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ABSTRACT

We study the problem of how to simulate the
occurrence of rare events on networks of queucs; an
interesting application is to obtain the expected time until
the network buffers fill up.

We show that the unique optimal (minimum vari-
ance) change of measure (importance sampling) to simu-
late an event is given by the law of the process condi-
tioned on the event (rare or not).

Some theory is needed to circumvent the fact that
knowledge of the conditional laws implies knowledge of
the solution. We present two ways to handle the problem.
Boundary theory of Markov Chains provides the theoreti-
cal framework. The method sheds light on the way that
rare events happen; this in turn explains why some large
deviations ("LD" in what follows) heuristics (Walrand and
Parekh) fail for important combinations of parameter
values (optimal buffer allocation).

A compactess argument and a scale-down version
of the model are used to simulate successfully the chances
of excessive backlogs for many M/M/1 qucues in tandem
and for any combination of paramecters.

Alternatively, we can build on the LD heuristics
and, using the notion of convex combination of harmon-
ics, we successfully treat the optimal buffer allocation
case.

1. SETUP AND THEORY

Let Py be the governing mcasure of a positive
recurrent Markov Process defined on the non-negative
quadrant Z¢ of Z? started at 0 ("the empty system” in
queucing applications) and let Eq be the cormresponding
expectation operator. Let B be a boundary for Z¢ that del-
imits a bounded region R containing 0 (sec Figure 1).
For example, one can think of the state space of a Markov
Process representing queue sizes of an open Jackson Net-
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work (Walrand (1987), Kelly (1979)). See the concluding
remarks on the relevancy of the relatvely simple Marko-
vian case.

1.1 The Problem

Let A be the event that the chain hits the boundary
before coming back to 0, and let o = Po(A). Suppose we
want to find @, but it is hard to do it analytically, and the
boundary is so far away that the event A is rare, and
therefore direct simulation is impractical: it would require
not only too much computer time, but could also exhaust
the random number generator by using it beyond its
period.

In most cases, the interest in finding o comes from
the fact that, if T is the time until the rare event happens,

a reasonable good estimator of Eo(T') is %EO(TO) where
Ty is the time to return to 0.

For a stable system, Eo(T() can be estimated using
direct simulations. In non-Markovian contexts, the usual
idca of regenerative simulation can be used (Ripley (1987)
and references therein).

1.2 Criteria and Method

The criteria by which we select our estimators are
unbiasedness and minimum variance; they correspond to
the two main ingredients in the method: Importance Sam-
pling and Conditioning.

The idea is to change the measure under which the
chain evolves and use likelihood ratios to estimate o.
(Siegmund (1976), Cotwel, Fort, and Malgouyres (1983),
Parekh and Walrand (1989)).
Denote by E, the expected value under P, and by E, the
expected value under Py, where Py is such that P is
absolutely continuous with respect to Py Then, if we
denote by 1, the indicator of the cvent A:



[ =%

a=Eo(1A)=Eo(1A[/)y Py
dP,

where

M

A direct simulation would consist on running the process
under Py a convenient number of times n, stop it upon
hitting B or 0 and use the relative frequency of A to esti-
mate o. Alternatively, one could run the process under

P, for some Py

conveniently chosen

(Importance Sampling), and use @, = I—EIAI: as an
niz
unbiased estimator.

In terms of variance the estimator &, will be more
economical than o, if

nol=Ela LD — ot < Eg(l,) - o )

and much more economical if L <1, or in intuitive terms,
if A is much more likely under P than under P; hence
the idea of conditioning. If we write the variance in the
usual form,

Var(14 L) = Eo (1, L—a)?

we can see another important fact: We should try to find
the change of measure that achieves (almost) constant
likelihood ratio on A. This is a common theme in all
importance sampling applications (Ripley (1987)).

