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ABSTRACT

So-called “perfect” or “unpredictable” pseudoran-
dom generators have been proposed recently by people
from the area of cryptology. Many people got aware of
them from an optimistic article in the New York Times
(Gleick (1988)).

on nonlinear recurrences modulo some integer m. Un-

These generators are usually based

der some (yet unproven) complexity assumptions, it has
been proven that no polvnomial-time statistical test can
distinguish a sequence of bits produced by such a gen-
crator from a sequence of truly random bits.

In this paper, we give some theoretical background
concerning this class of generators and we look at the
practicality of using them for simulation applications.
\We examine in particular their ease of implementation,
their efficiency, periodicity, the ease of jumping ahead in
the sequence, the minimum size of modulus that should
be used, etc.

1. INTRODUCTION

In the recent years, a growing interest has raised
for “cryptographically strong” (or “perfect”, or “unpre-
dictable”) pseudorandom gencrators. The introduction
of such generators is an outgrowth of a body of results
and ideas which, as stated by Yao (1982), form a the-
ory of information based on computational complenity.
They are of primary interest in the field of cryptology
(public key cryptosystems, gencration of random pads,
message authentication, key exchange schemes, etc.).
See Brassard (195%). They are not well known to the
simulation community. The purpose of this paper is to
introduce them and look at the practicality of their use

for simulition applications.

Pseudorandom genecrators are in fact deterministic
algorithms that stretch a short (truly) random seced
into a long sequence that is supposed to appear and
behave like a true random sequence. The most com-
monly used in practice are still the linear congruential

generators and its variants (matrix form, combinations,
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etc.) (Knuth (1981), Bratley et al. (1987), L’Ecuyer
(1988, 1989)). These generators are quite efficient and
show good statistical behavior when their parameters
are well chosen. However, efficient algorithms have been
designed to infer sequences produced by linear congru-
ential generators, even when the multiplier, increment
and modulus are unknown, by looking at the first few
numbers generated (Plumstead (1982)). Discarding the
low order bits of the numbers in the output still fails to
assure unpredictability (Boyar (1989a)), Stern (1987),
Frieze et al. (1984, 1988)). Finally, general results for
multiple linear congruential recurrences and for one-
term polynomial congruential recurrences of an arbi-
trary degree with unknown coefficients have been es-
tablished which provide efficient inference methods for
predicting the sequences of numbers produced (Boyar
(1989b), Lagarias and Reeds (1988)). Though the dis-
tributions generated by these commonly used pseudo-
random generators may satisfy various statistical tests
of randomness these results indicate that the sequences
obtained are not unpredictable as one would expect a
random sequence to be.

The generators that we examine in sections 3 and 4
of this paper are based on nonlinear polynomial (mono-
mial) one-term recurrences, but their output consists in
a fraction of the low order bits of the successive terms
in the recurrence. Hence these gencrators produce se-
quences of (pseudorandom) bits, which in turn can be
blocked for the generation of integers or rationals. Un-
der some unproven but reasonable complexity assump-
tions (e.g. no algorithm can systematically factorize in-
tegers in time polynomial in the size of the smallest fac-
tor), these gencrators are provably “unpredictable” in
the sense that from a given sequence of output bits, no
polynomial-time algorithm can guess the next bit (or
previous bit) significantly better than by flipping a fair
coin. Also, no polynomial-time statistical test can dis-
tinguish the output (sequence of bits produced) from a
truly random sequence of bits. More precise definitions

of these propertics are given in the next section.

Section 2 introduces basic concepts, definitions and
propertics. Theorems 1 and 3 are related to theorems



stated by Yao (1982), Goldreich et al. (1986) and Levin
(1987). Theorem 4 is a modification of theorem 1 in
Blum and Micali (1984). Our definitions and proofs
are strongly inspired from these authors, but with some
modifications and extensions. In sections 3 and 4, we
examine the BBS generator as proposed by Blum, Blum
and Schub (1986) and improved by Vazirani and Vazi-
rani (1984), and the SPG generalor, suggested by Micali
and Schnorr (1988). Practical aspects of implementa-
tion of these generators are discussed. The last section
concludes by commenting on the practicality of these
generators for simulation applications. Our conclusion
is far from being as optimistic as Gleick (1988).

