NyS Noly-v).

We can therefore find the multivariate confidence region

for y as

2 (n-1)s
T (v) n-s l-ais,n-s

1A

»
Since p would converge to multivariate normal dis-
tribution only for larqge n,this confidence interval will

vwork in the same condition.

2.2. Roy-Bose Method :

Since le = XiJ- uJN]J, in practice, S given by (1)
can be approrimated by replacing v with v . This 15 the
same approach that is used in univariate. Now, suppose

that simultaneous confidence intervals are to be comput-

ed for | linear combinations, § 1 S 20 o0 O where
S 3 X J'u )=l 20 oo n, is an s-dimensional
sector.  We can define
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A - A
te = - z z
(mj) = oy (v-v)1° /o]
where 52 = g .'N R '171 ./n . Then
] =j b =b =
N _(n-1)s )
PLES (z )= n-s 1-a;s.n-sefor all J=l.2....1]=1-«
where rl_ ison-s is the 100(1-« ) percentage point of

the F distribution with s and n-s degrees of freedom.

Therefore, the inequalities

LA (n-1)s Y
2y v 0l Flgis,n-s)™ = 9
,~ A~ (n-1)s A
2575l Flogis,nes)™ 2 8

hold simultaneously for j = 1, 2, .., 1 with probability

l-a .

2.3. Bonferroni Method :

For each 3 =1, 2, P B t(le) follows approxi-

mately a Student’s t distribution with n-1 degrees of

freedom. [lherefore, for each j =1, 2, ..., 1, the in-
equality

l/\ A / ] ‘§ < ’A A l /
lj L'L,Jt(l-c‘(j,z.n- )ﬁLJil‘J L."jt( -gj,Z,n'l)

holds with probability 1-q Bonferroni’s inequality
states that the probability that all of the inequalities

for 3 =1,2, ..., 1, hold simultaneously is at least

3. OPERATING PROCEDURE

In this research we defined the relative precision

7 Of Joint confidence intervals as the maximun value

of the relative precision of 1ndividual intervals. That

i5.the relative precision of every interval would not be

bigger than + 0 - In this section, we will describe the

proposed procedure to build up & simultaneous confidence

interval. A flow chart of the procedure is shown in Fi-
gure 3-1. The procedure is step by step as follows

(1) First we generate Ny number of regenerative epochs

The range of Ny depends on the model used. Normally

© Ny is bigger in Queueing System and smaller in

Inventory System. In any case, no has to be at le-

ast one more than the number of variables we obser-

ved. So that when building up Roy-Bose joint conf-



idence intervals, the degree of freedom will not be
smaller than 0.

(2) Use the sample observations from these g cycles to
calculate the Bonferroni joint confidence interval
and then check if it fit the relative precision re-
quirement. If its relative precision v = ~ 0 then
go to step (4), otherwise go to step (3).

(3) Generate one more regenerative epoch, and add the

observed values from this epoch to the original

data and go back to step (2).

(4) Check if v_is within the Bonferroni joint confide-

nce interval. Then use the Q to calculate the Ho-

telling’s T¢ wvalue and check if v is inside the
confidence region.

(5) Calculate the Roy-Bose jJjoint confidence interval,
and check if it satisfies the relative precision
requirement. If it does then go to step (7). othe-
rwise, go to step (6).

(6) Generate one more regenerative epoch, and add the
observed values from this epoch to the original
data and go back to step (5).

(7) Check 1f v s within the Roy-Bose joint confidence
interval. Then use the iL to calculate the Hotell-

ing’s 1° value and check if y 15 1nside the conf -

1dence region.

In the proposed procedure, we do not have to keep
each observed data, simply keep their sums. [herefore,
the corputer memory required is kept to the minimum. So

the procedure 15 very efficient and very fast.

4. EMPIRICAL RESULTS

We have tested the procedure on five models : M/M/1
. Tandem Queue, Priority Queue, Central--Server (Computer

System, and (s.5) Inventory models.

In the first three models, we have used traffic in-
tensity p= 0.5, 0.7, and 0.9 to test the performance of
the procedure. In Central--Server Lomputer System, we
used U,zr—OAS. “3_0")‘ and U_2=0.‘:L u,3-041 two
different conditinns. In (5.5) lnventory model we tested

when the average demand g - 18 and by = 25 two condi-

tions.

