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ABSTRACT

A Monte Carlo methodology for the
reliability simulation of highly redundant
systems is presented. Two forms of
importance sampling, forced transitions and
failure biasing, allow large sets of
continuous-time Markov equations to be
simulated effectively and the results to be
plotted as continuous functions of time. A
modification of the sampling technique also
allows the simulation of both
nonhomogeneous Markov processes and of
nonMarkovian processes involving the
replacement of worn parts. A number of
benchmark problems are examined. For
problems with large numbers of components,
Monte Carlo is found to result in decreases
in computing times by as much as a factor of
twenty from the Runge-Kutta Markov solver
employed in the NASA code HARP.

1. INTRODUCTION

There is an increasing need to predict
mission unreliability and related parameters
for systems exhibiting very low rates of
failure. Typically, such systems are
designed in configurations with many
component redundancies and are organized
in such a manner that there are component
dependencies in the forms of standby
subsystems, shared-load components, and
shared repair or fault handling faculties. The
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utility of probabilistic analysis based on
combinatorial techniques may be extremely
limited. In contrast, such systems may often
be modeled as continuous-time Markov
processes, particularly if the models are
generalizable to include nonhomogeneous
Markov processes.

While Markov processes may be an
excellent modeling tool, difficulties arise in
carrying out computations, particularly in
models that are too large or complex to treat
my conventional analytical means. As n, the
number of components, increase the 20
explosion of states means that very large
systems of coupled differential equations
must be solved. Moreover, these equations
tend to be very stiff since the time constants
involved may range from fault occurrences
that are rare events even over weeks or
months to fault handling mechanisms that
take place in small fractions of a second. As
a result, the number of distinct components
that can be treated is severely restricted if
deterministic methods are employed. If the
time constants fall into two widely
separated time domains, behavioral
decomposition (Bavuso, et al., 1987) may be
employed to treat the short time constant
events as instantaneous changes of state.
But difficulties may then arise when there is
inadequate separation in the magnitudes of
the time constants.



We have found that Monte Carlo
methods may be an effective tool for treating
the simulation of systems having highly
redundant configurations of components
(Lewis and Boehm, 1984; Lewis and Tu,
1986; Boehm, et al., 1988). Regardless of
whether component dependencies are
present, modeling the system as a
continuous-time Markov process allows the
average number of event samplings required
per trial to be reduced to only slightly more
than one. More important, however, is the
use of a form of importance sampling that we
refer to as forced transitions, to ensure that
a substantial fraction of the independent
trials will contribute to the tally of the
system unreliability. Monte Carlo analysis
may be further refined with a second form of
importance sampling, referred to as failure
biasing, that has the potential for eliminating
the approximations inherent in behavioral
decomposition. Finally, Monte Carlo tallies
may be constructed to yield more than the
traditional single answer results; tallies of
reliability or other quantities of interest may
be generated as continuous functions of time
to provide more physical insight into the
meaning of the results.

2. MONTE CARLO FORMULATION

For purposes of the Monte Carlo
simulation the nonhomogeneous Markov
equations are converted to semi-Markov
equations. If pk(t) represents the
probability that the system is in state k at
time t, then
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where the initial conditions are given by

px(0) = &y .

If Ajk(t) is the transition rate from state k to
state j, then the net transition rate out of
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and the quantity
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is the conditional probability of arrival in
state k, given a transition out of state k' at t.

In a Markov process the self-transition
rates Akk vanish. However since effective
Monte Carlo sampling requires the values of
Yk appearing in the Markov equation to be
independent of time, we treat
nonhomogeneous Markov processes by
forcing the transition rates Yk to have
positive value that are independent of time.
This i1s accomplished by defining a fictitious
self-transition rate

M) = e - Y Ag(D)
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where vk is taken to be sufficiently large
that Agk(t) will remain nonnegative. In
cases where the transition rates either
remain constant or increase with time this
may be achieved by letting
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where T 1s the mission time.