PT-PERFECT GENERATORS

We assume the “Turing machine” model of compu-
tation. Probabilistic algorithms are allowed to toss a fair
coin, once per step, to produce truly random bits. As
in Brassard and Bratley (1987), for any f: IN — [0, 00),
we define O( f(n)) as the set of functions g : IN — [0, 00)
such that for some constants ¢ > 0 and no € N,
g{n) < cf(n) for all n > no.

A polynomial-time (PT) algorithm is one that halts
in (worst-case) time g(n) € O(f(n)), where f(:) is a
polynomial and n is the size of the input. As usual (in
many complexity studies), PT algorithms are considered
efficient, while any problem for which no PT algorithm
exists is considered hard. Of course, this should be in-
terpreted with care, since in practice, it is possible (al-
though rare) to have a PT algorithm A and a non-PT
algorithm B such that A runs slower than B for all prob-
lem instances that can be solved in reasonable time on
a fast computer.

2.1. Polynomial-timie generators

DEFINITION 1. A Pseudo-Random Number Gen-
crator (PRNG) is a sequence of structures G = {G, =
(€, Snyttn, fr,Un,gn), n > 1}, where €, = {(n) € O(n)
and for each n, G, is defined as follows. S, is a finite
set of bit strings of uniform length ¢, (i.e. each s € 5,
can be represented by a string of at most {, bits). .S, is
called the state space and €, the size of the generator.
itn 1s a probability distribution on (.5,,B(S,)), called
the initial distribution, where B(Sy,) is the set of all sub-
sets of Sp. U, is a finite set called the output space (or
obscrvation space), fn 1 Sn — Sn is the transition func-
tion and gn : 5, — Uxn is the oulput function (or obser-
vation function). We will denote by ¢, the cardinality
[lg cn] (where lg is the log

of the set U/, and let 1,
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in base 2), the minimal number of bits to represent all
the output symbols. We assume that v, = v(n) € O(n).
For a fixed n, the generator operates as follows:

(1) Select the initial state s € Sp according to g,
(or an approximation of pn, see below); let ug :=

gn(30);

(2) for 1

gn(s:).

1,2,..., let 8; := fn(s:-1) and u, :=

The sequence of observations (uo,u1,u2,...) is the
(observable) output of the generator. The initial state
30 is called the seed. Often, in practice, so cannot be
generated exactly according to pn, but one can use an

approximating distribution fi,.

DEFINITION 2. Let {(Sn,pn), n > 1} be a se-
quence such that each S, is a finite set and pu, is a
probability distribution on the subsets of S, (as above).
We say that p, is polynomially accessible if there exists
a constant v and a probabilistic polynomial time (in n)
algorithm, using O(n") true random bits, whose output
follows (for each n) a distribution jin, on S, such that
for each constant ¢,

Z |#n(s) = fin(s)] € O(n™").

SESn

1)

DEFINITION 3. A polynomial-time PRNG (PT-
PRNG) is a PRNG for which there are deterministic
(worst-case) polynomial-time (in n) procedures to com-
pute fn and gn, and which has a polynomially accessible
initial distribution pp.

We will use slight abuses of notation. each time we
say that something is drawn according to p,, we mean
in fact that in practice, it is drawn according to some
ftn that satisfies definition 2. Once 3¢ is fixed, all the
rest can be computed deterministically and “efficiently”
(provided so, f, and g, are known). In particular, the
distribution p, for so induces a probability distribution
over the set of sequences of observations (uo,u,...).
We will also denote it by un. Other authors set v =1
in definition 2, but most currently conjectured “unpre-
dictable™ generators need more than O(n) truly random
bits. Of course, all this is interesting only if the gen-
erator can output more bits than the number of true
random bits required to get its seed.



