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1. INTRODUCTION

Simulations were one of the first subjects J.v. Neu-
mann had in mind for applying computers. He recom-
mended some methods for generating (0, 1)-uniformly
distributed random numbers which are out of use today.
However, his ideas for sampling from non-uniform dis-
tributions are still widely used. Since his 1951-paper
is rather short, improvements and generalisations of his
ideas have been found in the meantime. They will be
discussed in this paper.

The most natural method for sampling from a distri-
bution function F(z)is Direct Inversion: X = F~Y(U)
has the distribution function F(z)if F~' is the inverse
function to F and if U is uniformly distributed in [0,1).
However, there are only a few distributions for which
simple inversion functions are known: the ezponential
and the Cauchy distribution are the most prominent ex-
amples. The Boz-Muller method for sampling from the
two-dimensional normal distribution can also be consi-
dered as two—dimensional inversion. However, piecewise
polynomial approximations of F~'(U) can always be
constructed. Since they need large tables of constants
the evolving algorithms are often slow if the parame-
ters of the distribution function have to be changed fre-
quently. For details see the papers of Ahrens and Kohrt
(1981) and Chen and Asau (1974).

Calculation of the logarithm was slow in these early
days. Therefore J.v. Neumann invented his famous Com-
parison Method for sampling from the exponential distri-
bution. Forsythe (1972) and Ahrens and Dieter (1973)
generalised it to the normal distribution; the resulting
algorithms FL, are still some of the fastest assembler
methods for sampling from the normal distribution, but
they need a table of size 4 x 2". For other distributions
the situation is not very promising. Atkinson and Pe-
arce (1976) tried to apply it to the gamma-distribution.
Unfortunately, for every parameter of this distribution
one needs a set of large tables, and in the case of chan-
ging parameters the resulting algorithm is rather slow.
Generalisations of the comparison method did not yield
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efficient procedures.

During the last twenty years it became clear that the
Acceptance-Rejection Method, also introduced by J.v.
Neumann, is the most adaptable method for sampling
from complicated distributions. It works as follows:

Let f(z) be a given probability density, and let h(z)
be a function such that f(z) < h(z) within the range of
f(z). If the integral of h(z) over this range is a finite
number «, then g(z) = h(z)/a is a probability density
function, and the following procedure is valid:

1. Take a random sample X from the distribution
with probability density g(z) = h(z)/a.

Generate a uniform random deviate U between zero
and one. If U < f(X)/h(X), accept X as a sam-
ple from the distribution f(z). Otherwise reject X
and go back to Step 1.

The ease of the method depends on the following
properties of the hat-function A(z):

A. One has to select a hat function h(z) from which it
is easy to sample. Examples are normal, double-
exponential and triangular densities.

The parameters of the hat function have to be
determined in such a way that the area o below
h(z) becomes minimal.

It will be shown that optimal hat functions can be
calculated by analytical methods. Some of the published
algorithms use hat—functions which are far away from
the optimal ones.

In 1977 A.J. Kinderman and J.F. Monahan intro-
duced a new method for sampling from a density f(z),
called Ratio of Uniforms. It consists of two parts: let
m, s and t be real numbers and let k be equal to 1,
but k = 2 might be another possible choice for some
densities. First the Table-Mountain-Function
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as a hat function for f(z)/f where f = max f(z). Fi-
nally, the constants m, s and ¢ have to be determined
in such a way that the table-mountain—function is an
optimal hat function; m = 0 and k = 1 lead to the
original Ratio of Uniforms method. For many densi-
ties table-mountain—functions with shift m+#0 or asym-
metrcal shape s# 2t may produce algorithms with even
better performance.

The Acceptance-Complement method has been in-
troduced independently by Ahrens and Dieter (1982a,b),
Kronmal and Peterson (1981), and Dedk (1981); it needs
the original acceptance-rejection procedure for tackling
the area where the involved densities differ.

For classical discrete distributions efficient procedu-
res based on acceptance-rejection, ratio—of-uniforms or
acceptance—complement are available — see Ahrens and
Dieter (1980), (1982b), (1989) and Stadlober (1989a,b).
However, for finite distributions Walker’s Alias-Method
of 1977 yields often the fastest algorithm. It relies on the
fact that every n-point distribution is an equiprobable
mixture of n — 1 2-point distributions.