2.1. Analog Monte Carlo

Analog Monte Carlo trials are
performed as indicated in Figure 1. The
times to the successive transitions are
determined by setting the cumulative
distribution function
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equal to a uniformly distributed random
number & and solving for t,
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Figure 1: Monte Carlo Trial Procedure for a
Design Life T

The new system state is determined by
generating a second uniformly distributed
random number { and choosing the state
for which
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This procedure is repeated until the mission
time is exceeded or the system reaches an
absorbing (i.e., failed) state. At any given
time the unreliability is just the fraction of
trials that have reached failed states.
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2.2. Forced Transitions

In highly reliable systems the foregoing
algorithm will in most cases require only one
sampling per history since the first state
transition 1s not likely to occur until t > T.
This also means that only a very small
fraction of the histories will contribute to the
tally, and as a result the variance in the
result will tend to be large. To circumvent
this difficulty we may modify the distribution
of the time to the next transition to force
additional transitions within the time
interval 0 <t < T while modifying the tally

such that the results are unbiased. The
modified cumulative distribution is
F(r k') = L-eft-0 t< t<T

] - e%(T-1)

With the uniformly distributed random
number & , the time of the next transition is
then determined from

t=r-Lin{1-g1-em(T- 0O

To obtain an unbiased result a weight wj is
attached to each trial and initialized at wj =
1. Each time that forced transition sampling
1s performed the weight is modified by

Wi — w',[l e (T - ")] :

The tally for the unreliability 1s then

with a sampling variance given by
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2.3. Failure Biasing

Forced transitions assure that faults
will occur in a substantial fraction of the
Monte Carlo trials. However in some
situations the sampling may remain poor. In
mechanical systems, for example, repair
rates typically are orders of magnitude
larger than component failure rates.
Likewise, in avionic systems electronic fault
handling systems result in state transition
rates that are much faster than the rates at
which failures are induced into the system.
To further enhance the effectiveness of the
Monte Carlo simulation the fraction of
smaller probability failure transitions may be
increased by the use of a second variance

reduction technique which we refer to as
failure biasing.
In failure biasing the transition

probabilities q(klk') are modified to increase
the ratio of failures to other events such as
successful fault handlings. We first divide
the transitions out of state k' into to sets; A
includes those resulting from component
failures and R those resulting from
successful repair or fault handling. We may
then write

= Z Aik(t) + Z Wik .
JE Ak j€ Ry

We require that some fraction x of the
transitions come from the set L. The biased
transition probabilities are then

q(klk")
Y qk'k)
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and
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To maintain unbiased results the trial
weight is modified by

wiowly qkik)
k"e A

for component failures and

. 1
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for repair. In using failure biasing we
typically choose x to be between 0.5 and 0.6;
studies of model problems have indicated
that values as high as 0.75 may be used
before one begins to observe the increases
in the sample variance that arise from
improbable but very high weight histories
(Kirsch, 1988).

3. APPLICATIONS

Two classes of problems are considered
in order to examine the accuracy and
efficiency of Monte Carlo methods The first
consists of simple hybrid redundant systems
for which we have also obtained analytical
solutions. By varying the ratio of failure to
fault handling rate the ability of the variance
reduction methods to provide accurate
simulations can be determined for systems
with very small failure probabilities. In the
second class of problems are included two
benchmark configurations for which
computing times and deterministic solutions
have been obtained using the NASA Hybrid
Automated Reliability Predictor (HARP)
(Bavuso, et al., 1987a, 1987b).

Behavioral composition is employed in
the HARP code to separate fault/error-



handling models from the fault occurrence
models. The code includes the capability for
treating a variety of error handling models,
while fault occurrence is modeled as an
nonhomogeneous continuous-time Markov
process. The imperfect coverage fault/error
handling models are reduced to a set of
transition probabilities, allowing the entire
system to be treated with nonhomogeneous
Markov equations in which only the longer
time constants of fault occurrence appear.
The HARP code solves the Markov
equations by the Runge-Kutta method.

3.1. Hybrid Model Problem

We consider a simple hybrid (Lewis
and Tu, 1986; Bavuso, et al., 1987) system
for which we have obtained analytical
solutions elsewhere (Kirsch, 1988). It
consists of three units in a majority vote
configuration with one spare. Each of the
units including the spare has a constant
failure rate 1, where it is assumed that the
spare can not fail until it is switched in.
Coverage of the fault by switching in the
spare takes place with a constant rate u.
The ten hour mission system failure
probability is shown in Table 1 over a large
range of parameters, with A and v given in
hrs-1. The ability of Monte Carlo simulation
with variance reduction to provide accurate
estimates of very small failure probabilities
is clearly illustrated.