2.2. Statistical tests and unpredictability

DEFINITION 4. A polynomial-time statistical test
(PT-ST), for a PT-PRNG G = {G., n > 1}, is a se-
quence of probabilistic algorithms T = {T, n > 1} and
two constants v and w such that T, takes as input a
sequence of observations of length n™, say (uo,u1,...,
Unw_1), halts in (worst-case) time at most n° and out-
puts 0 or 1. Let p(Gn,Tn) be the probability that T,
outputs 1 when the sequence (uo,...,unw_1) is drawn
from pn. Let p*(Gn,Ta) be the probability that T,
outputs 1 if all the observations u,’s are replaced by
ii.d. random variates truly uniformly distributed over
U,. We assume that such uniform variates can be drawn
in polynomial time. We say that the PT-PRNG passes
the test if for every constant ¢,

[P(Gn,Ta) = p*(Gn, Tu)| € O(n™"). (2)

DEFINITION 5. A PT-PRNG is called PT-perfect
(a PT-perfect PRNG, or PT-perfect generator) if it
passes every possible PT-ST.

DEFINITION 6. A PT-prediction test for a PT-
PRNG is a PT-ST, such that T, uses as input Up, C
{uwo,u1,...,unw_1} (a strict subsequence of the output),
selects k such that 0 < k < n" and ux ¢ U,, and
computes a value @g € Upn, which is a prediction of uj
given U.. It then observes ug and if ux = dx (correct
prediction), it outputs 1, otherwise it outputs 0. In the
case where U, = {ui,...,u,} for some 0 <1 <3 < n®
and k=341 <nY [k =1—12>0],itiscalled a PT-nexzt

observation [PT-previous observation] test.

REMARK 1. In the case where the u,’s are truly
ii.d. uniform over U,, the probability p*(Gn,Tn) of
a correct prediction is 1/cn. Therefore, the genera-
tor passes the prediction test iff for every constant t,

| Pr(correct prediction) — 1/cn] € O(n™").

DEFINITION 7. A PT-PRNG is called PT-unpre-
dictable [PT-unpredictable to the right, PT-unpredicta-
ble to the left] if it passes every possible PT-prediction
[PT-next observation, PT-previous observation] test.

THEOREM 1. For a PT-PRNG G, assume ¢, €
O(n”) for some constant v. Then, the following are
equivalent:

(a) G is PT-perfect;
(b) G is PT-unpredictable;

(c) G is PT-unpredictable to the right;
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(d) G is PT-unpredictable to the left.

PROOF. Obviously, (a) implies (b), and (b) im-
plies (c¢) and (d). Hence, it suffices to prove that
(¢) or (d) implies (a). Suppose that some PT-ST
{Tn, n > 1} (with constants v,w) is not passed. For
some constant ¢, and all n in some infinite subset N
of N = {1,2,3,...}, |p(Ga,Tn) —p"(Gn,Tn)| > n7"
We will construct a PT-next observation test that is
not passed, showing that (c) cannot be true. For each
1, 0 < 1+ < n", consider the procedure A; obtained
by feeding the PT-ST as follows.
of observations of length 7, say (#o,...,%i—1), accord-

Draw a sequence

ing to pn. For k > ¢, draw i uniformly from U,.
Give (#o,...,%nw_1) as input to Tn. Output the same
value as Tn. Let p; be the probability that this pro-
cedure A; outputs 1. Note that pp = p*(Gn,Tn) and
pnw = p(Gn,Tn). Let n € N. Without loss of gener-
ality, we can assume that p(Gn,Tn) > p*(Gn,Tx) (oth-
erwise, inverse the result of the PT-ST). There is an
integer k, 0 < k < n", such that pxy; — px > n (%),
Define the following PT-next observation test T, for u.
Apply procedure Ax and if it outputs 1, take 4 as a
guess, otherwise draw 4 uniformly from U, and take
its value as a guess. If the guess is correct (equals to
uk), Tn outputs 1, otherwise it outputs 0. The prob-
ability that the guess is correct is Pr(guess correct)
= Pr(Ax outputs 0 and 4x = ux) + Pr(Ax outputs 1
and iy = ux) = (1 — px)/cn + Pr(Ax outputs 1 | 4y =
w)fen = (1+prs1 —pe)fen > (1 + 0704 /e,
Therefore, this PT-next observation test is not passed,
so that (c) implies (a). The proof that (d) implies (a)
is similar. This time, A; uses (#@o,...,%nw_1) where
ig,...,U%; are random, uniformly drawn from U,, and
the sequence (@it1,...,%nw—1) follows pn. Assume
that p(Gn,Tn) < p*(Gn,Tn) and choose k such that
—(pr — pr—1) > n~(t+%) The PT-previous observation
test is defined in the same way. 1§

THEOREM 2. A necessary condition for a PT-
PRNG to be PT-perfect is that the distribution of each
u,; should be approximately uniform over U,,, with poly-
nomially negligible error. More specifically, for any

u € Uy, integer ¢ > 0 and constant ¢,

lun(us = w) = 1/ea] € O(n ™).