In the paper several issues are discussed: (1) Details
of the acceptance-rejection method and its generalisati-
ons. (2) The construction of optimal hat functions by
analytical means. (3) The Ratio of Uniforms method
as a special case of the acceptance-rejection procedure
and optimal constants for it. (4) Conditions for optimal
polynomial squeeze functions are derived. (5) Special
distributions are considered as examples for the general
procedure.

2. OPTIMAL HAT FUNCTIONS FOR THE
ACCEPTANCE-REJECTION METHOD

In this section it is assumed that the hat function
h(z) touches f(z) at two points L (left) and R (right)
where L < R. Furthermore, we suppose that h(z) de-
pends on two parameters, called m and s. Thus we de-
mand that

f(L)=ag(Lim,s), f(R)=ag(Rym,s) (1)

and f(z) < ag(z;m,s) for all other z. Since L and R are

local maxima of f(z)/g(z;m,s), we have the necessary

conditions f’(L) L )
_g(Lym,s
H(D) ~ o(Timns) @
and
f'(R) _ g'(Rym,s)
F(R) ~ o(Rim,s) ®)

If L and R are uniquely determined, they should satisfy
the sufficient conditions

P _ g Ems) L FU(R)
i) < eTims) M H(R) ©
Otherwise, the first derivative of ln(f(::)/g(z;m,.s)) has

to be discussed in detail.

Equations (1), (2) and (3) are four equations for the

g"(R;m, )
g(Rim,s)

determination of L, R, m, s and «. Assuming that L,

R, and m can be expressed as functions of s, we have to

minimize

_fE®) f(R)
g(L(s);m(a),s) g(R(a);m(s),s)

This leads to the necessary conditions

4 S 4L
T dL ng(L;m,.sx) ds

a(s) (4)

d
-2 lna(s) =

d dm d
+;i_; Ing(L;im,s) N + T Ing(L;m,s)=0
d _d f(R) dR
T ds Inafs) = dR " g(R;m,s) ds
d dm d
— . —_— — . — O.
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In both equations the first expression after the equal-
sign is zero by (2) and (3). Solving both equations for
dm/ds, and comparing, yields the fundamental relation

dlng(L;m,s) dIng(R;m,s)

dm ds
dlng(R;m,s) dlng(L;m,s) (5)
dm ds

or, by observing

a4 1 d

l L» ) - . ) )
ng(Lim,s) o(Lim.s) dm 9(Lym,s)

dm
the equivalent form

dg(Lim,s) dg(R;m,s) dg(R;m,s) dg(L;m,s)
dm ds - dm
(6)

(2), (3), (4) and (5) or (6) contain five conditions for
finding candidates L, R, m, s and o. Whether a solu-
tion will in fact lead to a local minimum of « has to be
checked carefully in each special case.

We shall consider two examples of possible hat func-
tions h(z) that touch given probability densities f(z) at
two locations L and R.

Triangular Hat Functions. The first example deals
with densities that can be enclosed in an isosceles tri-
angle h(z), and whose corresponding density g(z) =
h(z)/c depends on the parameters m and s as follows.

1 1
g(:c;m,s):———2|z_m| z€[m—s,m+s)].
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Samples may be obtained as X « m + s(U; + U; — 1)
where Uy and U, are [0, 1)-uniformly distributed.
First of all, we apply (2) and (3).
(L) _ 1 ff(rR) _ 1
F(L) s—m+L" f(R) s—R+4+m’

where L < m < R. L and R are local maxima of

f(z)/g(zim,s) if

(M)

f"(L)y <0 and f"(R)<O
are satisfied. Now (4) reads
_ W mye ©
s—-m+L s—R+m
and the minimization leads to the fundamental identity
s=R-1L. (9)
From the middle part of (8) m is calculated as
_ RFR)+Lf(L) (10)
F(R)+ (L)
which yields
a=(R-L)(f(R)+ f(L)). (11)

Furthermore, since f(z) touches an isosceles triangle at
L and R, it is obvious that f'(R) = —f'(L). This and
(9) substituted into (7) yields

(L) _ _ f(R)
m-—L

R-m

F(R)= (L) = -
and therefore

(L-R)f'(R)=(R-L)f'(L)= f(L)+ f(R). (12)

Now all parameters can be calculated: usually (12)
determines L and R, and (9), (10) and (11) yield s, m,

and a.