Fix the boundary B, let h be the
h(i)=P;(A), and let P* be the transition matrix
P,-"J- =P; ;h(j)Yh(i). Then, P* is the transiion matrix
associated to the chain P, conditioned on A:

function

Pi(jump to j; A)  Pi;h(j)
Pi(A) T k)

P;(jump to jIA) =

Write L* for [ when P is P*. We note that P* has a
"potential property’:

1.2.1 Proposition: Upon reaching the boundary, L*
is constant ( = o ) independently of the path.

The proof is easy, just write:

PhG)  h(0)

ho_ - - a.
L= PhG)  hb) &

[1

(imj) @

if we A, then

In the above telescopic product, b is some point in B
depending on the path and A (b) = 1. The previous propo-
sition is very elementary; however, it tells the researcher
where to look for an optimal change of mecasure. Note
also that the property is exact, there is nothing asymptotic
involved in it. However, some asymptotic analysis is
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always needed to simplify things. If we are interested in
simulation of rare events that happen because the boun-
dary is far away, then there is a natural limit process that
results from boundaries going to infinity. This will give us
the opportunity to use limit theorems and simplify the
analysis.
Proposition: P§ is the unique Markovian P such
that:
PoA)=1

and L(w)=a forevery ®e A (H)

Proof (sketch): the likelihood of every path under Py is
determined by the conditions (H) and P,.

Then, we propose the estimator:

. . dP
e=of==Y1,L, L[==2
ni:l dPo

Hopefully P can be
obtained either analytically, or, in non-markovian cases,

s . . . h
where P, is some estimation of P © .

with not very expensive simulations and some statistical
techniques, or a combination of all of them. In the experi-
ments described in Section 3 we exploit the fact that P*
depends only on the ratio of values of A (.).

We note that, in principle, it is possible to obtain
as close to it as desired, and that
L =L(o, P) is a continuous function of P for any of the

an estimate of P*

usual distances in the space of P. This points to the cen-
tral issue of the project: how much computational effort
should one devote to the estimation of P*? Of course, the
ideal would be to be able to decide the optimal change of
mcasure analytically, as was partially done in Parekh and
Walrand (1989); we say partially because even there a
numerical minimization was required.

1.3 A Simple Case

It is clementary to check that for X,, the M/M/1
qucue with service rate p and input rate A (N is the boun-
dary), the function A (i) is

3)

h(i)z%—. where p:%

Therefore the law P* is, roughly, the one corresponding
to the M/M/1 qucue with service and input rates inter-
changed:

_p  hGED) X(l-p"f‘)
i+l (1_p,)

Pk =p fori large

h(i)



1.4 Theory

Say that a sequence of real functions {f,} defined
on Z$ converges if the functions converge pointwise on
any finite set. Say that a sequence of boundaries {B, )
"increases to infinity” if the associated sequences (R, )
eventually covers every point in Z¢.
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Figure 1: State Space and Boundaries

the set B ={B:B is a boundary )

where boundary has the same meaning as above. Then, if

Consider

we let 1 € Z? be a reference point and use the notation
hg(.) to stress the dependence on the boundary B, we
have:

hg ()
hg (1)
sequential compactness property: for every sequence of
boundaries {B, ) there is a converging subsequence of the
o)

hg(1) |

Proof: By the diagonal principle, it is enough to
show that the functions can be uniformly bounded at each
point:

Letxe R and c(x)™' = P(hit x before 0). Then,

1.4.1 Proposition: The set{ : BEB} has the

ratios

hg(x) <c(x)

hg (1) 2 P (hit x before0)P,(A) or ha (1) =

Using this proposition, we can estimate successfully
a for many of the multidimensional birth and death chains
encountered in queuing applications.

1.4.2 Definitions: A real function h(.) defined on
the state space of a Markov Chain with transition matrix
P is super-harmonic, harmonic or sub-harmonic depending
on whether h>2 Ph, h =Ph, or h < Ph.
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1.4.3 Proposition: Provided the sequence { B,}
increases to infinity, the limit of a converging subsequence

of{ ::((1))} is harmonic.

