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ABSTRACT

Rcalizations from common stochastic processes arc
often used by simulation-mcthodology rescarchers in
Monte Carlo performance cvaluation of new and cxist-
ing methods for output analysis, variance reduction,
and opumization. Typically realizations can bc
obtaincd casily from cither the definition or simple pro-
pertics of the process. We discuss using the inverse of
the distribution function for generating realizations
from some of these processes. The inverse transforma-
tion always posscsses the advantage of correlation
induction, useful for variance reduction. We consider
the discrete-time processes ARMA, EAR, M/M/1-QT
(time in qucue), and M/M/1-ST (time in system, the
sojourn time), and Markov chains. The inversc-
transformation algorithms are sometimes slower (c.g.,
ARMA, M/M/1-ST), sometimes faster (¢.g., M/M/1-
QT), and often about the same speed as the usual algo-
rithm. Some Fortran implementations are provided.

1. INTRODUCTION

Inverting the distribution function with an argument
that is assumed (o be a uniform (0,1) random number is
a classic random-variate gencration mcthod.  The
inverse transformation is one-to-onc and monotonically
increasing, which makes it ideal for creating simulation
cstimators that are correlated by using the same ran-
dom numbers for diffcrent simulation runs. Both posi-
tively and negatively corrclated estimators are useful
for reducing variance, as discussed in many (extbooks.

The inverse transformation for scalar random vari-
ates is straightforward. Given a random number u, the
inverse transformation is Fy'(u) = min{xju < Fy(x)},
where the choice of F is a modceling decision. For
many classical distributions the inversion 1s closed
form, making implementation straightforward. Numer-
ical methods exist for the normal, gamma, beta, and
other classical distributions that lack a close-form
inverse. (Devroye 1986, Schmeiser 1980). Schmeiser

and Kachitvichyanukul (1986, 1989) and Kachitvichy-
anukul, Cheng and Schmeiser (1988) have investigated
random-variate-generation methods that arc ncarly the
inverse transformation yet almost as fast as state-of-
the-art methods.

We discuss the inverse transformation for generat-
ing stochastic processes, focusing on some processcs
commonly usced in Monte Carlo studics. For example,
Song and Schmeiser (1989, Section 3.1) discuss AR(1),
EARI1, and two-state Markov chain modcls to obtain a
specified process mean, variance of the sample mean
for sample sizc n, and sum of autocorrclations
Yo = Z::_mph. In this and other work we have found it
usclul usec both common random numbers and
antithctic  vanates, for which we need inverse-
transformation algorithms,

The concept is simple: derive and invert, cither
analytically or numerically, the distribution function of
the next observation X; conditional on the past obscrva-
tions Xy,X-, - +,X;;. We focus on Markov
processes, since having 1o consider only recent obscr-
vations simplifics the problem. In Scctions 2 through 6
we consider the discrete-time processes ARMA, EAR,
M/M/1 wait-time in qucuc, M/M/1 sojourn time, and
Markov chains.

We provide subroutines for the AR(1), EAR(I),
M/M/1 wait-time in qucue, M/M/1 sojourn time, and
two-stalc Markov chains. In our implementations, the
subroutine returns the next observation as a function of
the process paramceters and the previous observation.
If the previous observation is infeasible, then the sub-
routine  gencrates  the next observation from  the
steady-state distribution. Thus initializing the previous
value to an infeasible value and calling the routine
repeatedly yields a sequence of steady-state obscrva-
tions. Alternatively, transient effects can be studied by
sampling the initial value from the (possibly degen-
crate) distribution of interest.
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2. ARMA TIME SERIES

Consider the ARMA (p,q) process

p q
Xi=W+ 2 O0u(Xicp—Hizp) + X 0,E,_, + E,
A=l =l

where we allow ; and the distribution of E; to vary
with time but assume that the error terms E; are from a
process that is independent of past crror terms and past
obscrvations. The inverse transformation of X; condi-
tional on the previous observations and crrors is
obtained by simply substituting Fz' (U,) for E;, where
U; is the i" random number. Thus, any time-scrics
process defined by a deterministic relationship to the
past modified by an independent error term can be gen-
erated in this way. Barone (1987) discusses stcady-
state initialization for ARMA processes, including the
muluvariate cxtension.

