Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

LARGE DEVIATIONS THEORY TECHNIQUES
IN MONTE CARLO SIMULATION

JOHN S. SADOWSKY
School of Electrical Enginecring
Purdue University
West Lafayette, IN 47907, U.S.A.

ABSTRACT

This paper considers the estimation via importance
sampling simulation of large deviation probabilities.
These are probabilities P which vanish with an
cxponential rate as n — oo. Let Ly, denote the number of
simulations required to obtain a specified relative
precision. Since P vanishes exponentially fast, it
turns out that for most practical importance sampling
simulation schemes L, will grow exponentially as n —
. We say that a simulation scheme is asymptotically
efficient if Ly grows less than exponentially fast.
Identification of sampling
simulation schemes is the primary goal of this paper.

efficient 1importance

There are several problems of interest which can
be couched in the framework of large deviations theory.
For the purpose of developing intuition and presenting
of our results with minimal mathematical preliminaries
we shall concentrate on the problem of i.i.d. sums
crossing a threshold. In this setting we shall show that
there is precisely one i.i.d. simulation scheme that is
Generalization and related problems are also

We assume the reader has no previous

efficient.
overviewed.
knowledge of large deviations theory.

1. INTRODUCTION

Importance sampling is a Monte Carlo simulation
technique in which simulation data is genecrated using a
different from the
To form an unbiased Monte

probability distribution true
underlying distribution.
Carlo estimator, one must weight the observed cvents by
an appropriate likelihood ratio. The method is called
“importance sampling” because simulation distributions
which minimize the estimator variance also tend to
increase the relative frequency of the "important” cvents.
The efficiency of an importance sampling simulation is

usually expressed in terms of computational requirement.

Let lA’n denote the estimator for a probability Pp, and let

L, be the total number of simulations runs required to

obtain a specified relative precision €; that is, €
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A
var(Pn)1/2/Pn. The goal is to select a simulation
Ln. The
unconstrained optimal solution is known, and in fact,

distribution which tends to minimize

this solution yields a perfect estimator. However, the
unconstrained solution is not a practical solution
because it assumes knowledge of Pn. A "practical”
simulation distribution is one which can be efficiently
implemented with computer random number gencrators.
Thus, the practical problem of importance sampling is
to obtain the most efficient simulation distribution from
a suitably of candidate distributions
determined by implementation constraints.

large class

In this paper we consider the importance sampling
We
adopt the framework of large deviations theory which
considers a sequence of probabilities (Pp) vanishing

design problem from an asymptotic point of view.

exponentially fast.  As Py vanishes, it scems quite
reasonable that the computational requirement Ly will
generally grow as n T . In fact, L, may grow
exponentially fast and in this case we say the simulation

scheme is inefficient. Conversely, we say that an

importance sampling simulation scheme s
asymptotically efficient if L, grows less than

exponentially fast. In general, there are many efficient
simulation schemes, but most of these will not satisfy
practical implementation constraints. In various
settings several previous works, including Sicgmund
(1976), Cottrell, Fort and Malgouyres (1983), Dupuis
and Kushner (1987), Parckh and Walrand (1989), and
Hunkel and Bucklew (1990), have considered the family
of "exponential shifts” as a parametric family of
candidate simulation distributions. These works show
that the particular "optimized” exponential shift which
occurs in large deviations proofs also asymptotically
minimizes estimator variance within the this parametric
family of candidates. In fact, this solution is "efficient”
by our definition, and all other exponential shifts are

inefficient.



This paper is intended to be an introduction to the
theory of large deviations in Monte Carlo simulation.
We assume no previous exposure lo large deviations
theory. In order to develop intuition with minimal
the bulk of this paper is
devoted to the simplest large deviations problem; the
problem of threshold crossings of i.i.d. sums. Our main
result is that from among candidate class of all i.i.d.

mathematical preliminaries,

simulation distributions only the optimized exponential
shift is efficient. This is a stronger result then obtained
in the references cited above because we consider any
i.i.d.
paramctric family.
Markov chains and systems with Gaussian inputs, but we

simulation distribution, not just an cmbedded

We shall discuss genecralizations to

do not attempt to fully develop these.