In every condition, we genecated 100 independent
replications. [he joint confidence coeffiecient 1-4 is
0.9, its relative preci310n requirement v 0 i 0.1. The

results of these erperiments are listed in lable 4-1 to

Table 4-5.

i=1 || no
runcycle
¥
Bonferroni
(stop B)
~stop B no epoch:=
2
~ ves epoch+1
Hotelling
(pass BH) runcycle
¥ B
Roy-Bose Bonferroni
(stop R) (stop B)
‘\EiSP R no epoch:=
2
I/;ZE: epoch+1
Hotelling
(pass RH)
Roy-Bose
end (stop R)
Figure 3-1 : Flow Chart of the Algorithm

In each table, there are two Hotelling T¢ coverage
rates, one denoted with [B] and the other with [R]. The
one with ([B] indicates that when the Bonferroni Joint
Interval reaches the relative precision requirement, we
use the data to establish a Hotelling 12 confidence re-
gion,and check if it contains the population mean vector
to count its coverage rate. And the one with (R} s
similarly established except for that it is established
after the Roy-Bose simultaneous confidence interval rea-

ches the relative precision requirement.

Among all the coverage rates,the theoretic value of
them should be 0.9, since when we build up the joint co-
nfidence interval we have used a confidence coefficient
of 0.9. While from a practical point of view, we would
expect the coverage rate to be higher, we set a hypothe-
sis test here to see if the coverage rate we got were
higher than the theoretic value 0.9.

H0 :p 2 0.9
Hp = p < 0.9

Ilhe decision rule is if P < 0‘9-20_95J P(1-P)/N ,

then reject H0 After calculation, the critical value
of coverage rate P is 0.851 with significance level .05.
We put @ "*" sign on the upper right hand side of those

coverage rates that did not pass the hypothesis test.

Ihe average number of observations and epochs in cur
evperiments are also listed for Bonferroni method and
kny-Bose method. The numbers in the square brackets be-
Jow them are their standard deviation. We also list the

average operating time of PC/AI and CDC for comparison.



Table 4-1 : Empirical Results of M/M/1 Model Table 4-3 : Empirical Results of Priority Queue Model
Evaluating Low Middle High Evaluating Low Middle High
Criteria I (0.50) (0.70) (0.90) Criteria o (0.50) (0.70) (0.90)
Bonferroni 0.93 0.93 0.88 Bonferroni 0.93 0.92 0.89
Coverage Rate Coverage Rate
[B] Hotelling T2 0.89 0.91 0.8b (B] Hotelling T2 0.92 0.90 0.86
Coverage Rate Coverage Rate
[B] Average Number 15311 29432 184875 [B] Average Number 6151 19728 185038
of Observations (2908) (7602) (55420) of Observations (1799) (5711) (59913)
[B] Average Number 7649 8822 18392 [B] Average Number 3065 5887 18388
of Regenerative Epochs (1448) (2268) (5351) of Regenerative Epochs (894) (1707) (5634)
Roy-Bose 0.98 0.97 0.9Y Roy-Bose 0.96 0.94 0.96
Coverage Rate Coverage Rate
[R] Hotelling T2 0.91 0.94 0.92 [R] Hotelling T2 0.88 0.85 0.87
Coverage Rate Coverage Rate
[R] Average Number 21612 42384 262727 [R] Average Number 8581 26377 260668
of Observations (3716) (10191) (67102) of Observations (2268) (7523) (90316)
[R] Average Number 10800 12676 26168 [R] Average Number 4271 7894 25956
of Regenerative Epochs (1849) (3052) (6526) of Regenerative Epochs (1124) (2263) (8549)
PC/AT Average 1210" 16'30" 65°30" PC/A1 Average 4'20" 12°0" 62'50"
Operating Time Operating Time
COD Average Operating 15.69 22.73 94.28 COD Average Operating 7.38 18.34 85.66
Time (CPU seconds) Time (CPU seconds)