Note: the increasing condition is not needed; if not

true we obtain a super-harmonic limit.

Proof : the function hg is super-harmonic and harmonic

except at B. By the Markov property, if i€ B°/\R then

h(i)=YPijh(j)and if ieB then 1 =h(i) 2 YP; ;h(j).
J j

1.5 Results from Boundary Theory

In this section, we sketch the main ideas from tran-
sient boundary theory of Markov Chains that are relevant
for our purposes. See Freedman (1983) for notation and
details. The following theorems are a guiding light in our
search for convenient transformations of the chains we
study.

Let K be the normalized Green function, k the
Martin Kemel, p an initial distribution and h any P-super-
harmonic function. Let Q° be the space of finite paths on
Z2 and let (Z2)" have the product o—field B. Consider
in (Z2)~ the set Q~ of paths that visit every state finitely
often, with the inherited sigma field. Let Q = Q" UQ"™.
Our processes will live in €Q: they will be transient
because they disappear (Q") or because they leave forever
any finite set (™).

(CT) For all h, K(i, X,) converges P,f',, as., and h is
extreme iff

Py (lim, K (i, X,)=h} = 1.

(RT) There exist an invariant set F such that, for every

h, there exist a unique probability m on F with
h

Lkdm =h, namely, Pp, restricted toF.

The first theorem gives a formal presentation of the
idea that h-transformed processes correspond to particular
The second, gives a
representation of super-harmonic functions in terms of the
extreme harmonics obtained from the Martin Kernel. It is
clear that these theorems are relevant to our problem.

ways for the chain to "go to o "

1.6 A Simple Case: Continuation

Consider the p-up g-down random walk W, on Z

with p<—;- and, the harmonic function g given by:



it jy 57
g()=R(j)= et o 4 Ly gor g
Py(hit j) 2y p
q

Then P# is the p-down q-up random walk. This is the
transformation we obtained asymptotically in the presence
of a reflecting boundary. We learn from this example that
the transformed process P* of X, (see 1.3) agrees, away
from the boundary, with the transformed process of the
similar process W, without the reflecting boundary. We
will be guided by this when, in dealing with process in
Z2, we consider the harmonic transformations correspond-
ing to the free process in Z¢ hoping that, asymptotically
and away from the boundaries, they will give the right
answer.

1.7 How we use Boundary Theory

Queues in Parallel.
study the case of two M/M/1 queues in parallel with input

As our first example, we

and service rates A; and W;, i=1,2. Assume that A; < J;,
i=1,2 for stability. We will use the notation MPO‘x"‘z‘”r”z)

for such a system, (see Figure 2).

A —>—@—>_
e
ﬁ-—— —>—@—>—
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Figure 2: Queues in Parallel

This case was considered in Parekh (1986) and
Parekh and Walrand (1989). Let P be the probability on
B corresponding to the jumping chain started at (0,0). Let
P, be obtained from Pg by means of the following altera-
tions: the transitions from (0,1) to (0,0) and from (1,0) to
(0,0) have now probability 0, instead of WA+ Aptp,) ™!
and 1, (A +Ap+1,) ™! respectively.
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Then, by recurrence of Py, the Green function of
P, is finite and eventually the chain is going to disappear
after reaching the set {(0,1),(1,0)}: Po(Q") = 1. The evo-
lution of the chain under Pg until it hits 0 is the same as
under P, until it disappears. Since we want to understand
how the original Process Py goes far away before coming
back to 0, it is clear that we need to understand and obtain
those h for which PA(Q~) = 1.

Furthermore, (RT) is the type of representation we
are looking for. Our limit of normalized hitting functions
is harmonic; by (RT), it is a convex combination of
extreme harmonics. A complete research program would
include the search for a complete set of extreme harmon-
ics of Py, but we will not pursue this objective now.