2. IMPORTANCE

Let (X1...X
density fp(x1,...xp)-
generic sense. fr(xi...
probability density function or a probability mass
For some set E; C R™, we wish to estimate

SAMPLING BACKGROUND

n) be n random variables with joint
We use the term "density” in a

Xn) may be cither a joint

function.
the probability

Phn = 2P( (X1...Xp)e Ep). (1)
To do this, we generate L independent realizations of
(X1,...Xp) using the simulation density f;(x],..,xn)
instead of the true joint density fn(x1,..,xp). The

importance sampling Monte Carlo estimator for Py is

3 1 (£) (g (£) (£
=T X7 s X4 ) aXy Xq )) (2)
£=1
where (X(l’e) ..... Xl(f)) is the £'th independent sample from
the simulation density f;(-),
1 if (x1,...xp) € Ep
lEn(Xl...,Xn) = { 0 if (x]...xp) € Ep° (3)
and
fn(X1....Xn)
wn(X1,...Xp) = e (4)

l':,(x]....xn)

The function 1En(~) is called the indicator function of

the set Ep and the likelihood ratio wp(-) is called the
importance sampling weighting function. Notice that
case f;() = fu(+) is ordinary Monte Carlo ecstimation; in
this case wp(-) = 1 and estimator (2) reduces to a sum of

indicator functions that simply counts the number of
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occurrences of the event [(X(lt),...,Xr({e)) € Ep).

The purpose of the importance sampling weighting
function in (2) is that it results in an unbiased estimator.

Consider E*[/l;n] where E*[-] denotes  the f;;(.)

expeclation operator.  The summands in (2) are
independent, and hence, using (3) and (4) we have

= E*[lEn(X],..,Xn)wn(Xl,..,Xn)]

= Jg

E[lEn(X].an)]

f Veen
n(xl Xn) f:l(xl
fn(xl, -Xn)

,Xp) dx1..dxq

= Pp (5)
which proves unbiasedness. In order for this
computation to be meaningful, we require only that
ﬁ(xl,..,xn) > 0 whenever (x1,..,xp) € En and
fn(x1,...xp) > 0.

Next we consider the estimator's variance. Since P

1s unbiased, and since the summands in (2) are

independent, we have

vaJ*[lADn] = Evar*[lEn(Xl,..,Xn)wn(XI,...Xn)].
= Tl nam - pa? ) (6)
where
Mn(f) = B[ (g (X1 Xp)wa(X 1 Xn)?2 ] (7)

e * N . .
Thus, minimizing var  [P,] is equivalent to minimizing

the functional nn(f;)‘ From (7) it is apparent that a

good simulation density f;(~) will tend to minimize the
values of wp(xq,...xp) on the set E;. Referring back to
(4), we sce that this will be accomplished if f;(-) puts a
large percentage of its probability mass on Ep,
concentrating fn() 1s

This reasoning is formalized by

its probability mass where
relatively large.
following derivation of the unconstrained optimal
simulation density (c¢.f. Hammersley and Handscomb
(1964)).  First we recall an clementary form of Jensen's
inequality: E*[Zzl > E*['/,]2 with equality if and only if

Z is constant with l):](')-probabi]ily 1. Applying this to

(7) we sce that T]n(f;) 1s uniquely minimized if when
IEn(X 1...Xn) wn(X1,..,
probability 1.

Xn) is constant with f;(-)—

Using definition (4), this is cquivalent to



fr(X],.0Xp) o< g (X1Xn) fn(x10eXp). (8)

This the
identified above; it puts all of its probability mass on
Ep and in direct proportion to the values of f(x1,..,.xp).

solution possesses preciscly attributes

In addition, when (8) is used we have var*[/l\’n] =0

However, (8) is not a practical solution. Notice that we
must normalize (8) to a probability density, but the
resulting constant of proportionality is Pn‘l.
Furthermore, one finds that the importance sampling
weight is equal to Py (with probability 1). Of course,
Py is precisely the parameter which we desire o estimate
and it is inappropriate for Py to appear explicitly in its
own estimator.