Table 4-4 : Empirical Results of Central
Table 4-2 : Empirical Results of Tandem Queue Model Server Computer Model
Evaluating 0 0.5 0.7 0.9 Evaluating Uy 0.5 0.9
Criteria no 0.5 0.75 0.9 Criteria L3 0.5 0.1
Bonferroni 0.93 0.96 0.92 Bonferroni 0.84* 0.90
Coverage Rate Coverage Rate
[B] Hotelling T2 0.92 0.91 0.88 [B] Hotelling T2 0.71* 0.82*
Coverage Rate Coverage Rate
[(B] Average Number 17299 44755 260223 [B] Average Number 914 1309
of Observations (3476) (11404) (86144) of Observations (323) (375)
[B] Average Number 4333 3346 2623 [B] Average Number 37 52
of Regenerative Epochs (878) (843) (862) of Regenerative Epochs (15) (17)
Kkoy-Bose 0.97 1.00 0.97 Roy-Bose 0.97 0.96
Coverage Rate Coverage Rate
(K] Hotelling T? 0.93 0.95 0.88 [R] Hotelling T2 0.79*% 0.79*
Coverage Rate Coverage Rate
K] Average Number 29160 768938 451170 [k] Average Number 1493 1628
of Observations (4351) | (16932) | (100L287) of Observations (445) (506)
(K] Average Number 7293 5921 4541 [R] Average Number 61 66
of Regenerztive Epochs (1081) (1263) (1057) of Regenerative Epochs (18) (20)
FC/AT Average 15°10" 29°10" 140°30" PC/AT Average 2'50" 5'10"
Operating Time Operating Time
COD Average Operating 23.70 44.32 207.88 COD Average Operating 5.64 8.78
lime (CPU seconds) Time (CPU seconds)
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Table 4-5 : Empirical Results of (s,S) Inventory Model

Evaluating uq 18 25
Criteria

Bonferroni 0.94 0.92
Coverage Rate

[B] Hotelling T2 0.92 0.87
Coverage Rate

[B] Average Number 54 71
of Observations (6) (8)
(B} Average Number 20 34
of Regenerative Epochs (2) (4)
Roy-Bose 0.98 0.95
Coverage Rate

[R] Hotelling T2 0.91 0.82*
Coverage Rate

(R] Average Number 70 92
of Observations (8) (10)
[R] Average Number 25 44
of Regenerative Epochs (3) (5)
PC/AT Average 50" 50"
Operating Time

COD Average Operating 2.27 2.30
Time (CPU seconds)

5. ANALYSIS AND DISCUSSION

In this research, we tried to overcome the autocor-
relation among multivariate simulation output observati-
ons. To see if we have accomplished this objective, the
coverage rate of confidence intervals becomes the impor-
tant criterion. As we use 0.9 as the confidence coeffi-
cient, the theoretical coverage rate is 0.9.

the coverage rate of Bonferroni

0.9

From our results,

simultaneous confidence intervals are close to for

most of those five testing models under different condi-
tions, and it is even over 0.95 for Roy-Bose joint inte-

rvals. The coverage rates of Hotelling’s confidence

regions passed the test most of the time e-cept for the

central server computer models. So overall, the perfor-

mance of the technique we proposed is very qood.

Since the interval width of Roy-Bose is wider than
that of Bonferroni, the coverage rate of Roy-Bose should

be higher than the coverage rate of Bonferroni for the

same sample data. In our research,to reach the specified

relative precision, the FKoy-Bose method vould require

more sample data, so the coverage rate of Roy-Bose is

still higher than Bonferroni. The Hotelling’s confidence
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region is an ellipsoid which lies inside the rectangle

of Roy-Bose and Bonferroni simultaneous conflidence inte-
rvals,so its coverage rate is lower than both Bonferroni

and Roy-Bose. However, since the interval length of the

Roy-Bose simultaneous confidence intervals is designed

for the purpose that the probability for all linear com-

binations of the population parameters to be inside its

corresponding confidence intervals is 0.9 , it is wider

than for 1 linear combinations. So its theoretical cov-

erage rate should be no less than 0.9. Similarly, since

0.9 is the lower limit for the Bonferroni simultaneous

confidence coefficient, the coverage rate for Bonferroni

is no less than 0.9
we assumed

But

In doing the multivariate inferences,

that the sample size is sufficiently large. in the
Computer models and Inventory models the sample size we
got when reaching the specified relative precision requ-
irement is still quite small. This might explain why the

coverage rate in these two models is low. 1In the queue-

ing models, the number of observations needed to reach
the specified precision requirement is quite large. Th-
erefore the multivariate normality assumption can be

satisfied by central limit theorem. And their coverage

rates are quite satisfactory.