PROOF. Otherwise, the generator does not pass the
PT-prediction test that just guesses u; = u without
looking at anything else. (Note that this is not ruling
out the possibility that gn(ui = u) = 0 for some u, since
¢, may for instance increase exponentially with n.) 1



2.3. DBit tests

We now examinc a little further the case where
the output is a sequence of bits, ie. U, = {0,1} for
cach n. In this case, the PT-prediction, PT-next ob-
servation and PT-previous observation tests are called
respectively PT-bit prediction, PT-nert bit and PT-
previous bit tests. The terms PT-unpredictable, PT-
unpredictable to the right and PT-unpredictable to the
left can also be replaced respectively by PT-bit, PT-
previous bit and PT-uext bit unpredictable.

Obviously, any PT-PRNG can generate a sequcnce
of bits: just concatenate the u,’s, viewed as bit strings
of length v,. But nothing guarantees that these bits will
look random, even if the initial generator is PT-perfect.
For instance, if ¢, = 3 (and v, = 2), only about one-
third of the bits will be ones. We will see that if U,
satisfies a simple property (below), a generator is PT-
perfect if and only if its associated bit generator is PT-
perfect.

DEFINITION 8. A PT-PRNG is called bit-complete

if for each n, U, is the set of all bit strings of length v,
(and ¢ = 2Y).

DEFINITION 9. Let ¢ = {Gn, n > 1} be a bit-
complete PT-PRNG. The bit-generator associated to G
is the PT-PRNG G = {Gn = (€n.5n, fin, fr, U\ in),
n > 1}, where £ = ln + [lgrn], Sn = Sn x {1,.. . v},
Un = {0,1} (so that &, = 2 and &, = 1) and for each
(5,7) € Sn,

s (fals) 1) if ) = v
Julsi) = {(s,J+1) 1<) <
gn(s,2) = j-th bit of gn(s);
[Ln(Sw].) = {'U”(S) l[.] =1

0 otherwise.

THEOREM 3. Let G = {Gn, n > 1} be a bit-
complete PT-PRNC:, witl associated bit-generator G =
{Gn, n > 1}. Then the following are equivalent:

(a) G is PT-perlect;
(b) Gis PT-perfect;
(c) G is PT-bit unpredictable;

(d) G is PT-next bit unpredictable;

(¢) G is PT-previous bit unpredictable.
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PROOF. Any PT-ST T for G can be transformed
into a PT-ST T for G and vice-versa. Bits generated
from (! can be regrouped into packets and given to T,
while the obhservations obtained from G can be cut down
into bits (as above) and given to T. Because the genera-
tor is bit-complete, each u, is truly uniformly distributed
in S, if and only if each bit of u, is truly uniformly dis-
tributed in {0, 1}. Therefore, G passes the test T if and
only if G passes the test T. This proves the equivalence
between (a) and (b), and the remainder follows from
Theorem 1. 1

The above Theorem is related to Theorem 1 in Gol-
dreich et al. (1986). Note that we don’t say that a gen-
erator must be bit-complete for its associated bit gen-
erator to be PT-perfect. Even if it is bit-complete, we
don’t say either that all elements of I/, must have posi-
tive probability to appear somewhere in the output se-
quence. Forinstance, if there exists a PT-perfect PRNG
with v, linear in n (¢, exponential in n), having a small
number of elements of U/, with zero probability should
be acceptable.

The next result concerns the periodicity of PT-
perfect generators. Since S, is finite, the output se-
quence will eventually become periodic. For a given
S0 € Sp, the period is

p(so) = min{j—i+1]|;>:>0,

Uik = u 4k for all k > 0}
and the transient is

T(s0) = min{t > 0| witr = ;44 psq) for all k > 0}.