The practical problem of importance sampling

design take
implementation constraints. For example, it can be

simulation must into account
difficult to generate random samples from a arbitrary
joint distribution (such as (8)) on a digital computer.
Computer generated random quantities must be computed
as functions of i.i.d. uniform random variables. In

addition, we must also be able to efficiently compute the

importance sampling weight. Nonetheless, the
unconstrained solution (8) has provided some valuable
insight.

3. LLD. SUM THRESHOLD CROSSING

3.1 The i.i.d. Simulation Problem

In this scction we assume that (X1,..,Xp) 1s an
i.i.d. scquence with marginal probability density p(x).
The joint density has the product form

n
fa(x1...xp) = p(xg)- 9)
k=1
Consider the statistic
1 n
Thn = o5 28Xy (10)

k=1

We wish to estimate the probability Pp = P(Tp 27v) for
some fixed threshold 7y. This problem can be
reformulated in terms of the framework of the previous
section.  Simply define

n
Ep = { (x].,...xp) 1111— Z gx) € EJ. (11)

k=1
Before proceeding with the large deviations, let us
consider what the unconstrained optimal simulation
density looks like. Applying the product form (9) to (8)
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we find that unconstrained optimal joint simulation
density 1s
n

lEn(xl,..,xn) p(xg).
k=1

fr(X1,..Xp) o (89
Notice that even though f,(-) has product, the indicator
lEn(-) does not have product form, and hence, neither

In (8"), f;(-) is not even a stationary

does f:;(~).
sequence distribution. The main goal of this section is
to consider optimization of i.i.d. simulation densities,

that is,

fA(X1 .- Xp) (12)

n
IT axp).
k=1

We shall assume throughout that q(x) > 0 whenever p(x)
> 0 to ensure that the computation (5) is valid.

3.2

Large Deviations for [.I.D. Sums

Figure 1: Illustration of the basic exponential bound.

Consider the simple exponential upper bound

<

E( exp( na(Tp -7v]) ]

which holds for any o 2 0. The bound (13) is based on
the indicator function bound ][Y»“)(l) < exp(naft-y]), as

(13)

illustrated in Figure 1. Recalling (11), this bound can
also be expressed in terms of the variables (x1,...xp) by

replacing t with 2, g(x):

IA

n
lEn(X|,...xn) cxp( ukgl[g(xk)_yl)

n
ITerp(o [gx)-v1)  (14)

k=1

From (14) we obtain



<

n
Pn < E[ [Texp(a(gX)-v1)]

k=1

= (E[ exp(agX)-y1)])"

exp( —n [oy - A(a) ]) (15)

where X is a random variable with density p(x), and

= log( E[ exp(og(X))]). (16)

We shall proceed under the following assumptions

A(o)

(i) A(a) < o for all @ € (-8,8) for some & > 0,
(1) var[g(X)] > 0, and
(i) Pp=P Ty 27) withy2 E[g(X)].

A(a) is a cumulant function (that is, a log - moment
generating function). It is known that A(a) is strictly

convex and analytic on the interior of the set {o: A(a) <

>}. We also have
A@) = E[g(X)] = E[Tg] (17)
and
A'0) = var[g(X)] = nvar[Tq]. (18)

See Ellis (1985).

In order to obtain the tightest upper bound in (15),
we should minimimize the exponent with respect to the
parameter o 2 0. This is equivalent to maximizing the
quantity in square brackets in the exponent of (15). The
results is

<

Pn exp( - I(y) n) (19)

where

I(y) SUP]){ {oay-A(a) ). (20)

e
Actually, the maximization in (20) should be restricted
to just &« 2 0. However, under assumption (iii), it is
casy to show (by differentiation) that the global
maximization in (20) occurs either at some point o 2 0
or in the limit as @ — +eo. We could replace (ii1) with

(iii') Pp =P Tp <v) with y< E[g(X)].

In this case, the upper bound (15) would be valid only
for @ < 0, but then the maximization in (20) occurs
cither at some point a < 0 or in the limit as &0 — —eo.

So, definition (20) handles both cases (iii) and (ini').