Steady-state initialization is trivial for the AR(1)
process with normal marginal distribution, as illus-
trated in the subroutine par 1. In this routine the error
terms are generated with IMSL’s subroutine anorin,
but other numerical approximations could be used,
such as the rough but convenicnt one from Ramberg
and Schmeiser (1972) mentioned in the program’s
comments.

subroutinc parl (xmean, xsd, phi, iseed, x)
c.....bruce schmeiser and tina song

¢ july 1989

c purdue university

C.....purposc:

C generaltc onc obscrvation from a first-order

c autoregressive time serics with normal marginal
c distribution.

C.....mcthod

c if the last observation is more than ten standard
c deviations from the mean, then this observation
¢ is generated from the steady-state marginal

c distribution. othcrwise, this obscrvation is

c gencrated from the conditional distribution

¢ given the previous obscrvation, using the

c inverse transformation.

C.....input

c Xmean: process mean

¢ xsd:  process standard deviation

C (forced to be nonncgative)

¢ phi:  process lag-1 autocorrclation

c (forced into [-1, 1)

c isced: random-number sced

C X:  previous obscrvation

C.....output

isced: random-number sced
x:  this observation
..... other routines uscd
rand:  a u(0,1) random-number generator
anorin: imsl’s standard-normal inversc
transformation. a rcasonable quick
approximation is
anorin = (U**.135 - (1-u)**.135) /.1975
u = rand(isccd)
z = anorin(u)
if (xsd 1. 0.) xsd = -xsd
if (abs(x-xmecan) .gt. 10.*xsd) then
c ...gencrate from the steady-state distribution...
X = xmean + (xsd*z)
else
...gencrate from the conditional distribution...
¢ = 1. - phi*phi
if (¢ .It. 0.) then
if (phi .le. -1.) x = xmcan - (x - xmcan)
else
x = xmean + phi*(x-xmean) + (xsd*sqrt(c)*z)
endif
endif
return
end

c o

o o o o0

o

3. EAR(1) TIME SERIES
Now considcr thc EAR(1) process
X, =0X._, + B, E,

where E; is from a sequence of 1id exponential random
variables with mecan p and B; is from an indcpendent
sequence of Bernoulli random variables with probabil-
ity of success ¢. The marginal distribution of X; is
exponential with mean p and the A-lag autocorrelation
is¢”". Sce Lewis (1980).

Given the previous obscrvation, x;_y, the next obser-
vation can be obtained by generating E; and B; and
applying the definition. This is straightforward using
the inverse transformation of cach: E; =-pIn(1-U;)
and B, =1(V,>1), where I(.) denotes the indicator
function. But this approach requires two random
numbers, U; and V,, and is therefore not the inverse
transformation.

The distribution function of X; conditional on

Xi_y =x;_y is zero to the left of ¢x,_;, has a jump of
height ¢ at ¢x,_y, and is ¢ + (1-0)(1 - Tl "W] to the
right of ¢x,_;. The inverse transformation is then

x;=6x;_y if w; < and x, = ¢x;_ - In(1-w,) if u; > ¢.
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The inverse transformation differs from the first
method only in that after the first random number, u;, is
used to generate the Bernoulli observation it is rescaled
and used again to generate the exponential error term.
This type of rescaling is commonly used in random-
variate generation to reduce the number of required
random numbers.

