Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

USING LINEAR CONGRUENTIAL GENERATORS FOR PARALLEL RANDOM
NUMBER GENERATION

Mark J. Durst
Lawrence Livermore National Laboratory
Livermore, CA 91550, US.A.

ABSTRACT

Linear congruential random number gencrators are
widely used in simulation and Monte Carlo calculations.
Because they are very fast, and because they have min-
imal state space, they remain attractive for nse in par-
allel computing environments. \We discuss their use as
a source for many streams of pseudo-random numbers.
Many authors have discussed splitting the stream of
a single CRNG into many substreams; we show spec-
tral calculations for this scheme and compare randomly
and regularly spaced selection of starting points. Sev-
eral authors have suggested using a common multiplier
for all streams and a unique additive constant for each.
The discrepancies of such schemes are no better than
for splitting schemes; we show how they are in a sense
equivalent. We also consider the use of distinct multipli-
ers for each stream. Good multipliers are abundant for
large enough moduli, but little is known about the mul-
tidimensional behavior of such generators. e discuss
the use of improvement techniques and larger moduli to
overcome the limitations of linear congruential genera-
tors.

1. INTRODUCTION

Congruential random number generators (CRNGs)
arc perhaps the best known and most popular method
for generating a stream of pseudo-random numbers.
Their limitations are well-known (see, e.g., Marsaglia
(1968)), but this is just another way of saying that their
structure is well understood. The multiplier fora CRNG
can be chosen to provide good behavior in low dimen-
sions (sce Fishman 1978 Chapter 8). This, combined
with the fast generation speed and minimal state space
associated with CRN s, continues to make them attrac-
tive to Monte Carlo and simulation practitioners.

'or parallel and distributed computations which use
pseudo-random numbers, these advantages of ('RNGs
will continue to hold. Reproducibility, the guarantee
that different runs of a program will give the same re-
sult, can be assured if cach task or processor has allotted
to it a unique state space vector for the psendo-random
number generator. This makes it clear that small state

space is still a concern, at least for computations which

462

have many times more tasks than processors. It is also
clear that speed is no less a concern in parallel and dis-
tributed computations. Finally, the clear structure of
CRNCs makes analvses of some strategies for parallel
random number gencration possible, as will be seen be-
low. Such analyses are not yet available for any other
random number generators.

There are at least two ways to use CRNGs to produce
many high-quality streams of pseudo-random numbers.
One can simply split the sequence from a single CRNG
into many small subsequences; these splitting methods
will be evaluated below by an extension of the usual
spectral apparatus. One can also attempt to provide
many distinct generators, one for each stream. Theory

for this is not yet complete, but the method has promise.

2. SPLITTING

A splitting method is defined by giving different start-
ing points on a single CRNG for each substream. That
s, we have

=aN;,+c (mod m),

‘\i,n+1

with distinct starting values .\; o (uniform random
numbers in the interval [0‘]] are obtained as [;, =
X; »n/m). Each substream can be assigned a unique set
of numbers, stretching from its starting point along the
sequence of the CRNG to the next starting point en-
countered, and we can choose to permit or forbid over-
laps. With this framework we can analyze the behavior
of t-tuples (I7y »,...,Ut) through a variant on the
spectral test.

The standard spectral test of Coveyou and MacPher-
son (1967; amodern treatment is in Knuth 1981, Scction
3.3.1) analyzes the behavior of (U7, U1y ooy Unge—1)
by finding the most widely spaced system of parallel hy-
perplanes which cover all {-tuples of the above form.

The maximum hyperplane spacing is 1/vy, where
9
;

min - {||F]]° | 7@ =0 (mod m)},
re?!

r#0
with i = (1.a,a”,...,a'"'). Low hyperplane spacing
corresponds to low integration error (Niederrciter 1978),

and Knuth (1981, p. 91) comments that {-tuples charac-
terized by 1y “will behave essentially as if we took truly
random numbers and truncated them to log, vy bits.”

Suppose that n; indexes the starting point of the
i-th sequence with respect to the first stream; i.e.,
Nio = NXin,. Then the theory for our analysis of
(Un,Ung1... ., Upgi—1) directly follows Knuth (1981,
pp. 92-94), but with @ = (1,a"2,... a™). It should
be remarked that we will not calculate vy for large values
of t. Since the computational cost of the spectral test
goes as (}(3'), it would be impractical. Further, since
log.(v;) is roughly bounded by log,(m)/t (Marsaglia
19G8), we know that the result of the spectral test for
large t will be disappointing. \We can at best hope to
achieve good behavior across all small subsets of the
total number of streams. It should also be remarked
that an identical theory can analyze within-stream and
across-stream behavior simultaneously. For instance,
to analyze the 4-tuples (U7 o, Uy ny1,.Uan, Uz ny1), we
would use ' = (1,a,a"?, a™**1!).