I(y) is called the large deviations rate function. The
relationship (20) is the Legredre-Fenchel transform (also
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known as the convex conjugate) of A(a). For a
thorough exposition of the role of convex function
theory in large deviations analysis, the reader is directed

to Chapter VI in Ellis (1985).

Now, the upper bound (19) decays exponentially as
a function of n. The fact that P, vanishes follows
directly from conditions (iii) or (iii') and the law of large
numbers; Tp — E[g(X)] = A'(0) in probability. So we
sce that theory deals
"exponentially fast” form of convergence in probability.
At this point we only have an upper bound. It may
happen that P; vanishes faster than exp(-I(y)n).

large deviations with an

However, this is not the case. In essence, the main
thecorem of large deviations theory states (19) is
exponecntially tight in the sense that the exponential
rate of decay of Py is precisely I(y). The following
theorem is a modern version of the first large deviations

theorem originally published by H. Cramér in 1938.

Theorem 1: Assume (X)) is i.i.d. and conditions
(1), (ii) and (iii) or (iii') hold. Then I(y) is a convex
function, I(y) 2 0 and I(y) = 0 if and only if y=A'(0) =
E[Tp]. Define 7 = (y: I(y) < oo}

convexity). For all ye [© (= the interior of [), we have

an interval (by

. 1
lim 7-log(Pn) = -1y, 1)

and furthermore, there exists a unique Oy such that A'((xy)

=Y and we have

1) = ayy - Aday). (22)

If ye closure of I then Pp = 0. This happens when
g(X), and hence also Tp, it bounded. Notice that (21)
still predicts the true asymptotic rate as I(y) = +eo for y &
I. The casc ye [° is the case of practical interest.

There is one more important device of i.i.d. large
deviations theory which we need to discuss. This is the
notion of the a-conjugate distribution. For each value
of o such that A(a) < o, we define the twisted
probability density function

q®x) = exp(agx) - A(@)) p(x).  (23)

To see that this is indced a probability density, recall
that exp(A(a)) is the moment generating function of
g(X). Thus, exp(-A(a)) is the appropriate normalizing
constant in (23).
distribution for

The corresponding i.i.d. sequence
{Xk) is called the a-conjugate

distribution. Notice that we actually have an entire



family of twisted densities parameterized by a € (a:
A(a) < eo}. The utility of the a-conjugate distribution is
that we can write (after a some manipulation)

Pn = EOY)[ exp( —ayn(Tn = 7)) 1[y,e0)(Tn) ]

x exp( -I(y)n ) 24

where E(a)[~] is the a.-conjugate expectation operation.
Notice that the exponential factor on the right side of
(24) 1s just the basic exponential upper bound (19).
Thus, to prove Theorem 1 it is sufficient to show that
the expectation in (24) either grows or decays less than
exponentially fast. (If fact, it is known that the
expectation in (24) behaves like O(1//n).) To further
develop this intuition, we note that that

E@V[Ty) = E@V[gX)] = Alay) = .

To derive this last expression, first show that the a-

conjugate cumulant function as a function of B is A(®)(B)
= A(a+B) — A(a). Recalling (17) and (18), we have

E(®[g(X)] = A®)©0) = A'(a) ar)

and

varl®[g(X)] = Al®©0) = A'(a). (18")

Thus we see that ay-conjugate distribution shifts the
mean of Tp to y. This suggests that ay-conjugate

distribution might be a good candidate for importance

sampling simulation.

3.3 The Asymptotics of the i.i.d. Simulation
Problem

We consider all i.i.d. simulation densitics, that is,
all simulation densities of the form (12) with marginal
density q(-) with q(x) > 0 whenever p(x) > 0. We now

rewrite the variance formula (6) as

va'(by) = T{ Ma@ P2} ©
This is identical (6), except we have now replaced T]n(f;)
by
Mn(@ = E9 (g (X1, Xn)wn(X 1. Xn)? ]

Hl’::lp(xk)

2
—ET0) ] )

= E9[ (1En(x1,,.,xn)

where E8[-] is the expectation operator for the i.i.d.