Double Exponential Hat Functions.
example of a hat function with two points of osculation,
L and R, has infinite range; it is the double exponential
(or Laplace) distribution with density

|m — =]
. .

Samples are obtained as X «— m + TsE where E is a
standard exponential deviate and T a random sign =.
This time (2) and (3) read

£1(L) SR _ 1

f(L) f(R) s

where L and R, L < m < R, are local maxima of
f(z)/g(z;m,s) provided that

f’I(L) 1

fLy e <

Our second

( )‘ —1 exp
glz;m,s8) =
23

(13)

!
3)

f'(R) 1

and F(R) 32
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Now (4) may be written as

Ina(s)=1Inf(L(s)) +1n2s+ m-1L

(14)

d
an R—m

(15)

and minimization leads to the fundamental identity (6),

lna(s) =In f(R(s)) +1In2s +

which results in
2s=R-1L. (16)

Combining (13) and (16) determines L and R by
solving the two equations

1l

(R—L)f'(L) - 2f(L)
(R-L)f'(R)+2f(R)

0,
0.

(17)
(18)

Subsequently, m is obtained from (14), (15) and (16) as

_R_—__L In LR)
4 (L)

Adding the two representations of Ina(s) in (14) and
(15) yields

m=aR+M+ (19)

o = (R - L)e\/F(L)f(R).

The theory simplifies if f(z)is symmetric about zero.
This means L = —R, f(L) = f(R), f'(L) = —f'(R)
and hence m = 0. The previous results (16) and (20)
yield s = R and a = 2¢ R f(R) and R is determined by
(17) which now reads Rf'(R) + f(R) = 0. This deter-
mines all parameters. The sufficient condition becomes
R*f"(R) - f(R) < 0. R is optimal if this is satisfied.

(20)

3. THE RATIO OF UNIFORMS METHOD

Let U and V be [0, 1)-uniformly distributed random
variables. Consider the transformation

sV —t

— _ prit1/k
X=m+ W y Y=U .
Since the Jacobian
sV —t 3
a(X,Y) - T kRU+L/E Uik | =s(1+1/k)
B(U,V) (1 + l/k)Ul/k 0

is constant, the variables X, Y are again uniformly distri-
buted in their domain D. It is bounded by the following
curves:
The line U =0,V € [0,1) corresponds to
—00< X <00, Y =0
The line U = 1,V € [0,1) corresponds to
Xem-—tm—t+s], Y =1
The line U € [0,1),V = 0 corresponds to
X=m— U Y =UWE e,

t k+1
XE(—oo‘m—t],Yz(m_X) .




The line U € [0,1),V =1 corresponds to
X=m+(s— t)U‘ll", Y = Ul'“/k, l.e.
s —1 k+1
Xem—-t+s,00), Y= (
) X-m
This means that the transformed area is bonded by
the table montain function

t k41
(7==)
h(z) = 1
g ¢\ K1
=)
Its area D is equal to s(1 + 1/k).

Assume that f(z)is a density and f = maz, f(z).
To simplify the notation we use

f(z)

z € (—oo,m — 1]
mE[m—t,m—t-}-s]

z €[m—1t+s,00)

1
f(x) = ?f(’.':) - ma:crf(:c) .
For applying the acceptance-rejection method
f(z) < k(=)
must hold. This means
(m—z)**' f(z) < z<m-—t
(z-m)+f(z) < (s—O**, sEm—t+s
Define
vo= inf{(z - m)(F@) Y o <m 1)
= —sup{(m —z)(f(2)/"**) |z <m -1t}
ve = sup{(z—m)(f(=)/*" |z>m—t+s)
Our assumptions mean that v_ and v, are finite and

t=—v_, s =wv; —v_ are possible choices for s and ¢.

Sampling may be carried out in the following way.

Procedure RU

1. Generate [0,1)-uniform random numbers U and
V and set X — m+(sV —t)U~VE Y — UK,

LY = UMYE < F(X) = f(m+ (sV = t)UTYE)

return X as a sample from f(z). Else go to 1.