\While this theory can analyze any splitting method,
it is superfluous for some very badly designed methods.
For instance, if m is a power of 2 (as is generally used
with vectorized generators), and 2% starting points are
distributed precisely evenly along the sequence of a given
CRNG. the resulting 2¢ streams differ only in their d
most significant bits. Further, for each ¢ < d, a given
stream has 2° companion streams which differ only in
their ¢ most significant bits, including one which simply
has the highest bit reversed.

2.1. Random Spacing

The failure of precisely even subdivision suggests that
randomly located starting points will be better. Indeed,
randomly located starting points do seem to have good
(unlagged) spectral behavior. We took the sequence of
RANF (m = 2%, ¢ = 0, a = 441485709377909) and
generated 1000 random starting points and their two-
dimensional spectral values with respect to a fixed start-
ing point. The average value of loga(va) (with units
roughly corresponding to bits of randomness) was 23.3,
with a standard deviation of 0.71; with a maximum of
about 24 bits of randomuness possible, over 907 lost less
than two bits of randomness, and all 1000 had more
than 19 bits of randomness. By contrast, a precisely
even split of RANF into 9210 ctreams averaged 7.5 bits
of randomness.

But while randomly located starting points show good
spectral behavior, there are problems with their practi-
cal use. The greatest problem is in the spacing of ran-
domly located starting points. In certain applications,
eventual overruns of one stream into another stream’s

mumbers must be forbidden. [In this case, each stream

463

can only be allotted the numbers up to the next starting
point. With random starting points, some streams will
have extremely small allocations. If we approximate k
starting points by random points on a circle whose cir-
cumference M is the period of the generator, it can be
shown (cf. David 1981, pp. 98-99) that the minimum
substream length 11" has the approximate distribution

Pr(WWV > Mty = (1 = kt)F—1,

with expected value A/k?. Thus if we randomly split
the generator RANF (with period M = 2%) into 2!°
streams, we can expect a minimum stream length on
the order of 2°%, which is acceptable; but if we need 22°
streams, the minimum stream length will be on the or-
der of 64, which is not acceptable. That is, randomly
located starting points will work for computations with
a moderately large number of streams, but will be prob-
lematic for computations with a very large number of
streams.

2.2. Regular Spacing

For a case requiring many millions of streams, we re-
turned to regularly spaced starting points, but with-
out evenly splitting the sequence (evenly splitting the
sequence would probably work well with prime modu-
lus, but our demands for vectorized generation dictated
m = 2%%). We used the same basic generator RANF and
separated starting points by 1,000,001. Among the first
1000 starting points, the mean value of log,(v2) was
22.3, with a standard deviation of .74. The distribution
is quite uniformly shifted down a bit from random start-
ing points; 90% of the comparisons are within three bits
of the maximum possible randomness, and all have more
than 18 bits of randomness. We have constructed other
regularly spaced algorithms which evenly divide up 70
billion numbers from the sequence of RANF (over 99% of
its total period) into a user-specified number of streams,
and the behavior of these is very similar. It seems that
regularly spaced starting points must lose about a bit
of randomness compared with randomly spaced starting
points in two dimensions (we do not yet have definitive
figures in higher dimensions).

The considerations above would seem to dictate the
use of randomly spaced starting points when the num-
ber of streams required is relatively small (perhaps up
into many thousands), with regular spacing being used
for much larger numbers of streams. However, regular
spacing may also be preferred when great confidence in
the interstream spectral values is required (for instance,
when a single bad dependency could ruin a computa-

tion). Under such circumstances, the use of random

starting points must be supported either with exten-
sive statistical analysis of random spectral characteris-
tics or with exhaustive spectral testing of all critical in-
terdependencies. With regular spacing, many different
interdcpendencies will result in identical spectral tests,
greatly reducing the number of tests which must be per-
formed.

3. MANY GENERATORS

When attempting to provide a distinct CRNG for
each stream, one could vary the modulus, the multi-
plier, or the additive constant (although the additive
constant will typically be zero when the modulus is not
a power of 2). With our vectorized generators we are so
far limited to moduli which are powers of 2, so varying
the modulus is not possible. It could be useful, though,
and will be discussed below.