The subroutine  pear1 implements the inverse
transformation. If the previous value is negative, then
the new value is gencrated from the stcady-state distri-
bution. The mcan, xmean, must be nonnegative and
the lag-1 autocorrelation, phi, must lic in {0,1].

subroutine pearl (xmean, phi, isecd, x)

¢.....bruce schmeiser and tina song
¢ Jjuly 1989
¢ purduc university
C.....purpose: generate onc ear(1)-process observation
c
c ear(1): x(i) = phi * x(i-1) w.p. phi
c = phi * x(i-1) + e(i) w.p. 1-phi,
C where e(i) is cxponential
c
¢ mcthod: inverse transformation
C.....iInput
¢ Xxmean: process mean
c phi: lag-1 autocorrclation
c isced: random-number sced
C X:  previous obscrvation
C.....oulput
c isced: random-number seed
C X:  ncxtobservation
C.....other routine used
c rand: random-number generator
c
u = rand(isced)
if (x 1. 0.) then
C ...generate from the steady-state distribution...
x = xmcan * (- alog(1.-u))
clse
c ...generate conditional on the previous x
if (u .le. phi) then
X = phi*x
clse

u = (u-phi) / (1.-phi)
x = (phi*x) + (xmcan * (-alog((1.-u))))
endif
endif
return
cnd
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4. M/M/1 QUEUE WAITING TIMES

Consider the waiting time in queue, W,, for the i
customer in a single-qucue single-server model. The
classic mcthod for generating a sequence of dependent
W’s is 1o use the FIFO recursion

W, =max(0, W,_; +S;_.1 —A),

where S; and A, are the service and interarrival times of
the i™ customer. Two random variates are needed to
generate cach successive W oin straightforward applica-
tion of the FIFO rccursion.

Wec want to gencerate each waiting time using a sin-
gle random number via the inverse transformation con-
ditional on the valuc of the prcvious wailing time.
Now other than the previous waiting time, the next
waiting time is dependent only upon the difference of
S;-1 and A;, which are independent. So the desired
algorithm is to generate X, the difference between §;_,
and A;, from the inverse transformation F}l, and sct
W, =max(0, W;_; + X;). Since the X process is i.i.d.,
we suppress subscripts for convenience.

For M/M/1 models with arrival rate A and scrvice
rate 1 we substitute exponential interarrival-time and
service-time distributions to obtain the M/M/1-QT dis-
tribution function

H

(x+ Ye if x<0
Fy(x)=P{S-A<xj={ "H N
1-¢( Je™ if 0<x
A

which can be found by conditioning on either S or A.
The inverse transformation is

A In(u(A+p)/p) if u< W/ +p)

Fx ()=
7 In((L=w)AH)/A) il w2 W A+H) |

Random variates are obtained by generating the argu-
ment i as a U(0,1) random number.

Subroutine pmm 1qt generates the next queue wait-
ing time from the M/M/1 qucucing system with arrival
raic arate and scrvice rate srate using lhe inverse
transformation. If the last wail time is negative, then
the new wait time is from the steady-state distribution
function Fiy(w) =1 - (AMp)e "= for w > 0.



o oo o0

subroutine pmm 1qt (arate, srate, iseed, waitq)

...bruce schmeiser and tina song

september 1988
purdue university

...purpose:

generate the next waiting time (in the queuc)
from an m/m/1 qucue conditional upon the
previous waiting time

arate: the arrival rate
srate: the service rate
iseed: random-number seed
waitq: if nonnegative, the last wait time
if negative, generate from steady-state

...output

iseed: random-number sced
waitq: the generatcd waiting (in queue) time

...Intermediate variable

X: service time - interarrival time

...other routine used

rand: uniform (0,1) random-number gencrator

u = rand(iseed)
if (waitq .It. 0.) then

...generate a steady-state waiting time...

tau = arate / srate
if (u .It. 1.-tau) then
waitq = 0.
else
wailq = - alog((1.-u)/tau) / (srate - aratc)
endif
else

...gencrate conditional on the previous wailg...

