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ABSTRACT

Many computer methods for generating variates from
classical discrete distributions are available; some of them
are simple and others are very fast. However, simple or
convenient procedures are slow when the means p are
large. Very fast algorithms are rather involved, so that
most users will not go to the trouble of implementing
them. Fortunately, algorithms having the advantage of
being simple and fast are obtained by applying the ratio
of uniforms method to discrete distributions in a skil-
ful way. We discuss several issues of this approach with
respect to Poisson, binomial and hypergeometric distri-
butions.

1. INTRODUCTION

Random variate generation from discrete distributi-
ons has received considerable attention in the literature.
Several types of generators have been developed, see e.g.
Devroye (1986) for an excellent overview. Simple in-
version by sequential search and methods based upon
distributional properties are convenient, but their exe-
cution times are not uniformly bounded over the whole
set of parameter values. On the other hand ultra—fast
algorithms are obtained by table-aided inversion (Chen
and Asau, 1974, Ahrens and Kohrt, 1981) or by the alias
method of Walker (1977). However, both methods are
not efficient if the parameters of the distribution in hand
vary all the time, because the initial set—up of new ta-
bles is costly. The acceptance rejection approach leads
to uniformly fast algorithms, i.e. algorithms with com-
pution time of order O(1), but competitive procedures
are rather complex; see Ahrens and Dieter (1982), and
Schmeiser and Kachitvichyanukul (1981) for the Poisson
case, or Kachitvichyanukul and Schmeiser (1985, 1988)
for the hypergeometric and binomial cases, respectively.
The extension of the ratio of uniforms method - origi-
nally designed for continuous distributions by Kinder-
man and Monahan (1977) - to unimodal discrete dis-
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tributions leads to algorithms combining simplicity with
efficiency in the fixed and variable parameter case. The
principle of the method may be described briefly as fol-
lows. The standardized histogram function f(z) is co-
vered by the hat function h(z) = min(1,s%/(z — a)?)
with suitably chosen location parameter a and scale pa-

rameter s. Then the following simple rejection procedure

can be carried out.

Generate a random pair (U, V') uniformly distributed over
the rectangle R = (0,1) x (—=1,1), set K — |sV/U +a
and return K as a sample from f(z) if U? < f(K) is
fullfilled. Otherwise reject K and try again.

In the next section details of the general sampling
method are considered. Section 3 is devoted to the con-
struction of hat functions with suitable parameters a and
s. Algorithmic aspects are discussed in Section 4. In the
final Section 5 some comparisons with other algorithms
are given. The development in this paper is based on
material which appeared in Stadlober (1989b).

2. THE GENERAL SAMPLING METHOD

The ratio of uniforms method as suggested by Kin-
derman and Monahan (1977) for continuous distributi-
ons is based on the following idea.

Let f(z) be a rescaled density with finite integral k,

and let C = {(u,v) |0 < u < /f(v/u)}. Then if (U, V)
is uniformly distributed over C, X = V/U has density

().

In order to create a generator, a method for sampling
from C has to be established. If f(z) and z®f(z) are
bounded then C can be encased in the rectangle

R={(uw,v)|0<u<ui,v_ <v<wy},



where
uy =sup+/f(z), v =infz\/f(z), vy =supzy/f(z).

In this case acceptance rejection can be applied to
obtain (U, V) uniformly distributed over C by genera-
ting a point uniformly in the rectangle R and rejecting
this point if it is not in C. For applications see Kinder-
man and Monahan (1980), and Monahan (1987).

The following description of the method (Stadlober,
1989a) allows us to use ratio of uniforms in the discrete
case. By taking (U, V') uniformly distributed over the
standardized rectangle

R, ={(y,v)|0<u<l,-1<v<1}
and by transforming
(U, V) to (X,Y)=(a+sV/U, U?
we obtain the transformed table mountain
T(R)={(z,y)| —o0 <z <00, 0<y<h(z)},

where

a—s3s<z<a+s

elsewhere

1
h(z) = { o2

(z—a)’ 1

T(R,) should cover the domain
T(C)={(z,y)| —0o<z<o00,0<y< f(z)}

such that h(z) may serve as hat function of f(z).

In this way ratio of uniforms with rectangles can be
interpreted as acceptance rejection with table mountain
hats h(z) (see Figure 1 on the right column). Obviously,
the random pair (X,Y) is uniformly distributed over
T(R,) which has area 4s. The marginal density of X
is simply g(z) = :—‘h(z) and Y is uniformly distributed
over (0, h(z)) for every fixed z. Since we are restricting
0 < w < 1 and hence h(z) < 1 we must standardize the

histogram function
fo(z)=p,;, 3 <z <j+1for all mass points j,

to
f(z) = fdz)/pm, where ppm = m]axp,.