3.1. Different Additive Constants

Percus and Kalos (1989), and independently Halton
(in press), have considered using a unique additive con-
stant for each stream, with a common multiplier and
modulus (which is a power of 2). The theory they de-
velop is helpful, but the idea that different additive con-
stants produce truly distinct sequences is somewhat mis-
leading. To see this, let .\, be a CRNG with
=a\, +c¢

Nnt1 (mod 2°),

and let
Y, =X, —-r

(mod 2°).

Then Y}, satisfies

Yopr1 =aY, 4+ c+ (a—1)r (mod 2°).

That is, the two additive constants ¢ and ¢ + (a — 1)r
produce the same sequence (except for a shift modulo
27) for any r. This produces a division of the possible
additive constants into equivalence classes. In the im-
(mod 8)),

there are two such classes, and their sequences are in

=5

portant case of maximum potency (a

fact antithetic. Reducing the potency of the multiplier
increases the number of equivalence classes, but corre-
spondingly degrades the within-stream behavior. How-
ever, attempting a tradeoff of potency for equivalence
classes is probably a red herring. Simple calculations
show that for any multiplier, all choices of additive con-
stant produce the same second difference sequence.

It should be noted that the results of Percus and
Kalos and Halton are of interest even if different addi-
tive constants are just a masked form of sequence split-
ting. Percus and Kalos (1989, Sections 4 and 5) show

464

how to obtain additive constants with good mutual two-
dimensional spectral values and provide some help with
three-dimensional values. When translated into starting
points, their recommended constants resemble random
starting points, but come with deterministic guarantees
on spectral values. Halton’s work is presented for com-
putations which produce a natural tree structure for the
streams. In this case there is a well-defined sense of
closeness of streams which can even take lagged behav-
jor into account with a reasonable number of spectral

tests.

3.2. Different Multipliers

While using different additive constants for each
stream adds no power over splitting methods, it is possi-
ble that using different multipliers for each stream may.
The streams from CRNGs with different multipliers do
not have a spectral theory analogous to those for split-
ting and different additive constants. Rather than being
scattered on a single lattice, {-tuples generated from ¢
different multipliers lie on one of many intertwined lat-
tices, as in Beyer (1972). Bad interdependencies seem
to result when many of these lattices collapse together.
Little theory exists so far, but this method looks promis-
ing.

First, there is a sufficient stock of very good multipli-
ers at large moduli like 248 Fishman (in press) searched
225 multipliers with m = 243 for multipliers with hyper-
plane spacings within 25% of the minimal possible spac-
ing in dimensions 2 through 6. From the results, Fish-
man estimated that about 11 million distinct multipliers
meet his stringent conditions. Measured on the scale of
log,(v2), Fishman’s conditions require that a multiplier
lose no more than about half a bit of randomness from
We
can get an even larger stock of multipliers by relaxing

the maximum possible in the tested dimensions.

this requirement. We generated 1000 randomly chosen
maximum-potency multipliers, and found that the mean
value of log,(vs) was 23.3, with a standard deviation of
.76. Over 90% of the multipliers lost less than two bits
of randomness. This would suggest that over 3 trillion
multipliers at this modulus are within two bits of the
maximum possible randomness in two dimensions.

The more difficult issue is the interdependency of sets
of multipliers, and it is here that theory is lacking. We
have looked at pairwise dependencies for m = 2° for
various values of ¢, and have found necessary conditions
for good interdependencies, but so far no sufficient con-
ditions. Any two maximum potency multipliers a; and
a- will satisfy a; = a?_, for some odd j. It is clear that
j should not take on a very small value. A little calcu-

lation shows that if

J=1 (mod2°77), r>2,

(1)
then the pairs (a7, a}) lie on at most 2”2 lines. Thus
we should look for a; which are individually good multi-
pliers and which are related by large powers j which do
not satisfy (1) for any small r. For moduli small enough
to examine exhaustively, such pairs of multipliers seem
to behave well at all lags. For m = 2% we have found
up to a thousand multipliers with no j satisfying (1) for
r < 36. We only tested pairwise behavior; these sets of
multipliers may be faulty in higher dimensions, although
tests similar to those in Fishman and Moore (1982) do
not detect problems.

4. IMPROVEMENTS

While splitting schemes seem adequate for current
use, the spectral limitations on CRNGs are severe. We
mentioned above that log,(v:) is roughly bounded by
logy(m)/t; thus CRNGs with the highest commonly
used moduli (around 2%%) cannot produce good behav-
ior much above a dozen dimensions. For truly general
parallel use, more would be required. Further, routine
spectral tests could fail to uncover a problem with a
specific splitting scheme in a specific application; such
a problem could only be diagnosed by using a better
parallel random number generator.