distribution with marginal density q(x). Recall that the

exponential upper bound for P, was obtained using the

product form exponential bound
n
g (c1xn) < [T exp(a [gx)-v]).  (14)
k=1

Using the same technique, we now apply (14) to (23).
The result is

Mn@ < exp(-[oy-Ag@)]n) (26)

where
X)\2
Aq(e) = log( Eq[(exp(agoo)%)l) 1). @

Minimizing (26) with respect to the parameter o > 0, we

obtain

Mn@ < exp(-Ig(y) n) (28)

where

Iqtm =

sup {ay-Ag(a) }. (29)
aeR

Using precisely the same method as those used to prove
Theorem 1, we can prove the following large deviations
theorem for the asymptotics of the importance sampling
variance.

Theorem 2: Assume the conditions of (i) - (iii).
Then Iq(y) is convex and Iq = {y: Iq(y) < oo} = an
interval. For any y € [qo such that Aq’(O) <y we have

Jim LlogMma@) = -lgm.  (0)

If Aq'(0) > y then Mp(q) does not vanish.  Similar

statements also hold if we replace (iii) by (iii').

Recall (6'): var*[P,] = I/L (Mn(q) - Pn2). Since

var*[f’n] > 0, clearly we have Mp(q) 2 Pnz. This
inequality must also hold in the limit as n — oo, in
particular, the exponential rate of decay of Mp(q) cannot
exceed the exponential rate of decay of Pnz. Replacing
Y by the variable t, we have

Iq(l) < 2I(). 31)

for allt € R.

Definition:  Assume the conditions of Theorem 1.
We say that an i.i.d. simulation distribution specified by

the marginal density q(x) is asymptotically efficient for



estimating Pp if Iq(Y) = 21(y).

Our definition of “efficiency” is based on
asymptotics in the summation limit n, not on the
computational requirement Ly = Lp(q). (As discussed in

the introduction, we definc Lp(q) to be the minimum

A
number required for va:*(Pn)]n/Pn <¢.) However, we
can relate the above definition of cfficiency to Lp(q) in a
very meaningful fashion. As n — ee, since P vanishes

cxponentially fast it seems reasonable that accurate
estimation of P, should require more and more
simulations. A simple manipulation indicates that Lp(q)

~ exp(r(g)n). Specifically,

. 1
(@ = lim log(ln(@) = 2 -lq(n 20
and r(q) = 0 if and only if q(x) is asymptotically
efficient.

Our goal now is to identify the efficient i.i.d.
simulation densities (if there are any) and then select the
optimal one by considering the resulting non-
exponential behavior of Lp(q). From (31) Iq(l) < 2I()
for all t € R and q(-) is efficient for estimating Pp if
Iq() = 21y,
theory dealing with the “convex duality” in Legredre-
Fenchel relationships (20) (which defines I(y)) and (29)
(which defines lq(y)),

We now apply some convex function

This results in a characterization
of efficiency in terms of the A-functions instead of the I-
functions. By Theorem 1 there exists a unique solution
of A'(ay) =1v and we have I(y) = oyY - A(Oty).
out that the inequality (31) is equivalent to /\q(20.) 2
2A(w) for all & € R and

It turns

Iq(p) = 21(y) if and only if Aq(20ty) = 2A(uy). (32)

A full explanation of the convex duality in (32) is
beyond the scope of this presentation. We shall simply
ask the recader to accept (32) on faith. The key point is
that (32) gives us the desired alternative characterization

of efficiency: Aq(2a-y) = 2A(aY).

Now, recall formula (25):

(X
Ag(a) = log( E[( cxp(ag(X)p )) ]). (25)

To minimize Aq(2ay), we employ Jensen's inequality to

get

P(X)] )

Ag(2ay) 2 log( Eq[ exp(ayg(X))

= 2 log( JeXp(ayg(x)) — q(X) dx )

= 2 log( chp(ayg(x)) p(x) dx )

=2 log( E[ exp((l-yg(x))] )

= 2A(20LY)

where the last equality is just definition (16). Of course,
we alrecady knew that Aq(ZOLY) >2 A(2ay). However, just
as in the development of the unconstrained optimal
simulation density (8) in Section II, Jensen's inequality
gives us an if and only if condition for equality. In
particular, Aq(ZOLY) =2 A(2GY) if and only if

exp( g(X))LX) = constant
Py qX)

with q(-)-probability 1. Thus, there is precisely one
efficient i.i.d. simulation distribution and it is q(x) e
exp(oyg(x)) p(x).

normalizes this solution to a probability density is just
exp(=A(0y)). Thus we have the following result.