Now f(z) can never exceed h(z) at the top. But the
validity of f(z) < h(z) on the slopes depends on the
free parameters a and s of h(z). Ideally the hat parame-
ters a and s should be determined such that the average
number of trials — called also efficiency of the method -

_ fh(:z)d:c

= =4 mn
T [ T

is as small as possible. Note that the best choices of a
and s usually need to be computed numerically. Sub-
optimal values of a and s for the Poisson, binomial and
hypergeometric distributions are considered in the next
section. We conclude that ratio of uniforms methods for
unimodal discrete distributions can be stated in the fol-
lowing standard format.

Ratio of uniforms for discrete distributions
A. Generate X with density g(z) and set K — |X].
(Generate (U, V) uniformly over (0,1) x (0,1) and set
X e—a+s(2V-1)/U K — |X]).
B. Take Y uniformly over (0,4sg(X)).
(Set Y — U?).

C. Y < f(K) return K as & sample from {p,}.
Otherwise goto A.

Y
1-
—t
O s s 7 o X

Figure 1: Optimal table mountains for standardized
normal and binomial (20, %)—distributions.
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3. CONSTRUCTION OF TABLE MOUNTAIN
HATS

The performance of ratio of uniforms algorithms for
specific discrete distributions is governed by the choice
of the hat parameters a and s. Appropriate values of a
and s should be easy to calculate and they should gua-
rantee a good fit of the table mountains over a broad
range of the distribution parameters.

3.1 Poisson and binomial cases

The first ratio of uniforms procedures for a special
discrete distribution are due to Ahrens and Dieter (1989),
who developed some algorithmic versions for Poisson dis-
tributions with means p > 1. Similar algorithms for bi-
nomial distributions with means p = np > 1 (p < 3
without loss of generality) were proposed in Stadlober

(1989a). In both cases the location parameter ¢ was
fixed at ]
a=p+ 2

which is of course only suboptimal for skewed Poisson
histograms, but it is clearly the best idea for symmetric
binomial or hypergeometric distributions. After some

experimentation the scale parameter of the hat h(z) was

N 2<2+1)+3 3
§ = - |o — - — /-,
e 2 2 e

where o denotes the standard deviation of the corre-
sponding distribution. The validity of § was established
numerically. Note that for fixed a = u + %, 3§ is still
not optimal (except for the Poisson(1) distribution and
the limiting normal case), but it is possible to replace
the convenient choices 3 by the true optima s*. The fol-
lowing simple rule for computing values of s* in the bino-
mial case has been derived in Stadlober (1989b, Lemma
4.2). We recall that the Poisson distribution is contained
as limiting case n — oo, p — 0, p fixed.

chosen as

(1)

Lemma 1.

The quotient g, = attains its maximal

1(k)
)
value 1 at k' = |z] or k* = [2],

where z = a — /2a(1 — p).

The best possible value s* is then simply

determined as

s = (a - k') /F(E").

In the third line of Table 1 on the right column some effi-
clences a,- = 43"p,, are displayed, whereas the slightly
larger values oy resulting from the approximations § (1)
are given in the bottom line of the table.

(2)

For comparison purposes, the true optima of a and
s were calculated by numerical search methods within

486

the range 1 < 4 < 10000. The first two lines of Table 1
below contain some differences @ — x and the best possi-
ble efficiencies «,. It can be observed that the optimal
values of a are always between p + .24 and p + 3, indi-
cating the usefulness of the suggestion a = p + %

Table 1: Efficiencies in the binomial case
resulting from different choices of hat parameters

n 20 100 1000 2000 | Poisson
.261 246 244 248|248

1.856 1.834 1.829 1.829 1.829

u=1 2.207 2.207 2.207 2.207 2.207
2.237 2.213 2.208 2.207 2.207

.500 .832 .289 .287 .285

1.598 1.536 1.524 1.523 1.522

p =10 1.598 1.595 1.599 1.599 1.599
1.735 1.632 1.617 1.617 1.616

.500 .836 .887 .324

1.468 1.438 1.437 1.437

p =250 1.468 1.463 1.462 1.462

1.522 1.478 1.476 1.475

500 .418| .325

1.400 1.394 1.390

p = 500 1.400 1.398 1.398

1.415 1.406 1.401

.500 .329

1.390 1.384

© = 1000 1.390 1.389

1.401 1.392

The four entries in each block are:
a — u for optimal a.
a, = best possible efficiency
(ay, — 4/+/me = 1.3687 ...,
as n,p — 0o, p fixed).
a,+ = best efficiency for a = p + %
oy = efficiency resulting from § in (1).

