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ABSTRACT

Recent development of high speed supercomputers

has enabled us to perform large scale Monte Carlo sim-

ulations which need a tremendous amount of random

numbers. There are two types of supercomputers, 1.e.

pipeline type and processor array type, and we will con-

fine ourselves in this paper to the random number gen-

eration on a computer of the latter type. It is desired

that not only a sequence of random numbers generated

on each processor is of good quality but also sequences

generated on different processors are uncorrelated. If we

use a linear congruential method on a 32-bit supercom-

puter, the whole period may be consumed in several

seconds to several minutes.

Random numbers with a

much longer period can be generated by a GFSR algo-

rithm. Using this algorithm, we will propose a method

to generate uncorrelated series of random numbers on

parallel processors.

1. INTRODUCTION

The recent development of high speed parallel com-

puters has enabled us to perform large scale Monte Carlo

simulations which use tremendous amount of random

numbers and this has increased interests.in methods of

generating many independent or uncorrelated sequences

of random numbers with long periods. For example, a

group of Japanese information scientists has been devel-

oping a parallel computer system called “PACS” since
1977 (Hoshino, et al. 1983); the present system has 240

processing units and this number will be doubled very
shortly.
in this system are executed asynchronously. Oyanagi
(1984) stresses the importance of generating random
number sequences on these parallel processors which
have good statistical propertics both within and between
sequences.

The most widely used method of generating ran-

dom numbers on a computer is perhaps the Lehmer's

The tasks allocated to cach processing unit

459

‘okyo 113, Japan

linear congruential method, but it is not suitable for
our present purpose because of the following reasons.
The period of the sequence is limited by the bit-length
of the computer; for example, a multiplicative congruen-
tial sequence with modulus 231 has the period 2%° and
a 32-bit supercomputer S820 at the University of Tokyo
can produce the whole period in 1.3 second (Oyanagi
1988). The period can be made longer if we use a multi-
ple precision arithmetic or combine several congruential
sequences to obtain a single secquence as proposed by
Wichmann and Hill (1982), but then it is not an easy
problem to find many, say 512, good multipliers which
pass various statistical tests. Moreover, it is difficult to
assure good correlation properties between all pairs of
sequences with different multipliers (Oyanagi 1984).

In this paper, we consider generators based on lin-
ear recurrences modulo two. Two types of generators
in this class were proposed by Tausworthe (1965) and
Lewis and Payne (1973). Lewis and Payne called their
generator the generalized feedback shift register (GFSR)
pseudorandom number algorithm. Fushimi (1983, 1989)
showed an equivalence relation between these two se-
quence, and, as an application of it, proposed a fast
initialization procedure for the GFSR generator. The
method we propose in this paper for generating uncor-
related sequences of random numbers on parallel pro-
cessors i1s another application of the equivalence relation
mentioned above. So we will review the previous results

related to the present paper in the next section.

2. PREVIOUS RESULTS

Let (a;) be the sequence of 0’s and 1’s generated

by the linear recurrence relation

a; = cyar_ +caai_2+ - +cpag_p (mod 2)
whose characteristic polynomial
f(D)y=14cD+caD*+ -4 c,DP, ¢, =1



is primitive over the Galois field GF(2), where the initial
values ag, @y, -+, a,_; arc not all zero. The sequence
(a¢) is periodic with the least period 7' = 27 — 1, and
called by such names as an M-sequence, a PN-sequence,
a feedback shift register sequence, ¢le. We will use the
notation {(a¢(f)) instead of (a,) when it is necessary to
specify the primitive polynomial associated with (a).
Incidentally, the sequence {a;) does not depend on the
initial values except for the phase difference.