For P, the functions

k(@) = hi(qrgn) = (50

i=1.2
A

4)

h h

. 1 . 2 .
are harmonic, P " is the network MP("]»"Q-"N‘Q) and P “1s
the network MP @y p ). These two switching of rates

were discovered in Parekh and Walrand (1989) and they
correspond to the chain going to infinity as q, or ¢, go to
infinity respectively. We note also that the product

hyy = hyxh, (5)

is harmonic and P"12 is the network MP @ o ay- The

presence of this "product form" harmonic is unusual and
is explained by the lack of interaction between the queues.
However, we will use this product together with &, and h;
later. This lack of interaction between queues makes the
network a rather uninteresting one. However, the analyti-
cal calculation of o for some boundaries to be considered
later is possible but complicated, and simulation and/or
numerical methods seem to be appropriate.

Quecues in Tandem. Consider two M/M/1 queucs
in tandem with input rate A and service rates p; ;. We
to this model often and use the notation
MS .y, up for such a system. We will always assume that

will refer

A < min{l,,1,) for stability.

Let P} be the probability on B corresponding to
the jumping chain started at (1,0). Let P, be obtained
from P} by means of the following alteration: the transi-
tion from (0,1) to (0,0) has now probability 0, instead of
Ha(A+p2)". Then, by recurrence of P, the Green function
of P, is finite and eventually the chain is going to disap-
pear after reaching (0,1): P(Q") = 1.



For P, (in fact for P]), the function

Hi 4y

hi(q) = hi(q1.q2) = (7 (6)

is an extreme harmonic, and P* is the network MS u, oy

Irrespective of whether p <p, or not, it corresponds to the
chain conditioned to go to e by sliding ncar the axis
AX,=(q:9q,=0) and thercfore P* would give the
almost optimal change of mcasure for a boundary B that
has the property that, with probability close to one, the
process hits B near its intersection with the set AX;. This
approximation is good enough like
MS 620305y It is one of the switching of rates discovered
in Parekh (1986). The function

for models

]
A

q91%49,

hq) = haoq1.92) = (=) @)

is harmonic everywhere except on the set AX,, where it is
sub-harmonic. We will use h, and h, in Section 2. We
note here that, although h, is not harmonic, intuitively it
makes sense to consider it since under th the chain hits
AX, only finitely often.

Consider the homogeneous random walk on Z? that
has the same transitions as MS iy i) does on the region

{g1>0nNn ¢g,>0}). Tt is possible to show that, if

AL+, = Ax + u,i— + uzi, then the family of functions

hey = hey(qrq) = x" Yy (8)

gives all the extreme harmonics that take the value 1 at
(0,0) corresponding to this "free" walk. By Choquet’s
theorem, they must be unbounded. Of course, this ran-
dom walk and MSO‘*“lJ‘z) are essentially different;

nevertheless, the family of functions (8) provides us with

a first step in the search of convenient transformations of
e proce .

the process MS"H"M‘:’

It is important to point out that the presence of
boundarics (axes) is a real problem in dimensions greater
than one, and it is the major stumbling block in the
development of exact expressions for the harmonic
transformations for our birth and decath process in Z4. In
our project, we opted for the use of rough transformations

as explained in Section 2.

Even if exact harmonics were to be found, the sim-
plicity of the exponential ones should be emphasized. An
exact but hard to implement formula would not be of
much help.
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The difficulty of dealing with the axes is also
present when one attempts to construct a rigorous large
deviations approach (see Parekh (1986).

1.8 OPTIMAL BUFFER ALLOCATION

In Anantharam (1988) the following Rule is con-
sidered: Consider an open network of J exponential
servers with service rates H),Ms,.......;, Bernoulli routing
with matrix RY*U*D = ((r;;)), and exogenous Poisson
ammvals of rate y from the outside world o. The network
satisfies the usual independence assumptions.