ratio = srate / (sratc + arate)
if (u .It. ratio) then
x= alog( u/
clse
x = - alog ((1.-u)/(1.-ratio)) / srate
endif
waitq = wailq + x
if (waitq .It. 0.) waitg = 0.
endif
return
end

ratio ) / arale

Since it requires only a single logarithm evaluation,
the inverse transformation for the M/M/1-QT is faster
than the usual mcthod of generating the interarrival
time and scrvicc time scparatcly using the inverse
transformation for cach. But speed is not the primary
issue, since the usual method can be made almost as
fast by using a simplc trick: generate A and S by parti-
tioning an Erlang-2 random variable into two indepen-
dent exponential random variables:

Set Z « —ln(Ule),

SclA « U3Z,

SetS«—Z-A,

Set W« max(0, W + (S/n) — (A7A)),

where Uy, U,, and U; arc indcpendent uniform (0,1)
random numbers.

5. M/M/1 SOJOURN TIMES

Another time secries with stcady-state cxponcntial
marginal distribution is composed of adjacent M/M/1
sojourn times, T,, the time spent by the i customer
waiting in the qucue plus the time in scrvice. The
steady-state mean is (u—A)™', where A and p are the
arrival rate and service rate, respectively.

The conditional sojourn-time¢ distribution follows
from the FIFO recursive rclationship
T, =8, + max(0, T,_,—A,;), where §; dcnoles service
time and A; denotes interarrival time for the i custo-
mer. This recursion, which is valid for any service and
interarrival distributions, Icads o

max(0,4, ,~t)

PIT;> | Ty =ti) =

0

dFa (a;)

+ [ PSa—(-1)) dFy(a)

max (0,4, ,—1,)

+ PS>} dFa)
!

1

where the three terms correspond o waiting in the
qucuc longer than ¢, arriving (o a busy scrver but
spending less than ¢ in the quecuc, and arriving Lo an
idle scrver. Using cxponential distribution functions
lcads to the M/M/1 conditional sojourn-time distribu-
tion
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. —Amax(0, t,_,—1,)
FT/ITA—lz'M (l‘) =e l

_ A e-p(t,—z, l)[e—(lﬂl)max((),ll,,—l,)_e —(A+p)t, ,]
A+l

_ e-utt_)“‘ld

_ A - .
l—i—e MoeM—e™y it0< <1,
= H
1—ce ™™ it <.
A A
where ¢ = B¢ Lt
A+l A+

Setting ¢, = ;_;, we find

=, )

. u
P{T, <t }=——(-e¢
{ i i l} ;H'u
If the random number u is less than this quanuty, we
mvert the left part of Fry7, -, - and otherwise we invert
the right part. The closed-form inversion of the right
part is

t=F7r =, ()= =In((1=w)/c) /.

Unfortunately, the left part has no closcd-form inverse.
In the algorithm below, we use binary scarch for ¢ in
the interval (0,4 ;). The scarch is improved with the
closed-form lower bound obtained by ignoring the term
e ™™ in Fy 7, . Withabeter scarch method or with
less-stringent convergence criteria, the speed of the
algorithm would improve, but with any recasonable-
speed random-number gencrator the inverse transfor-
mation is slower than gencrating from the FIFO recur-
sion, cspecially if the Erlang-2 trick is used.

The design of the algorithm is the same as that for
the M/M/1-QT process. Again, a stcady-state variate is
returncd if the previous time is negative, allowing
cither transient or stcady-state simulation.

subroutinc pmm Ist (arate, srate, cps, isced, t)
C.....bruce schmeiscr and tina song

¢ july 1989

¢ purduc university

C.....purposc:

¢ generate one m/m/1 sojourn time (in the system)
¢ conditional on the last sojourn time.

C.....method:
C i the previous time is negative, this time 1s

c o ococ oo 0 o0 oo o o6

o o oo

o
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generated from the steady-state distribution.
otherwise, this time 1s generated from the
conditional distribution given the previous time,
using the inverse transformation, which requires
a search when this time is Iess than the previous
tme.