Our results from PC or CDC Cyber 840 computer are
all the same. The only difference is the operating time.
The pure machine operating time of COC is about 40 times
faster than that of PC. However, as the main frame com-
sometimes we have to wait

PC

puter is shared by many users,
for a longer time to get the results than we do on
The operating time shown in the tables includes the data
generating time and the technique calculation time.

set close

15

When the relative precision reguirement
to 0.1, the coverage rate would be close to the theoret-

ical value. But when the relative precision is too small

, the number of observations needed will become very
large, and the cost will increase tremendously. So we
test the performance of the proposed technique for six

different precision levels 0.05, 0.075, 0.1, 0.1Y, 0.2

and 0.3 at M/M/]1 model and Inventory model. The results

are indicated in Table 5-1 to 5-5. From our results,the
coverage rate of M/M/1 model increased as the precision
requirement becomes smaller and most of them are quite
satisfactory. And the coverage rate for the Inventory
model at diflferent precision levels passed the test too.

lTheoretically., the Hotelling confidence region is
the ideal inference for a multivariate population param-
eters. But as it is an ellipsoid, the interpretation is



Table -1 : M/M/1, p=0.5, Empirical Result under Different Relative Precision

Evaluating 7 0.30 0.20 0.15 0.10 0.075 0.05
Criteria

Bonferroni 0.89 0.94 0.92 0.93 0.90 0.91

Coveraqge Rate

[B] Hotelling 1°? 0.78* 0.93 0.80 0.89 0.85 0.88
Coverage Rate

[B] Average Number 1383 3604 6556 15311 26284 62390

of Observations (L83) (1360) (2062) (2908) (4487) (7752)
[B] Average Number 088 1800 3277 7649 13131 31159

of Regenerative Epochs (288) (680) (1033) (1448) (2251) (3926)
Roy-Bose 0.92 0.96 0.98 0.98 0.97 0.98

Coverage Rate

[R] Hotelling 12 0.85 0.88 0.87 0.91 0.90 0.85

Coverage Rate

[R] Average Number 1970 5029 9300 21612 39247 85194

of Observations (745) (1879) (2540) (3716) (6704) (8498)
[R] Average Number 986 2514 4638 10800 19623 42559

of Regenerative tpochs (309) (944) (127Y) (1849) (3330) (4293)
PC/AT Average

Operating 1ime 1'50" 4'0" 50" 12"10" 16°20" 35°30"
COD Average Operating

lime (CPU seconds) 3.25 .21 7.84 15.69 23.14 48.03

.7, Empirical

kesult under

Different Relative

Precision

Evaluating g 0.30 0.20 0.15 0.10 0.075 0.05
Criteria

Bonferroni 0.79* c.89 0.96 0.93 0.96 0.92
Coverage Rate

[B] Hotelling T°¢ 0.73* 0.82* 0.81* 0.91 0.93 0.85
Coverage Rate

[B] Average Number 2280 6670 12588 29432 H4223 131494
of Observations (1275) (3402) (4693) (7602) (11775) (24070)
[B] Average Number b7% 199Y 3760 8822 16213 39402
of kKegenerative Lpochs (368) (1022) (1417) (2268) (3445) (7139)
koy-bBose 0.91 0.96 0.99 0.97 0.97 0.96
Loveraqe Kate

|k} Hotelling I°¢ 0.79* 0.60* 0.90 0.94 0.89 0.80*
Coveranqe Kate

|R) Averaqge Number 3594 9324 17511 42384 76994 183502
of Observations (2141) (416Y) (L651) (10191) (13363) (30734)
[R] Average Number 1072 2788 5234 12676 23031 55044
of Kegenerative kpochs (640) (12506) (1690) (3052) (3894) (9113)
FC/Al Average

Operating [ime 3’0" 440" 640" 16°30" 25'0" 60'20"
LOD Averaqe Operating

[ime (CPU seconds) 3.73 0.5Y 10.53 22.73 35.31 B2.58
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Table 5-3 : M/M/1, p =0.9, Empirical Kesult under Different Relative Precision
Evaluating 79 0.30 0.20 0.15 0.10 0.075 0.05
Criteria
Bonferroni 0.83* 0.91 0.89 0.88 0.94 0.95
Coverage Rate
[B) Hotelling T? 0.71* 0.83~* 0.79~ 0.85 0.86 0.84*
Coverage Rate
[B] Average Number 13717 37395 73374 184871 361184 880256
of Observations (10738) (20246) (30663) (55426) (86800) | (252045)
[B] Average Number 1358 3719 7304 18392 35622 87782
of Regenerative tpochs (1036) (1965) (2970) (5351) (8230) (24582)
Roy-Bose 0.87 0.96 0.92 0.95 0.97 0.98
Coverage Rate
(R] Hotelling T2 0.74* 0.85 0.83* 0.92 0.90 0.87
Coverage Rate
[R] Average Number 19940 55649 105114 262727 526402 1196240
of Observations (13667) (25288) (37499) (67102) | (114019) | (279950)
[R] Average Number 1982 5519 10482 26168 52756 119271
of Regenerative Epochs (1350) (2447) (3633) (6526) (10864) (27422)
PC/AT Average
Operating Tlime 5'50" 12'30" 25'50" 65'30" 110°0" 270'0"
COD Average Operating
Time (CPU seconds) 8.40 19.32 39.55 94.28 156.13 385.36