The constant of proportionality that

Assume the conditions of Theorem 1
and Y€ [°. Then the oy-conjugate distribution is the

Theorem 3:

unique asymptotically efficient i.i.d. simulation

distribution.

Since Lp(q) grows less than exponentially fast when

q() = q(O‘Y)(J. In fact, it turns out that Ly(q) ~ O(n).
See Hunkel and Bucklew (1990).

3.4 A Numerical Example

Let (Xg) be a scquence of i.i.d. random variables
with Laplacian probability density function p(x) =
1/2 e+ and take g(x) = =1 for x € -1, g(x) = x for
-1 <x <1, and g(x) = +1 for x 2 1. We are interested
in estimating the probability Pp = P(Tp 2 0), that is, Yy
= 0. This calculation would arise in the computation of
the error probabilitics for an i.i.d. data Neyman-Pearson
log-likelihood ratio test of p(-) vs. the alternative
Laplacian density with mean +1 (instead of -1). Figure
2 illustrates p(-) and two simulation densities; q(-) =
q(aY)(-) is the asymptotically efficient simulation

density and q(-) = 1/2 ¢~XI. Notice that the mean of
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Tp for the both q(-) and q(-) distributions is vy = 0.

LI 1 1 1 ! 1 1

-3 -2 -1 0 1 2 3

Figure 2: Comparison of simulation densities.

21(t) Gap

Ig(®
Ig(t)

-1.0 -0.5 0.0 0.5

Figure 3: Comparison of variance rate functions.

Figure 3 compares the variance rate functions, lq([)
and Ig(t), along with the upper bound 2I(t). Notice that

Iq(()) = 21(0), as predicted by Theorem 3, but Iq(O) <
21(0) which is indicated as a "performance gap.”
Finally, Table 1 lists estimates of Ly(q), Lp(q) and Ly(p)

(the ordinary Monte Carlo computational requirement)
for a 10% relative precision. These were obtained from
Notice that the values of n
In fact, the

sample variance estimates.
in Table 1 are not particularly large.
asymptotically efficient simulation density clearly
establishes it's superior efficiency for just n = 2!

Table 1: Comparison of computational efficiency.
n P, Ln(q) Ln@) Ln(p)
1| .189 121 95 529
2 | 166 141 246 602
4 | .058 203 411 1.7x103
6 | .027 249 533 3.7x103
8 | .013 265 751 7.7x103
10 | .0066 302 1074 1.5x10%
12 | .0031 326 1217 3.2x10%
14 | .0016 348 1629 6.3x10%
16 | .00086 369 2012 1.2x107

4. GENERALIZATIONS

The i.i.d. sum threshold crossing problem can be
generalized in a number of ways. The sequence {Xy)

may be a Markov chain, and we may redefine the
statistic Ty, as

1 .
Th =1 g(Xk_1-XK)-

1

(33)

i M=

k

Assume a finite state space and let P(i,j) denote the
transition probability for the Markov chain {Xk}. We
also assume that P(i,j) is irreducible This stochastic
transformed

K@i,j;o) = exp(og(inj)) P(i.)).

matrix is into a non-negative matrix

In this setting

A(a) = log( spectral radius of K(at) ).

By the Perron-Frobenius Theorem, the spectral radius
Let r(i;a0) denote
the associated right cigenvector of K(a). Then the a-

above is a unique positive eigenvalue.

conjugate distribution is the Markov chain distribution
generated by the twisted transition probability

) .
exp( = A(a) ) K(i.jo)

Q(a)(i‘j) =

»

o ) (o) - AG)) PG (34)
r(i;a)

Theorems 1, 2 and 3 can be gencralized to this setting.