".....input

arate: arrival rate
srate: scrvice rate
eps: allowable error in t (in the binary scarch)
isced: random-number sced
t:  previous observed sojourn ime
..... oulput
isced: random-number sced
. obscrved sojourn time
...other routine used
rand: a u(0,1) random-number gencrator
u = rand(isced)
U=1
if (U .1t. 0.) then
..gencrate a steady-state sojourn time...
= - alog(1.-u) / (sratc-arate)
clse
...generate sojourn time conditional on ...
rate2 = arate + srate
sratio= srate / rate2
if (u .gt. sratio*(1.-cxp(-rate2*tl))) then

..tis greater than tl...
¢ = sratio*exp(-aralc* )
] + (arate/rate2)*exp(sratc*tl)
t = -alog((1.-u)/c) / srate
clse

..tisless than tl. binary scarch...

¢ = sralio * exp(-aratc*u)
if (u.le.¢) then
bottom = (.
clse
bottom = alog(u/c) / arate
endif
top=u
1=0
10 i=i+1
t = (botlom + top) * .5
il (exp(arate*t) - exp(-srate*t) It. u/c) then
bottom =t
clse
wp =t
endif
(1120 .and. abs(bottom-top).gt.cps) go to 10
endifl
cendil
return
end



6. MARKOV CHAINS

Realizations from a discrete-time Markov chain are
obtained by sampling from the conditional distribution
associated with the current state. An obscrvation is the
value associated with cach state, and the states are
ordered in increasing value. The inverse transforma-
tion then requires only that we use the inverse transfor-
mation of the conditional distribution associated with
the current state. When the state space is discrete and
large, the inverse transformation is slow il imple-
mented crudely. Index tables can speed exccution
time; sce Fishman and Moore (1984).

Subroutine p 2smc generates onc observation from a
two-statc Markov chain having arbitrary states with
cqual limiting probabilities and a specified lag-1 auto-
corrclation. If the previous value x is not (floating-
point) equal to one of the two statcs, then the next x is
generated from the steady-state distribution.

subroutine p2smc (statel, state?, rhol, isced, x)
bruce schmeiser and tina song
july 1989
purduc university
purposc: generate onc obscrvation from the
symmetric two-state Markov chain process
having onc-step transition matrix

statel state?2
P=swatel |[1-p p |
sate2 |p  1-pl,

where p = (1-rhol) /2. the lag-1 autocorrelation
is rhol. the limiting probabilities arc
P{X=statc1} = P{X=state2} = .5.
method: inverse transformation
input:
state1: value of the first state
state2: valuc of the sccond state
rhol: the lag-1 autocorrelation
isced: random-number sced
x: if ¢ = statel or ¢ = state2, the last state
othcrwise, generate from sicady-state
output:
isced: random-number sced
x:  gencrated state
other routine uscd:
rand: uniform (0,1) random-number gencrator

coc o ocococococ o oo ococoococooooo oo oo o oo

u = rand (isced)
p=(l.-rhol) /2.

= min (statel, state2)
d = max (statcl, statc2)

if ((x .ne. ¢) .and. (x .nc. d)) then

C
¢ ..gencrate from the steady-state distribution
c
if (u.le. 0.5) then
X=c¢
clse
x=d
endif
else
c
¢ ...generate from the conditional distribution
c

if (x .eq. ¢) then
if (u .le. 1.-p) then

X=c
clse
x=d
endif
else
if (u .le. p) then
X=c
clse
x=d
cndif
endif
endif
return
end

7. DISCUSSION

We have discussed inverse transformations for some
simple stochastic processes commonly used in Monte
Carlo studies. Only the two M/M/1 processes required
analysis. While the concept of the inverse transforma-
tion applics to most stochastic processes, many appear
intractable. Examples include the gamma time-scrics
processes of Lewis (1982) and Schmeiser and Lal
(1982), as well as most queuing systems. Neverthe-
less, additional tractable processes arc probably avail-
able, perhaps simple inventory models.
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