Table -4 Inventory Model, yu ,=18, Empirical Result

under Different Relative Precision

Evaluating 7 0.30 0.20 0.1Y 0.10 0.075 0.05
Criteria
Bonferroni 0.99 0.91 0.90 0.94 0.90 0.89
Coverage Kate
(B] Hotelling T2 0.91 0.92 0.89 0.92 0.85 0.88
Coveraqe kate
[B] Average Number 18 25 33 54 78 143
of Observations (2) (3) (4) (6) (9) (17)
[B) Averaqge Number 7 9 12 20 28 51
of Regenerative kpochs (1) (1) (1) (2) (3) (6)
koy-Bose 1.00 0.96 0.97 0.98 0.93 0.95
Coveraqge kate
[R] Hotelling I° 0.88 0.88 0.90 0.91 0.85 0.89
Coveraqe Fate
[R]) Averaqe MNumber 24 33 44 70 102 191
of Observations (2) (3) (4) (8) (12) (20)
[R] Average MNumber 9 12 16 2Y 37 68
of kegenerative Epochs (1) (1) (2) (3) (4) (7)
PC/AT Averaqe
Operating lime 50" 50" L0" 50" 50" 50"
COL Average Operating
lime (CPU seconds) 2.2Y 2.2Y 2.206 2.27 2.29 2.34
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Table 5-5 Inventory Model, u »=25, Empirical Result
under Different Relative Precision

Evaluating 79 0.30 0.20 0.15 0.10 0.075 0.05
Criteria
Bonferroni 0.95 0.94 0.91 0.92 0.90 0.91
Coverage Rate
[B] Hotelling T2 0.83* 0.83* 0.81* 0.87 0.80* 0.87
Coverage Rate
[B] Average Number 19 30 41 71 108 206
of Observations (2) (3) (4) (8) (13) (18)
[B] Average Number 10 15 20 34 52 99
of Regenerative Epochs (1) (2) (2) (4) (6) (9)
Roy-Bose 1.00 0.97 0.93 0.95 0.96 0.95
Coverage Rate
[R] Hotelling T2 0.85 0.80* 0.81* 0.82* 0.85 0.85
Coverage Rate
[R] Average Number 26 38 54 92 143 274
of Observations (2) (4) (6) (10) (16) (23)
(R] Average Number 13 19 26 44 69 132
of Regenerative Epochs (1) (2) (3) (5) (8) (12)
PC/AT Average
Operating Time 50" 50" 50" 50" 50" 50"
COD Average Operating
Time (CPU seconds) 2.25 2.26 2.27 2.30 2.34 2.44

more difficult than the simultaneous confidence interval
which is a rectangle. So in practice, people tend to use
simultaneous confidence intervals most of the time. In
our research we use Hotelling’s confidence region as the

reference for comparing the coverage rates.

6. CONCLUSION

The application of simulation technology is prevai-
ling in almost every field. With the increase use of

simulation technology, the correct inferences from the
simulation result is becoming more important. And as the
number of factors considered for decision-making is inc-
reasing, there is a need for multivariate inferences. In
this paper we present a multivariate inference technique
using the regenerative method to establish simultaneous
confidence intervals and keep their relative precisions

to a specified level. This technique can be applied to

any steady-state simulation which is regenerative and
has more than one variable to be analyzed. The results

indicate that the performance of this technique is quite

satisfactory. And as the program is written in PASCAL

language, it is operatable in almost everywhere on both

main frame computer and personal computer.

The only limitation of this technique is that when
a simulation model is not regenerative or its regenerat-
ive period is too long then this technique is not appli-
cable. Also, when the regenerative points are not easy
to identified the application of this technique might be

difficult.
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