THEOREM 4. Let w be a constant and G a PT-
perfect PT-PRNG. Let Sy, = {s0 € Sn | p(s0) + 7(s0) <
n"}. This the set of initial states such that the sequence
of observations becomes periodic after a transient plus
initial cycle of total length at most n*. Then, for any
constant 1, yt,(S;,) € O(n™").

PROOF. Whenever so € Sh, from uo, ..

can compute upwyy in polynomial time (in n). If

., Unpw, ONE

pn(S)) > n~" for an infinite number of values of =,
one can design a PT-next observation test for wunw41,
which computes upwyy if so € S;, and guesses at ran-
dom otherwise. The probability of a correct predic-
tion is Pr(correct) = pn(Sh) 4+ (1 — pa(Sh))/cn >
1en + 071 = 1/cn) > 1/en + n74/2 (since cn > 2).
Therefore, G fails the test and cannot be PT-perfect. I



2.4. One-way and random functions

The notion of one-way function (Yao (1982)) is
strongly related to the notion of PT-perfect PRNG.
Roughly speaking, a one-way function h is such that
h(z) = hn(z) for = € {0,1}", where hy, : {0,1}" —
{0,1}™ can be computed in PT (in n), but for which
any PT algorithm trying to recover r from h(x) will fail
for at least a constant fraction (in n» and 7) of each set
D = hi,({0,1}") (where I}, is the i-fold composition of
hn). More precise definitions are given in Levin (1987)
and Goldreich et al. (1986). Yao (1982) studied the
notion of one-way function and showed how, from any
one-way permutation, one can construct a PT-perfect
PRNG. Levin (1987) went further by proving that a one-
way function exists if and only if a PT-perfect PRNG
exists. (His definitions of PT-ST and one-way function
were slightly different from Yao’s).

Another related notion is the one of random func-
tion (Goldreich et al. (1986)). Informally, a PT-random
function is like a PT-PRNG, except that the seed so
determines a function h : {0,1}" — {0,1}" that can
be specified and evaluated in PT, but cannot be distin-
guished in PT from a function randomly selected from
the set of all 2%2* possible functions of that form. Gol-
dreich et al. (1986) show how, from any PT-perfect bit
PRNG (and from any one-way function), one can con-
struct a PT-random function. Luby and Rackoff (1988)
also show that from any PT-random function, one can
construct a PT-perfect permutation generator. Micali
and Schnorr (1988) use the construction of Goldreich
et al. (19%6) to transform every PT-perfect generator
intto one that can be accelerated efficiently by parallel

evaluation.

Some presumed PT-perfect generators

Various generators proposed recently have been pro-
ved to be PT-perfect, under some yet unproven complex-
ity assumption. See for iustance Yao (1982), Blum and
Micali (1984), Blum et al. (1986), Alexi et al. (1988),
Reif and Tygar (1958). Micali and Schnorr (1988). All
of these are in fact based on presumed one-way func-
In the next sections, we examine 1m more detail

tions.
two of these generators.

3. THE BBS GENERATOR

3.1. Definition
Blum. Blum and Schub (1986) have proposed the

following gencrator. Let N = pq be a n-bit Blum wn-
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teger (i.e. a product of two distinct primes p and ¢,
both congruent to 3 modulo 4), such that p and g have
approximately the same size. Let y be a positive inte-
ger relatively prime to N and let zo = y? mod N. For
1=1,2,..., let

2
r, :=r;_, mod N.

(3)

At each step, the generator outputs the last v, bits of
z.. In the original version (Blum et al. (1986)), one had
vn = 1 (the output was the parity of z,) and the genera-
tor was based on the quadratic residuosity assumption.
But Vazirani and Vazirani (1984) have shown that under
the FISH assumption below, taking vn = v(n) € O(lgn)
yields a PT-perfect generator.

ASSUMPTION FISH (Factoring is hard). Any PT
algorithm whose purpose is to factorize n-bit Blum in-
tegers will fail on at least a constant fraction (in n) of
the possible inputs. In other words, the multiplication
function defined by hn(p, q)

N is one-way.