—v_, k=1
as introduced by Kinderman and Monahan in 1977 reads

The special case m = 0,3 = vy —v_,t =
as follows.

Procedure KM

1. Generate [0,1)-uniform random numbers U and
V and set
U — (max, f(2))"?U, V — v_ + (vqy —v_)V.

2. IfU? < f(V/U) return X « V/U. Else go to 1.

480

Since the area below f(z) = f(z)/ max. f(z)is equal
to 1/ max. f(z), the expected number of trials is equal
to

a=2(vy —v_) m:xxf(z).

4. OPTIMAL CONSTANTS FOR THE RATIO
OF UNIFORMS METHOD

So far optimal constants m,s,t have not been con-
structed. Since k is usually equal to 1, one has to mini-
mize the area s(1 + 1/k) of D, i.e. the quantity s.

Assume that f(z) touches h(z) at a point L < m —t
and at R > m — t + s. This means

t = max {(m — z)(f(z))l/(lﬂc)
s —t=max{(z — m)(f(z))l/(l+k)

|2 <m -1}
[z >m—t+s}

or
t= (m—L)(f(L)/0" (21)
s—t= (R-m)(f(R)/O*), (22)
Logarithmic differentation yields
ftey “m-L" f(R)  R-m

This shows that L and R are functions of m. Finally,
adding (21) and (22) leads to

s = (m=L)(F(L)H + (R-m)(F(R)H . (24)
The derivative of s with respect to m becomes

A (s - Gy

+az ((m = L)(F(D)HHR) 4

+35r (R—m)(f(R)VO+M) &

= (FL)H — (R,

since the two other expressions are zero by the optimality
of L and R. Hence

f(L) f(L)= f(R)

is a necessary condition for an optimum. (23) and (25)
will determine L, R and m, and (21) and (24) yield t and
s. Usually, the calculation simplifies by noticing that

f(R),i.e. (25)

R—L=(k+1)(’.f(L) ‘.f.( )> (26)
fi(L)y f/(R)
and

f(L) -

both are consequences of (23).

f(R)



The gamma distribution is treated as an example.
Its density is
1 a—1 -z
==z e ,z2>20,a2>1.

It’s logarithmic derivative becomes

f'(z) _a-l-z
f(=) z
Hence (26) yields
L
R-1 = (k+1)(a—1—L —a—f—R)

(k4 1)(a —1)(L — R)
(a—1-L)a-1-R)

or
(a=1=L)a—1-R)+(k+1)a—-1)=0.
Setting
L=a-1-)\. R=a-1+p,
leads to

Ap=(k+1)(a-1).

Now m is calculated from (27) as

m = RL :(a—l—)\)(a—1+p)
a-—1 a—1
= a—-14p— _i
a—1

a—1+4+p—A—(k+1).

Finally, p — X is calculated from (25) which means

0 = R-L+(a-1)lnL/R
= 1-M(e—1)
= p+A+(a—1)<ln1+p/(a_1)>
S N (E R R 250
B 2(0-—1)<(p A7) 3((1—1) +
Pt A 2(pt )
2(@_1)2_ 5(‘1_1)3 +)
Hence
2 PJ+/\3 1 p4_)\4
p—XA = 3a—1) p+A 2(a-1)2 p+2A +
2 P+ 2
5(a—1)° p+2A
2 2
= m(pkﬂp—x))_
! 2
e TP M=)+
sy (P #3022 = )7 £ (2= 1))
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A second order approximation yields

2 4(k+1)°
- A= Z(k T 8
’ sk D+ e o (28)
Hence
_ 1 4(k+1)>°
m=a—1 3(Ic+1)+5>(27(a_1). (29)

Kinderman and Monahan (1980) develop a genera-
tor for the gamma distribution with parameters a > 1,
starting with a shifted gamma density with mode 0 in
order to obtain a good fit of the table-mountain func-
tion. This means m = a — 1 in our theory, whereas the
optimal value is close to m = a — 5/3. A similar trick
is used by Monahan (1987) for generating samples from
the y—distribution with parameters a > 1.