The optimal buffer allocation problem is the prob-
lem of how best to distribute a fixed number of available
buffer space among the nodes of the network so as to
optimize some performance criterion. A natural perfor-
mance criterion is to maximize the expected time to buffer
overflow, and this translates into the minimization of the
probability o.

Assume that the network is stable, namely that the
solution of the flow balance equations:

J
A =Yoi t ZX,‘I‘_,’_,‘

j=

1<i<J,

satisfy A; < {;, 1<i<J. Then, the following rule is sug-
gested by Anantharam:

1.8.1 Rule: In allocating N buffers to "maximize
the time to buffer overflow”, one should allocate roughly a
fraction p;N of the buffers to node i, where p; is propor-
tional to log(u; A;Y).

In Sections 2 and 3 we will consider what we call
"symmetric examples”, typically queues in tandem with
equal service rate and equal buffers or queues in parallel
with equal effective service rate p;A! and equal buffers.
Examples to keep and

in mind are MS(0_2.0.4'0'4)

For queues in series, it is easy lo see that the buffer sizes
considered satisfy Rule 1.8.1. The routing matrix is very
simple and the flow balance equations have the constant
solution A; = v, therefore the ratios ;A are constant.
Similar results hold for queues in parallel.

This is the reason why we say that the problematic
models considered in Section 2 are the most interesting
ones. It is for them that the Large Deviations method
described in Parekh and Walrand (1989) fail.



2 USING LD RESULTS

In order to test how well the notion of harmonic
transformations and convex combinations of them describe
the problem, we will consider the problematic models
MP 02020303 and MS 20404y and use the results
obtained in Parekh and Walrand (1989) where, using large
deviations, the authors found set(s) of "minimizing param-
eters” that hopefully give the optimal change of measure.
It is for the cases where there are more than onc set that it
is hard to say which one to pick to do the change of
measure. Using convex combinations hg of the functions
give by eqs (4), (5), (6), and (7) in Section 1 we will try
to find a value of B such that p's is roughly PhB. Here,

minimizing parameters: (0.3,0.2,0.2,0.3), (0.2,0.3,0.3,0.2)
and (0.3,0.3,0.2,0.2). They correspond, in the given order,
to hy, h, and h; given by eqs (4) and (5) in Section 1.

Consider first convex combinations Bk, + Baho,
with B, + B, = 1. For reasons of symmetry, it is clear that
we can restrict our search for the optimal B to combina-
tions that satisfy B; =, =0.5. With this in mind, we
performed the experiments shown in Table 2.1, where we
report the results of 13 experiments, each with 2,000
paths. Together with the estimator & of o, we give the
estimation & of its standard deviation.

Comparable experiments done with
Bi=0 or PB,=0 and 20,000 paths underestimated o by
20 percent or more. The results are shown in table 2.2.
What about the inclusion of A, in the convex combina-

We run the process with several values of

tion?
B =B Z% and obtained better answers with B3 close to

zero. It seems that a 10 percent mixture of Ay, helps, as is
reflected in the higher value of p, as compared to the
results in Table 2.1.