Table 1: Model Problem Comparison of
Analytical and Monte Carlo Unreliability

with N = 1000
exact Monte-Cario v relative
i WA | solution solstion error
-2 H -2 -2
N0 [0 [pP2464 10 | 02507 10 0088271 0.01745
-3 ) -8 -8
10 LlO D 2999 10 0.3073 10 009123 0 02471
] 7 -8 -8 .
10 10 D 3592 10 0.3667 10 0.07624 0 02088
.8 [} -1 -1
10 [0 [pB89es7 10 0.9136 10 092624 001545
.8 ['] 1 -13
1KY 10 D.6299 10 0.6371 10 001474 001143
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3.2. Three-Processor Two-Memory
One-Buss System

The detailed problem specification for
the 3-processor, 2-memory 1-buss system is
given elsewhere (Bavuso, et al., 1987).
Briefly, the system is modeled by the
Markov diagram shown in Figure 2, where
A, v and O represent the processor, memory
and buss failure rates. The three numbers
associated with each Markov state are the
number of operational processors, memory
units and buses, respectively, and Fl1
through F3 are states of system failure. Not
shown are the direct transitions from each of
the states to system failure that result from
near-coincidence and single point failures.
The relative frequencies of such failures are
determined from the AIRES fault/error
handling model (Bavuso, et al., 1987) and

appear in the Markov equations as
modifications of the state transition
probabilities.

Figure 2: Markov Representation of the 3-
Processor, 2-Memory, 1-Buss System

Figure 3 shows Monte Carlo results for
the system unreliability over a mission time
of ten hours. The data, given in Bavuso, et
al., 1987, is for time-independent fault
occurrence rates. The three lines
correspond to the point estimate and the
68% confidence interval. The Monte Carlo
results shown in Fig. 4 are for the same



system, but with Weibull distributions for
fault occurrence rates; these have moduli of
m = 2.5. In both cases the Monte Carlo
simulations consisted of 10,000 trials.
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Figure 3: Unreliability vs. Time for the 3-
Processor, 2-Memory, 1-Buss System with
Constant Failure Rates

Figure 4: Unreliability vs. Time for the 3-
Processor, 2-Memory, 1-Bass System with
Incresing Failure Rates

Table 2 indicates that the results
from the Monte Carlo and HARP
calculations are in excellent agreement; all
CPU umes are on a VAX 11/785. The
Monte Carlo simulations also provide
reasonable estimates of the smaller
probabilities corresponding to particular
failure modes. As an extreme example, the

502

near-coincidence failure probability given as
2.79 10-11 by HARP is estimated as 1.27 (£
1.26) 10-11. Since this few-component
problem can be reduced to a set of only six
nonabsorbing Markov states, it is not
surprising that the Monte Carlo simulations
are longer running. It is instructive to note,
however, that even for small problems the
running times are comparable when Weibull
distributions are employed.

Table 2: Ten Hour Mission Unreliability for a
3-Processor 2-Memory 1-Buss System

Constant Failure Rates Monte Carlo HARP
Unreliability 1.498 (0.034)104 1521 10
CPU sec. 56 ~6
Weibull Failures Monte Carlo HARP
Unreliability 4.789(+0.158) 103 4.783 1073
CPU sec. 582 796

3.3. Jet Engine Control System

The jet engine controller problem,
specified in detail elsewhere (Bavuso, et al.,
1987), provides a basis for comparing the
Monte Carlo and HARP codes for a system
with a larger number of components. The
CARE II model (Bavuso, et al., 1987) is
used for error/fault-handling. The 20
component system has 171 minimum cut
sets and is highly redundant as indicated by
the fault tree representation shown in
Figure 5. The Monte Carlo results for a 10
hour mission are shown in Figure 6. The
Monte Carlo unreliability estimate of 1.073

(£0.087) 10-5 compares well with the
HARP result of 1.112 10 -5,
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Figure 5: Fault Tree Representation of the
Jet Engine Control System
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Figure 6: Unreliability vs. Time for the Jet
Engine Control System

The time advantages of Monte Carlo
simulation become apparent for problems
with many Markov states. While the 10,000
history simulation from which the above
results were obtained required 20 minutes
on the VAX 11/785 the time that would be
required by HARP on the same machine is
estimated to be of the order of 10 hours. To
examine the effect of time-dependent failure
rates on the Monte Carlo simulation times
the power supply failure rates in the jet
engine control were replaced with Weibull
distributions with modulus two (Kelkhoff,
1989). This results in less than a 50%
increase in the computing time needed to
obtain comparable confidence intervals on
the unreliability. The Monte Carlo model
has also been generalized to allow
nonMarkovian as-good-as-new parts

replacement on the power supply
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components. Such modeling increased the
computing time by roughly a factor of three
over the constant failure rate model but
allows problems to be simulated by Monte
Carlo that cannot be treated with HARP.
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