In particular, note that if {Xg) is 1.i.d., expanding
the class of candidate simulation distributions to the
Markov chains (instead of just the 1.1.d. distributions)
produce any more efficient simulation

docs not

distributions.
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More generally, g(Xk_1.Xx) in (32) can be replaced
by a random variable Zy such that given the history of
the Markov chain {Xk = xk}, the random variables (Zg}
are conditionally independent and for each k the
conditional distribution of Zg depends only on xk and
Xk—1. This is what is known as a Markov-Additive
Process.

For a rigorous treatment of the case of Markov
chains on an abstract state space, the reader is referred to
Bucklew, Ney and Sadowsky (1990).

Another line of generalization is to consider
multidimensional statistics. In this case, Tp is a random

vector in R9 and we consider the probabilities Pp
P(Tp € E) for some set E C R4, In Section 3, where Pn
= P(Th 2v), we have E = [y,00).
version of Theorem 1 replaces I(y) by

The multi-dimensional

I(E) lléle I(v).

In this multidimensional setting there is still a convex
duality between A(o) and I(t): I(t) = oyt — A(oy) where
o is the unique solution of VA(ay) =t and the - denotes
the Euclidean dot product on RY. The rate function I(t)
is globally minimized at t VA@©). We define a
rate point to be a point on the y on the
boundary of E such that I(E) = I(y).

multidimensional large deviations theory is to reduce the

minimum

A key strategy in

multidimensional case to a one dimensional problem
using half spaces. Suppose that y is called a minimum
rate point of E, and in addition, E is covered by the half
space H(y) = {t ay(t—y) 2 0}. Then yis a dominating
point. (See Ney (1983).) A dominating point is
illustrated in Figure 5. Notice that H(y) (the slashed half
plane) is tangent to the rate function "level set” {t: I(t)

=I(E)}.

Theorem 3 (and its Markov generalizations) can be
immediately extended to the case where E has a
dominating point. The exponential twisting formulas
(23) (or (34)) provide the unique i.i.d. (or Markov)
clficient simulation distributions.

Not all scts have dominating points. For example,
Figure 6 illustrates the case of a unique minimum ratc
point that is not a dominating point. There may also be
more than one minimum rate point. In these situations,
one can construct efficient schemes as convex
A set T =
{Y1.-+¥Ym) and a strictly positive probability veclor p =
(p1.--»Pm) defines such a convex combination. A

First, select a point v;

combinations of a-conjugate distributions.

sample is gencrated as follows:

S12

from T using the distribution p. Then sample

(X(lt)....,Xf{e)) from the aYi-conjugate distribution.
(Notice that this is a convex combination of the joint
distribution, not of the marginal twisted densities (23)
or (34).) In Sadowsky and Bucklew (1990), it is
demonstrated that a necessary condition for efficiency is
that I" contain all minimum rate points, and a sufficient
condition is that ' define a covering of E by half
The reader is directed to the reference for more

spaces.
detail.
dominating_»
point
X
VA(0)
Level Set of I(t)
Figure 5: Illustration of a dominating point.

LSS,

rate point
P X

VA()
Level Set of I(t)

Figure 6: Illustration of a minimum rate point.

Finally, we consider one more setting of practical
interest; the setting of systems with small Gaussian
noise inputs. Consider P = (T € E) where Ty is a d-
dimensional Gaussian random vector with mean vector i
and covariance matrix 1/n C. Actually, this situation
can be addressed in terms of i.i.d. formulation. Ty is
statistically equivalent to 1/n z}r::l Xy where {Xk} is a
sequence of i.i.d. Gaussian random vectors having mecan
vector p and covariance matrix C. For a point 7y the Oy
conjugate distribution of T turns out to be the Gaussian
distribution with mean Y and covariance matrix 1/n C.
Thus, the asymptotically efficient way to simulate
systems with Gaussian inputs is first find the minimum



rate points, and then use convex combinations of mean
translations to these points. Further discussion and
some examples are found in Sadowsky and Bucklew

(1990).
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