We also show the numbers corresponding to three
2000-paths samples with B, = B, =0, and one sample of
20,000 paths. Similar results were reported in Parekh and
Walrand (1989) page 64.
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o =4.16x10™  boundary: q, + q,=25
B,=05 B,=05 B,=00
# paths 6x10° 6x10° | p=668"
2000 40.8 291 14.02
2000 41.1 3.04 13.50
2000 41.8 3.18 13.16
2000 39.3 2.81 13.99
2000 42.7 3.30 12.92
2000 40.3 3.16 12.76
2000 379 297 12.78
2000 42.7 3.29 12.98
2000 38.1 2.86 13.33
2000 39.9 3.11 12.82
2000 43.7 3.32 13.15
2000 433 3.80 1141
2000 42.1 3.48 12.11
ave 4.105x10* | 3.1x107%
s.d. 1.89x1073
Table 2.1
o= 4.16x10°*  boundary: q,+ q,=25
#paths | Bi  Br PBs | 6x10° | 6x10° | p=as"
2000 0.00 0.00 1.00 34.1 493 6.9
2000 0.00 0.00 1.00 37.8 8.50 4.5
2000 0.00 0.00 1.00 47.4 8.90 5.3
20000 1.00 0.00 0.00 34.7 7.21 4.81
20000 0.00 1.00 0.00 315 5.43 5.80
20000 0.00 0.00 1.00 38.0 2.71 14.0
2000 0.33 0.33 0.33 40.6 3.08 13.2
2000 0.33 0.33 0.33 32.8 1.88 17.5
2000 0.33 0.33 0.33 35.0 3.26 10.7
2000 0.40 0.40 0.20 43.0 2.85 15.1
2000 0.40 0.40 0.20 39.8 2.96 13.5
2000 0.40 0.40 0.20 429 2.52 17.0
2000 0.45 0.45 0.10 39.9 1.60 24.9
2000 0.45 0.45 0.10 42.5 1.98 21.5
2000 0.45 0.45 0.10 39.6 1.76 22.5
Table 2.2




2.2 Queues in Series

We study now the model MS ;0404 With the aid of the
harmonic function A, and the sub-harmonic h, given by
equations (4) and (5) in chapter 1, and convex combina-
tions hy = Bh, + (1-P)h,.

P"! is MS(s0206 and P'2 is MSaoa0, that is, we
have the two rate switches proposed in Walrand and
Parekh (1989).

Again, the idea is to find a value of B such that Ph” is
roughly P"B. This value of B must be determined experi-
mentally, since we do not know which is the right mix-
ture. We will use in our decision the sample variance as

an estimate of the distance d(PhB . PhB). In all the exper-
iments, we divide the work into the steps "find B" and
"simulate using the chosen B". We decided to run the
process for roughly 1000 paths for the first step, and we
used them in two different ways according to the explana-
tions below. The results of the experiments are summar-
ized in tables 2.3 through 2.5. Next, we describe a few
suggestions on how to pick B.

How to Find B. The method of maxima consists of
running the process a number of times (referred to as "#
paths” in the tables) under Pgﬁ for a few (ten or so)
values of B spaced uniformly in (0,1). For each B, we

computed &, 8, and p = % The final simulation is done

using the B that achieves the maximum of p (shown with
a*).

The desire to have & small is clear. We have observed
that, in general, a is underestimated: large values of &
come together with large values of & except for the right
Is; and conversely, it is most common to have small
values of 6 associated with an underestimation of o. This
seems to be true not only for our experiments but also for
the ones done in Parekh and Walrand (1989). This
method of finding P is shown in tables 2.3 and 2.4.

How to Find P. Method of Few Values Near The
Maxima This is shown in table 2.5. We proceed as with
the method of maxima explained above, but instead of
picking the maxima, we choose a few (four in our case)
values near it, and use an average of the estimates G
obtained by runing the process with these few values.

The overall conclusion seems to be that it may be
risky to spend a large amount of resources on trying to
find the exact B; the p curve seems to be rather peaked
around it, and an average of near-values works well. This
last method works as well as the one corresponding to the
pure maxima, but we refer to Fresnedo (1989) where there
is more information on the subject, as well a some other
suggestions to find B that are too long to describe here.
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2.3 Comments

In this Section we conjectured that the set of dom-
inant tubes discovered by the Large Deviation method
corresponds, roughly, to the set of dominant harmonics in
the representation of hg. An attempt to prove this should
start with a rigorous explanation of the LD method and
then with a rigorous connection between the two. We
believe however that the experiments done give strong
support to this conjecture and to the belief that there was
a missing ingredient (the notion of convex combination) in
the approach of Parekh and Walrand.