We can define a BBS generator G as follows. For
simplicity, we assume that n is even. Let ¢, = n,
D, = {N | N is a Blum integer with two (n/2)-bit
factors } and Sp = {s = (N,z) | N € Dn and z is
a quadratic residue modulo N, relatively prime to N}.
(Some members of Dp can have in fact » — 1 bits, but
this is not a problem.) Let P, be the set of all (n/2)-bit
primes that are congruent to 3 mod 4. pn is defined as
follows. Pick p and ¢ randomly (uniformly) from Pr.
Let N := pqg € D,. Then pick y uniformly among the
integers in {2,..., N — 1} that are relatively prime to
N, and let £ := y?> mod N. Define fn by fn(N, )
(N,z? mod N). Let vn, = [vlgn] for some constant
v >0, Uy = {0,1}*" and gn(N,z) := z mod 2"*. Un-
der the FISH assumption, this BBS generator is PT-

perfect.

The best currently available factorization programs
can routinely find prime factors of up to about 50 dec-
imal digits (150 to 200 bits). Current progress is also
quite fast in that area. Therefore, in order to rely on
the FISH asssumption, n must be much larger than say
400. Perhaps n = 500 is still acceptable for today, while

n = 1000 would be safer for a few years to come.

3.2. Period length

Blum et al. (1986) have shown that the sequence
{s; = (N,1.), v 2 0} is purely periodic with period p
that divides M(A(N)). That is 12" mod N = ro. Here A
is the Carmichael’s function defined by A(1) = A(2) = 11

Ad) = 2 A(27) = 2277 for ¢ > 20 Mp®) = pt—p°!



for p odd prime and e > 1; A(p5'---pp*¥) = lLcm.

(/\(])T‘),...,/\(pz“)) if p1,...,px are prime. In partic-
ular, if N = pg is a Blum integer, A(N) = lcm.
(p—1,9-1).

Blum ct al. also prove that the following conditions
are sufficient for the period to be equal to AMA(N)).
A prime p is called a special prime if p = 2py +1 =

2(2p2 + 1) + 1 where p; and po are prime. Let Dy,
{N € D,, | N =pq, p and ¢ are special primes and 2 is a
quadratic residue with respect to (i.e. modulo) at most
one (or none) of the two integers p; (p—1)/2 and
g1 =(g~1)/2). Let S, = {(N,r) € Sp | N € D, and
k = A(N)/2 is the smallest positive integer for which
¥ mod N =1}. If (N,zo) € S,, then the period of the
;s is A(A(N)).

We can define a PRNG G’ by modifying G as fol-
lows. Replace S, by S., P, by the set P} of (n/2)-bit
special primes, and up, by p), defined as follows. Pick p
uniformly from P;,. Then pick values of g uniformly from
P} until N = pq € D;,. Then pick values of y uniformly
from {2,...,N —1} until (N,z = y* mod N) € 5.

Following a remark by Blum et al., an element of S,
can be found (on the average) after a polynomial num-
ber of trials (using a polynomial number of truly random
bits). Indeed, the fraction of (n/2)-bit integers that are
in P! is presumed to be asymptotically ((n/2)In2)72,
For instance, for (n/2) = 256, thisis about one in 15 mil-
lions. Therefore, for large n, picking numbers from Dj,
could be very time consuming in practice. We did the
following empirical investigation. For different values of
n, we look at how much CPU time (in minutes) it took
to find a first (N,r) € S;, according to u,. The results
appear in table 1. We also indicate the period length
assoclated with that seed (N.r) and the approximate
fraction of (n/2)-bit integers that are special primes.
Note that for n > 128, we were unable to find elements
of S/, in reasonable time. It took us 155 hours of CPU
time to find two 128-bit special primes p and ¢, but
for which 2 is a quadratic residue with respect to both
(p—=1)/2 and (¢ —1)/2. This experiment, like all others
reported in this papcr, were done on a MicroVax-11, us-
ing our own software (based on L’Ecuyer et al. (1988)).
The “truly random bits” were replaced by the output of
the “fast” generator proposed in L’Ecuyer (1988). To
generate “random” primes, we followed the approach
discussed in Beauchemin et al. (1988).