Recently, the ratio of uniforms was applied to dis-
crete distributions. Ahrens and Dieter (1989) used it for
the Poisson distribution and Stadlober (1989a,b) gene-
rated binomial and hypergeometric random variates by
this procedure.

Other transformations of uniform variables are con-

sidered by Barbu (1982, 1984). X = V/+/U is applied to
u-v
U

is applied to gamma and beta distributions. However,

Student—t and normal distributions, whereas X =

the efficiencies a of the resulting gamma and beta ge-
nerators are not bounded. Vaduva (1985) generalized
these transformation methods to multivariate distributi-
ons and applied them to multivariate normal, Student-
t and Dirichlet distributions.
(1987) investigated multidimensional transformations of
the form (X,,...,X,) = (Vi/¥U,...,V.,/¥YU). They
showed that k = 2 leads to a better efficiency o than k =
1 in the cases of the univariate g—exponential distribu-

Stefanescu and Vaduva

tion and the uni- and multivariate normal and Student-
t distributions. However, this improvement does not
speed up sampling since the square root is too slow.
These examples were the reason to consider exponents
k# 1. Probably, no exponent k#1 is of any practical in-

terest.

5. SQUEEZE FUNCTIONS

Step 2 of the acceptance-rejection method in Sec-
tion 2 can be improved if some simple bound b(z) on
f(z)/h(z) is known. This was extensively used by Ah-
rens and Dieter (1974). According to G. Marsaglia (1977)
such expressions b(z) are called ‘squeeze functions’ or

simply squeezes. Let
b(z) < q(z) = f(z)/h(z) forall z €IR.

The rejection test in Step 2 then changes to



2’. Generate a uniform random wvariable U between
zero and one. If U < b(X) accept X as a sample
from the target distribution f(z). IfU > q(X) =
F(X)/h(X) reject X and go back to 1. Otherwise

accept X.

The squeeze function b(z) should be easy to calculate
and close to ¢(z). Polynomials in z fulfill this condition
and we shall try to determine their coefficients.

Assume that g(z) attains its maximum 1 at the point
z = 0. (g(0) =1, ¢'(0) = 0). Let g5 = ¢'*)(0) be the
first non-zero derivative of ¢(z). Then

zk k+1 k+2
z)=1+ — —_ -
@) =1+ et oy gy

near z = 0. We try to find out under what circumstances

9k+2+~~--

b(z) =1 - brz"

For this, b; has to

Q42 t+ >

could serve as a squeeze function.

satisfy

1
—by < —

RS + —qk+1 + (

z 12
k+1 k+1)(k+2)
or

k+1 4qi42

9k+2 (1:+ dk+1 (k+2))2> 4o

+
(k+1)(k+2) 2qr42

Hence
qr+2 > 0
1s a necessary condition for a squeeze. If this is not

fulfilled, we can still try

1

b(z) =1—bxz" — byyrz*" where by = ~ R

and the former condition changes to qx43 > 0. If this
is again not satisfied, one has to carry on. Eventually

there may be some m-th power for which

quzl, qU:O fOT ].Sllsk'—].,

and
9k #0,

Now let

Gk+m+2 >0 for some m > 0.

b(z) = 1-biz" = = bzt
where

1
bry, = — )|Qk+u for 0<v<m-1

(k+v

and

1= bez® — = bgymztt™ <q(z) forall z € RR.
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This means that
(1-q(z)- bezt — ... = bk.,.,,l_lzk-"m_l)z_k_m < bkt

is required. Therefore by, has to be equal to

max{z ¥ "™(1 —g(z) — bxz* — ... = beymorzt T}

The maximum bg ., is reached at a point z, where

m—1

(k+m)(1 —q(zb)) +zuq'(z4) — Z(m—- V)brgvzit? = 0.
v=0

If the second derivative is negative at z,, bgym is in-

deed optimal. Therefore one has to check whether the

condition

(k+m)(k+m+ 1)z, 572

—k—m-—1

(1-g(z))
+2(k + m)z, ~k-m

q'(z1) = ¢"(z)zy

m-—1
- Z(V —m)(v —m — 1)bk+,,z"_m_2 <0
v=0
is satisfied. For an example of the general theory see
Dieter (1989).
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