a = 181x107 boundary: q, + q,=20

# paths B 6x10° | éx10° p
100 0.00 7.83 1.16 6.8
100 0.17 111 904 1.2
100 033 18.0 4.50 4.0
100 0.50 20.6 3.73 5.5
100 0.67 18.6 2.87 6.5
100 0.83* 19.2 1.85 | 104
100 1.00 29.7 14.8 20
500 0.83 19.5 78 | 248

Table 2.3

o =3.54x10""  boundary: q, + q, =40

# paths B 6x102 | 8x1012 | p
100 0.00 8.40 1.70 49
100 0.10 18.5 891 2.1
100 0.20 85.3 48.5 1.8
100 030 26.8 11.8 23
100 0.40 19.9 4.56 4.4
100 0.50 22.0 533 4.1
100 0.60 21.1 4.88 43
100 0.70 21.0 6.50 32
100 0.80 26.7 5.08 53
100 0.90* | 29.2 262 | 11.1
100 1.00 4.17 .67 6.2
2000 0.90 353 1.06 | 333

Table 2.4



o = 1.81x105  boundary: q, + g, =20
# paths B 6x10° 6x108 p
100 0.00 18.0 8.14 2.21
100 0.10 18.8 6.41 294
100 0.20 37.8 16.1 234
100 0.30 253 6.03 4.20
100 0.40 12.2 2.58 4.74
100 0.50 14.9 221 6.76
100 0.60 15.4 2.85 5.38
100 0.70 143 1.90 7.53
100 0.80* 215 2.20 9.79
100 0.90 134 1.63 8.22
100 1.00 7.1 1.60 4.46
250 0.74 18.7 1.78 10.53
250 0.79 16.9 1.15 14.73
250 0.85 19.9 1.77 11.27
250 0.90 18.4 1.65 11.16
total # paths =2000, ave of last 4 values = 1.84x1073

Table 2.5

3. USING THEOREM 14.1

This Section describes the results of the "scaled-
down model" method. It basically uses the compactness

proposition proved in Section 1.

We first describe how the scaling is done and then
report the results of experiments for a few (n<5 ) queues
in tandem, and different combinations of parameter values.
The type of boundaries we consider are always of the
cubic form B = {q : max{g;:1<i<n} =K,}, for some
integer K, in the range 10 to 100.

About Notation. The subscripts s and b applied
to hitting functions (h), regions (R), buffer sizes (K) and
points in the region R (x or y), indicate that they refer to
the small or big cube. Also, we identify regions R with
the corresponding boundaries B: hg is the same as hg.

3.1 How the Simulation is Done

First Step. Given a big cube R, with side size K,
we choose a small cube, R,, of side size K, usually rang-
ing from K, /10 to K, /2. The theory underlying this choice
is Proposition 1.4.1; however, we note here that it is prob-
ably hard to identify convergent subscquences and it is
plausible that that a cube (equal side sizes K;) will not do
the best job. However, since our main concemn is the
symmetric case where all effective service rates are
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roughly the same, to simplify things and decrease the
number of parameters in the experiments we just picked
all buffers of the same size, both for R, and R;.

Then, starting with the function 135(.), we perform

Gauss-Seide] relaxations (we used the methods in Green-
berg and Vanderbei (1987)) to obtain hB:.

Second Step. We then calculate P" for R;. In the
terminology of Section 1, P" coupled with the mapping T

described below, will give us an estimate 150 of P;”
corresponding to R,.