Since selecting from S, is much faster than from Sh,
it could be interesting to analyze the periods obtained
in the former case. Since the period divides A(A(N)),
it can be computed ecasily (eventually by exhaustive
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Table 1: Finding a first element of .S},

n CPU (min) period fraction s.p.
32 3.5 | 2.8 x 108 .000733
64 30.3 | 1.6 x 108 .000092
95 450.5 | 4.2 x 10?7 .000027
128 1610.9 | 2.5 x 10*7 .000011

search) provided that A(N) and MA(N)) can be fac-
torized. Now, factorization becomes the hurdle. Table
2 reports another empirical investigation. For different
values of n, we generated a large number of seeds (N, 1)
according to pn. Table 2 gives the number of those for
which A(N) and A(A(N)) were successfully factorized
and the period was computed. It also gives the approxi-
mate minimum, maximum and average of these periods.
For each “seed”, the allocated CPU time for factoriza-
tion was 15 min. for n = 64 and 30 min. for n = 128.

Table 2: Approximate period when selecting from S,

n nb. | A(A(N)) min. max. aver.

gen. fact. period | period | period

64 20 20 10" 10'€ 10%°

128 30 13 102° 10%° 10%?
3.3. Efficiency and other properties

When p and ¢ (and thus N and A(/N)) and the gener-
ator’s state s, are known, one can efficiently jump ahead
in the sequence, or generate the sequence backwards. In-
deed, since I?(N) mod N =1,

7 7 A
24, =122 mod N =z ™? XN mod N.

These exponentiations are easy to compute (see e.g.
Brassard and Bratley (1987)). Theorem 10b in Blum et
al. (1986) shows how to compute z,_; given N, r; and
A(N). They also give an eflicient algorithm to factorize
N when the period of the r,’s is known.

Recall that saying that G is PT-perfect means that
for large cnough n, it will pass any PT-ST which uses as
input only the u,’s, were u, represents the last v, bits
of r,. The generator may not pass a test that knows
r, or the factors of N. Blum et al. (1986) have shown
that even if N is known by the test, the generator with



vn = 1 remains PT-previous bit unpredictable. There-
fore, from theorem 1 or 3, it is also PT-perfect. They
also show that under the quadratic residuosity assump-
tion, no algorithm knowing only N and z, can guess
efficiently z;—;. N can be observed, but must remain
random. It is part of the seed. On the other hand, we
can redefine S, by fizing N, but then, the generator
will certainly not be PT-perfect. In fact, the output se-
quence may be really bad for some specific values of N.
But the proportion of such values probably goes down
to zero exponentially fast (or faster) with n.

An important consideration in selecting a genera-
tor is its ease of implementation and speed. Computing
2 mod N for large N using a standard computer re-
quires a non-negligible programming effort and/or can
be CPU-time consuming. For our implementations, we
used the package described in L’Ecuyer et al. (1988).
We implemented instances of BBS generators for dif-
ferent values of n and with ¥ = 1. The bits gener-
ated (vn = |lgn] per iteration) were regrouped into
packets of 23 and each packet was used to produce a
floating-point number between 0 and 1. Table 3 gives
the CPU time (seconds) per 1000 numbers generated,
on a MicroVax-II. For comparison, the 32-bit generator
proposed in L’Ecuyer (1988) needs approximately 0.2
seconds per 1000 numbers in the same environment. In
our implementation, the product modulo N is performed
in quadratic time in n and |lg n] bits are obtained each
time. Therefore, the time required per floating-point
number is in O(n?/lgn). “Faster” multiplication al-
gorithms permit in principle to reduce this asymptotic
time-per-number to O(n'*¢/lgn) for any ¢ > 0 (Bras-
sard and Bratley (1987)), but this reduction is effective
only for huge values of n. For n around 500 to 1000, us-
ing divide-and-conquer may yield a small improvement
in practice.

Table 3: Time to gencrate 1000 U(0, 1) values for BBS

n CPU time (sec)

32 15.1
64 24.2
95 38.9
128 48.5
256 130.0
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4. THE SPG GENERATOR

Micali and Schnorr (1988) have proposed a Sequen-
tial Polynomial Generator (SPG) which they claim is
almost as efficient as the usual linear congruential gen-
erator. They conjecture it to be PT-perfect. Tt is defined
as follows.