3.2 Hypergeometric case

The hypergeometric distribution causes more pro-
blems for the designer of random variate generators,
mainly because of its three shape parameters N, M and
n. Let a be fixed at @ = p + ; as before, where y =
n% > 1. Here the discussion is reduced to the cases
n< oM< 2, First of all
the optimum scale parameter 3* was determined nume-
rically for various parameter combinations (N, M, n) and
compared with the approximation § as defined in (1). In

which is not restrictive.



all cases we confirmed that § was larger than the mini-
mum value s*. There is no reason to doubt the validity
of § > 8" for hypergeometric distributions not explici-
tely investigated. However, it appeared that an efficient
algorithm based on the better values s* could be deve-
loped, since the following lemma (see Stadlober,1989b,
Lemma 5.2) allows us to evaluate s* directly without any
numerical optimization.

Lemma 2.

The ratio q, = t’;}% is maximal at one of
the two points k™ = |z] or k" = [z],
where z = a — \/Za(l - %)(1 - %)

3" is obtained as in (2).

4. ALGORITHMIC ASPECTS

In this section we consider some implementation is-
sues and we explain specific properties of ratio of uni-
forms algorithms. The detailed statement of binomial
generator BRUE! at the end of the section is meant as
an illustration of a concrete application. Important cha-
racteristics of ratio procedures are.

(a) Our Poisson, binomial and hypergeometric gene-
rators work for all means g > 1, under the appro-
priate restriction to symmetric or right skewed bi-
nomial (p < %) and hypergeometric (n < g’M <
%) distributions, but simple inversion by sequen-
tial search from the bottom is faster if 4 is smaller

than some breakpoint p*.

(b) The evaluation of the probabilities p, involves the
computation of one (Poisson) or more (binomial,
hypergeometric) logarithms of factorials In k!. The
proposed methods need no table, if a routine for
InT(k+1) = In k!is available. In order to maintain
e.g. 9 decimal digits precision one could store the
values In0!,In1!,...,In 9! and use for k > 10 the

Stirling approximation

1 1 L
Ink!=In vVor + (k+ 3)lnk =k + 20 = s

whose relative error € is smaller than 5.2 x 10717,
We emphasize that for moderate modes m the ge-
nerators can be speeded up even further by using

an idea of Schmeiser and Kachitvichyanukul (1981).

They suggest to compute the values of f(k) =
Pk/Pm via the well known recursive relationships
for the probabilities px, starting at the mode m
where f(m) = 1.
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(c) However, the fastest algorithms are obtained when
a table of Ink! is stored beforehand. In these
implementations no external functions are needed
as long as the distribution parameters remain the
same (see binomial generator BRUE® below).

(d) The computation times are bounded since the ex-
pected number of trials «,. per variate can never
exceed the upper bound

6
o= 2.207276647...,

which is attained for the Poisson (1) case. On the
other hand «,- is always larger than

4
VTe

the efficiency of the limiting normal case.

=1.368793121 ...,

Below we describe binomial generator BRUE®, which
needs stored table values v, = In k!. Note that the re-
striction p < % is dropped.

Binomial generator BRUE!
(nmin(p,1 — p) > 1, stored table v = Ink!)
Constants In 2 = .693147181... and B, where B
depends on the accuracy of the computer;
e.g B = 5 for 9 decimal digits precision.
0. [Set-up of constents. Necessary only if the value
of n or p changes]
Set t «— min(p,1 —p),g+—1—t, a —nt+ :1;,
c— ln';, d — /2aq, m — [(n+1)t],
g~ Y¥m + Yn—m, b «— min(n, |a + Bd]),
k—|a—-d],z— (a—k—-1)/(a— k).
If(n—-k)tzz >(k+1)g set k — k+ 1.
Set h — (a—-k)cxp(%((k—m)c+g—’yk—'yn_k)+l.n2)
1. [Generation of candidate variates]
Generate independent (0, 1)-uniforms U, V.
Set K — la+h(V - 1)/U]J.
2. [Quick rejection checks]
IfK <Oor K >b goto1.
Otherwise set T — (K —m)c+ g — Yk — Yn—-K-
3. [Rejection tests]
31 IfU(4-U)-3<T goto 4.
32 fUWU-T)>1 goto 1.
33 If2lnU > T goto 1.
4. [Check if p > 1]
Ifp>1/2 set K —n- K.
Return K.