Third Step. We run the process on R, using (PI'I )
as follows (see Figure 3). Imagine that we arc at position
x, and we want to execute a jump according to Po. For
the purpose of finding the next position y, in R,, we pre-
tend that the particle is jumping in R,. From x, = m(x,),
perform the jump according to P* to obtain y, and finally
find y, in R,. For this procedure to work, a mapping T is
needed: the one that says, for a point x, in R,, which is
the corresponding point x; in R;. Note that the inverse
mapping Y from y; to y, is automatic: because of the
nature of the problem, for a given transition in R;, there is
a unique transition in R,. For example, if the transition in
R, indicates that there was a transfer from the second
queue to the third, then the same thing happens in R,. In
other words, x,, x; and y, determine y,, and we stress
that ¥ is a function of three arguments. The following
diagram tells the whole story:

Yy

Xp

Ys

Figure 3: Mapping 7 from big cube to small cube



The Mapping T acts on each queue as follows: it A=02,1, =03 p1=05, p3=05, ps =05
has slope 1 near the axes and boundary and is linear in inner boundary = 10; outer boundary = 30
the middle. We refer to Fresnedo (1989) for details and numeric evaluation of o was too costly
the rationale behind this choice.
#paths 6x107 6x107
2000 122 2.21
2000 124 2.20
A=020,p,=04,pn,=04 2000 122 2.15
inner boundary = 10; outer boundary = 60 2000 118 2.11
a = 3.465x107" 2000 121 2.18
#paths Gx10'8 610 2000 121 216
2000 125 222
1000 2.16 5 2000 121 216
1000 1.31 .34
2000 3.84 1.10 ave is 1.22x107°
2000 3.67 1.38
3000 5.23 2.46 Table 3.4
3000 3.99 1.16
weighted ave is 3.84x107® A=02, p =04, p=05p3=05 ps=04,u5=04
inner boundary = 4; outer boundary = 10
Table 3.1 o = 2992107
#paths Gax10? 6x10°
A =020, p, =04, p, =04, 500 29.6 2.68
inner boundary = 10; outer boundary = 30 500 31.6 2.64
o =3.722x107° 1000 27.5 1.79
#palhs dxlolo 6.)(1010 1000 297 1.82
2000 204 219 1500 31.7 1.59
2000 156 202 2000 28.9 1.27
' ' . .27
2000 35.7 1.98 3000 302 12
2000 35.0 198 weighted ave is 2.99x1072
2000 40.9 2217
2000 35.1 1.98 Table 3.5
2000 38.1 2.08
ave is 3.726 x107° A=02, 14, =04,4,=05 p3=05,p,=04
inner boundary = 7; outer boundary = 20
Table 3.2 o= 1.07)(10'5
#paths Gx10° %106
A=0.1, u =02, p, =04, 100 283 127
inner boundary = 10; outer boundary = 100 1000 8.17 1.6
o = 1.051x10°% 1000 974 L6
#paths 6x10° 6x10%? 1500 10.5 1.3
50 108 438 1500 12.5 2.0
100 104 98 1500 14.1 2.2
100 109 299 1500 11.7 1.8
100 105 337 1500 10.1 1.3
100 102 3.27 weighted ave is 1.13x107°
100 109 3.59
Table 3.6
weighted ave is 1.06x107%

Table 33




3.2 Comments

A numerical approach to obtain a = h(0) requires
the solution of equations involving all components of the
function k. Since we are interested only in the value of
one of them, it is clear that simulations might have and
advantage when the state space is very large, as is the
case with networks. Here we have used a mixed method
that solves a numerical problem similar to the original one
but of a smaller dimension.

4. CONCLUSIONS

In Section 1 we stated a novel minima variance
principle and showed the connection to a standard chapter
in the theory of Markov Chains. In Section 2 the harmon-
ics transformations corresponding to a boundary free pro-
cess proved to be useful in dealing with the problem of
balanced buffers. From the "convex combination” experi-
ments we learned how to overcome the problems of a
pure LD solution. In Section 3 a scaled down version of
the model based on a compactness argument showed that
a smaller size problem contained enough information to
We believe that
these ideas will prove to be useful when dealing with net-

obtain reasonable changes of measure.

works of G/G/1 queues for which simulations are most
useful, and refer to Fresnedo (1989) for some suggestions
on this subject and many more experiments.
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