Again, assume n even. Let d > 2 and v > 0 be two
constants, (n = [2n/d|+7, €n = n+(n, vn = n—(» and
M(N)=|(N-1)/2""]|. Let D, = {N = pq | p and q are
two (n/2)-bit primes } and S, = {s = (N, r)| N € D,
and 0 < £ < M(N)}. pn is defined by picking p and ¢
uniformly from the set of (n/2)-bit primes, setting N =
pq, computing M (N), then picking r uniformly from the
set {2,...,M(N)}. Define

fa(N,z) = [(Id mod N)/2""|;

gn(N,z) = (z? mod N) mod 2"

and U, = {0,1}”~. Note that M(N) represents the
largest possible output from f,. At each step, the gen-
erator computes the n-bit value z¢ mod N, whose first
(n bits make up the next value of r (determines the next
state), while the last v, = n — ¢, bits are the output.

Two special cases of this generator are conjectured
by Micali and Schnorr to be PT-perfect. (They do
not state their conjectures exactly as we do below, but
In the first case,
d is assumed odd and D, is replaced by its subset
D, = {N € D, | (p— 1)(g — 1) is relatively prime
to d}. Call this generator G.

the 1dea 1s essentially the same.)

CONJECTURE SPG1. Generator G; is PT-perfect.

This conjecture is related to the security of the RSA
encryption scheme. The next conjecture allows even d,
which yields more efficient generators (e.g. if d is a power
of two). It is justified by the work of Alexi et al. (1988).
Call G, the SPG generator obtained when D, is re-
placed by its subset D, = {N € D, | N is a Blum
integer }.

CONJECTURE SPG2. Generator G- is PT-perfect.

Micali and Schnorr suggest n = 512 and d = 15 or
16 for practical applications.

We did empirical investigations with SPG genera-
tors, with different values of d and n. Concerning the pe-
riod, we have observed that in most cases, r, eventually
reaches the absorbing state 0 (in which case p(so) = 1).
For some other cases (seeds), the generator is not reach-
ing zero but gets into a very short cycle. This is remi-
niscent of the infamous “Middle-square” method (Knuth



(1981)). On the other hand, the average transient (pn-
cxpectation of 7( N, rp)) is more important and increases
rapidly with n. According to theorem 4, it should in-
crease faster than any polynomial. Table 4 summarizes
the results of our experiments. For different values of d
and n we picked a number of different seeds, and com-
puted the approximate minimum and average of the pe-
riod and transient.

Table 4: Approx. transient plus period for the SPG

d n nb. aver. | aver. min.
seeds p T+p | T+p

32 200 2.6 11.2 2

16 | 64 200 3.3 9.6 3
12 | 64 200 6.5 22.5 3

We also performed similar speed tests as for the BBS
generator.

Table 5: Time to generate 1000 U(0, 1) values for SPG

d n CPU (sec)
8 | 128 7.6
15 | 128 7.0
15 | 256 10.3
16 | 256 9.7
15 | 512 16.5

5. CONCLUSION

We gave a framework for studying PT-PRNGs and
derived some properties of PT-perfect generators. We
also examined some practical aspects for the BBS and
SPG generators, two classes of generators that are con-
jectured to be PT-perfect. Both use a modulus N that
some might view as a parameter of the generator. But
since the PT-perfectness conjecture is justified only for
random N, we should view N as part of the seced.

Generating a random seed requires generating ran-
dom primes, which itself requires a number of random
bits. That number is in O(n") for some v, but usunally
not in O(n).

the problem of random number generation and they are

Some will argue that it just postponcs

partly right. But there is effectively a gain if from that
secd, one generates n® bits for w > v.
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In practice, a BBS or SPG generator may have a
proportion of seeds for which the behavior of the out-
put sequence is totally unacceptable. But this propor-
tion should go down to zero with n faster than one
over any polynomial in n. In practice, “acceptable”
safety can usually be obtained by taking n large enough.
But “large cnough” can sometimes be very very large.
Our empirical investigations suggest that for such “large
enough” n, straightforward (software) implementations
of the BBS and SPG generators are not competitive in
terms of speed with other generators currently in use,
which are acceptable for most simulation applications.
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