Any practitioner who needs a parallel RNG with
thousands of streams should have ad hoc improvement
techniques on hand. We have examined shuffling and
combination techniques (Durst 1988). We concluded
that shuffling buffers should be quite large (on the order
of a hundred) if bad interdependencies are to be shuf-
fled away, and that streams from a CRNG must be com-
bined with quite different streams to effect improvement
of bad dependencies. We used a stream from a lagged
Fibonacci to improve poor CRNG performance since we
found that using other streams from the same CRNG
did not help. However, combination of one CRNG with
a sufficiently different CRNG (e.g., one with a different
modulus) might work.

Improvements for sensitive applications can also be
obtained by increasing the modulus. Our calculations
above showed that generators with modulus 28 can-
not produce acceptable random starting points for 220
streams; but m = 2% would produce 220 streams with
expected smallest stream length well over a million.
Still larger moduli would require multi-word implemen-
tation on current computers, and naive multiplication
of k-word numbers takes O(k?) steps (although Fourier
methods can reduce this to O(klogk)). But k = 2

would more or less square the number of streams we

465

can get by splitting a CRNG, and so might well repay
the extra computation.

5. CONCLUSIONS

The best current methods for paralle] pseudo-random
number generation using CRNGs are splitting meth-
ods. For a small number of streams, random starting
points provide the best interstream behavior, but the
problem of short minimum substream lengths mandates
regularly spaced starting points, whose interstream be-
havior is only somewhat worse, for thousands to millions
of streams. In the future, the use of different multipli-
ers may prove acceptable; this may provide many long
streams with good interstream behavior at all lags. For
the moment, troublesome applications and diagnostic
checks should use either well-known ad hoc improvement
techniques or larger moduli.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
National Laboratory under contract No. W-7405-ENG-
48.

REFERENCES

Beyer, W.A. (1972). Lattice Structure and Reduced
Bases of Random Vectors Generated by Linear Recur-
rences. Applications of Number Theory to Numerical
Analysis, ed. S.K. Zaremba, New York: Academic
Press, 361-370.

Coveyou, R.R., and MacPherson, R.D. (1967). Fourier
Analysis of Uniform Random Number Generators.
Journal of the Association for Computing Machinery
14, 100-119.

David, H.A. (1981). Order Statistics (second edition),
New York: John Wiley.

Durst, M. J. (1988).
Number Generators.

Improving Parallel Random
Proceedings of the Statistical
Computing Section, American Statistical Association,
Alexandria, Virginia.

Fishman, G. S. (1978). Principles of Discrete Event Sim-
ulation. John Wiley, New York.

Fishman, G. S. (in press). Multiplicative Congruential
Random Number Generators with Modulus 2°: An
Exhaustive Analysis for 3 = 32 and a Partial Analy-
sis for 3 = 48. Mathematics of Computation.

Fishman, G.S., and Moore, L.R. (1982). A Statisti-
cal Evaluation of Multiplicative C‘ongruential Ran-
dom Number Cienerators with Modulus 23! —1. Jour-
nal of the American Statistical Association 77, 129
136.

Halton, J. H. (in press). Pseudo-Random Trees. Journal
of Computational Physics.

Knuth, D.E. (1981), The Art of Computer Program-
ming. Vol. 2: Seminumerical Algorithms, 2nd edi-
tion, Reading, MA: Addison-Wesley, Chapter 3.

Marsaglia, G. (1968). Random Numbers Fall Mainly in
the Planes. Proceedings of the National Academy of
Sciences 61, 25-28.

Niederreiter, H. (1978). Quasi-Monte Carlo Methods
and Pseudo-Random Numbers. Bulletin of the Amer-
ican Mathematics Society 84, 957-1041.

Percus, O. E., and Kalos, M. (1989). Random Number
Generators for MIMD Parallel Processors. Journal of
Parallel and Distributed Computation 6, 477-497.

AUTHOR’S BIOGRAPHY

MARK DURST is a Mathematician at the Lawrence
Livermore National Laboratory, where he has been in-
volved in Monte Carlo calculations since 1986. He re-
ceived an A.B. degree in mathematics from the Univer-
sity of California in 1974, and a Ph.D. degree in math-
ematics from the Massachusetts Institute of Technology
in 1980. His current research interests include random
number generation, parallel processing, and variance re-
duction techniques. He is a member of ASA.

Mark J. Durst

Lawrence Livermore National Laboratory, L-307
Livermore, CA 94550, U.S.A.

(415) 422-4272

466