(Fast acceptance)

(Fast rejection)

Remarks. The constant b in Step 0 is a safety bound.
Thereby the If-statement in Step 2 passes only variates
K with significant probabilities px. For the calculation
of h = 23" (Step 0) Lemma 1 is applied as follows. Take
k = |a — /2aq] if the ratio of the quotients

Qr41 _(a—k-—l)z(n—k>£
a a—k k+1/ q




is not greater than 1, otherwise increase k = k+1. Then
evaluate h = 23" = 2(a — k)/f(k). The quantity T =
In f(K) (Step 2) is compared with 2InU in Step 3.3.
But the calculation of In U can be avoided most of the
time by the squeeze tests in Steps 3.1 and 3.2, which are

based on the inequalities w — £ < 2lnu < —3 +4u — u?.

5. COMPARISON OF ALGORITHMS

Ratio of uniforms procedures and other state-of—
the-art algorithms were implemented in Fortran and
compared on a Univac 1100/81 computer. Uniform ran-
dom numbers were generated by the multiplicative
congruential generator URAND (factor = 5308871541,
modulus = 2°%), coded in Assembler. The comparisons
are thoroughly documented in Stadlober (1989b). We
mention that the discussion is restricted to procedures
which remain efficient if the parameters of the distribu-
tion vary all the time. This excludes the guide-table
method of Chen and Asau (1974) and the alias method
of Walker (1977). In this section we resume the most
substantial results of our empirical study.

5.1 Poisson distribution

The involved but uniformly fast methods PD (modi-
fied acceptance rejection with discrete normal distribu-
tions of Ahrens and Dieter, 1982) and PTPE (triangle—
parallelogram-exponential rejection of Schmeiser and
Kachitvichyanukul, 1981) seem to be the favorites for
# > 10 if only speedis important. They should be com-
plemented by table-aided inversion in case of p < 10.
We mention that the ultimate choice between PD and
PTPE depends on the availability of a fast normal gene-
rator on which PD is based.

If simplicity and speed are the dominant considerati-
ons PRUE' (ratio of uniforms with 3*(2) and table In k!)
could be the first choice when g > 5, whereas simple
inversion PIN should be substituted for p < 5.

5.2 Binomial distribution

Kachitvichyanukul and Schmeiser (1988) report that
simple inversion BIN dominates all its competitors for
v = nmin(p,1 — p) < 10, and that their own rejection
method BTPE (valid for v > 10) is most efficient for
larger v. In our experiments algorithm BRUE (ratio of
uniforms with 3°(2), external function with Stirling ap-
proximation for Ink!) appeared to be faster than BIN
for v > 7 and also faster than BTPE for v < 30. Al-
gorithm BRUE is also much simpler than BTPE (376
words versus 597 words of compiled code), but BTPE
has the advantage of very low set-up costs, which could
be important if only a few variates are needed for a fixed
combination of parameters n and p. Thus for applicati-
ons in which speedis the main concern, a combination of
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BIN (v < 10) and BTPE (v > 10) could be the method
of choice. However, users preferring to work with simple
and reasonably fast methods would rather decide in favor
of the combined algorithm BIN/BRUE (v < 7/v > 7).

Comparative analysis of even faster algorithmic ver-
sions, supported by a stored table of values In k!, de-
monstrates that our generator BRUE' (see Section 4)
is most efficient for v < 100. For larger values of v
the table-supplied version BTPE' is a little bit faster.
Both methods have nearly the same set-up costs, but
BRUE' is simpler. Consequently, a combined procedure
BIN/BRUE' with cut-off point at ¥* = 5 can be re-
commended, whenever speed and simplicityare essential,
provided that one is prepared to store a table of In k!.

5.3 Hypergeometric distribution

For the hypergeometric case only one competing uni-
formly fast algorithm is known: Algorithm H2PE (uni-
form-exponential rejection of Kachitvichyanukul and
Schmeiser, 1985), which was developed for v = m -
max (0,n — N + M) > 10, where m = |(n + 1)(M +
1)/(N + 2)] is the mode of the distribution. H2PE is
sligthly faster than our algorithm HRUE (defined for
v > 1) in the fixed parameter case, but its initialization
of constants is about twice slower than that of HRUE.
Additionally H2PE occupies more space (867 words ver-
sus 507 words). Therefore the combination HIN/HRUE
(v € 3/v > 3), supported with a double precision func-
tion for In k!, would be a good choice for a fast and com-
pact sampling routine.

Probably the fastest and simplest hypergeometric
sampling method could be offered by the combined ge-
nerator HIN*/HRUE' (v < 3/v > 3) at the cost of a

long double precision table for values of In k!.
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