Let R be the set of integers defined by

R={r|1<r<T, ged(r,T) =1},
then it forms a group under multiplication modulo 7T
The set

Cy={1,2,2%, ... ,2r71}

is a normal subgroup of R, and there are N = ¢(T)/p
residue classes (including C'1) to be denoted by C'y, (',
,Ck, where ¢(T') = |R| is Euler’s totient function.
The following properties of M-sequences are well
known (Golomb 1967). The n-wise decimated sequence
(ani) = (ao,a1,as
the same period T as (a,) if and only if gcd(n,T) =
1; if both ged(ny,T) = | and ged(n2,T) = 1,
{an,1) = {an,) if and only if n; and na belong to

-} is again an M-sequence with
then
the same residue class, where the symbol = means that
the two sequences are equivalent except for the starting
point. There are exactly A" primitive polynomials with
degree p. We denote by f1(D) the primitive polynomial
associated with (a;) and by f;(D
(andin € Cr2 < i < K.
Using the M-sequence <a,
sequences of £-bit (2 < € < p)
Tausworthe sequence (N ¢(f;0)):

) one associated with

)), we construct two

binary integers as follows.
(

Nt = a51Q5t4105t42 - Qot4e-1, O ER
GFSR sequence (Yi(f;7)):
Y, = @A AQeyor - Augr_yyr, T E R
Then we have the following theorems.
THEOREM 1 (Tausworthc 1965). Il o > £ then

(([;0)) is k-distributed for 1 < &k <

I_]'»/ﬂJ, and has a good auntocorrclation property for lags
up to (T = £)/a].

THEOREM 2 (Fushimi and Tezuka 1983).
GFSR sequence (Yo(f; 7)) is
if the k{ elements of the M-sequence (a,(f)) contained

the sequence (X

The

k-distributed if and only
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in the initial £ values Yy, Y7, -, Yi_1 of the sequence

arc linearly independent.

THEOREM 3 (Fushimi 1983, 1989).
£ (2 < € < p), the following equivalence relations be-

For any p and
tween Tausworthe and GFSR sequences hold.

a7 h)
= (Xo(f;;77h)

are inverses of ¢ and T, respectively,

(Xe(f150)) = (Yl fis if 0 € C;

(Yi(f1;7))

1

if red;
Here, o~ land 7~

in the multiplicative group R.

3. GENERATING UNCORRELATED
RANDOM SEQUENCES ON PARALLEL
PROCESSORS

Suppose there are m parallel processors and we
want to generate an £ -bit random sequence on each pro-
cessor. Our idea is to use the same recurrence relation
on all processors but give different initial values so that
the sequences on different processors are uncorrelated.
The maximum order of equidistribution is the same for
all the sequences and is independent of the initial values.

Our method is conceptually as follows. We think of
an ¢m-bit Tausworthe sequence {\X';,(f;;0)) with o >
fm and initialize it by any means. Then we “slice”
each of these p initial values into m f-bit integers and
distribute them to m processors as initial values. More
specifically, initial values for the sequence (Yt(n)) on the
n-th processor are set as follows:

¥

) _
= Agt+tnQot4en+1 """ Aot4tn4L-1

(0<t<p—-1, 0<n<m-1).

If we give the initial values for {(a,(f1)) and distribute
this information to all the processors, then every pro-
cessor can compute, independently of the other proces-
sors, the clements of (a,(f1)) which are neccessary for
initializing its sequence very quickly by using a tech-
nique described in Fushimi and Tezuka (1983). Once
the initialization is over, we use the recurrence relation

[0y =0
on every processor if ¢ € Cy, where D is the opecrator
which decreases the subscript by 1 and the addition is
undcerstood to be bitwise addition modulo 2 (exclusive-
or operation).



It is easy to see from previous results that the se-
quences (Y,(n)) have the following properties.

(1) Every sequence (Yl(")) 1s equivalent in the sense
of . The phase difference between (Yl(o)) and (Yt(n))
is nfo1.

(2) The sample autocorrelation function between
sequences of length N on any pair of processors has the
mean value almost equal to zero and the variance of
O(N~1) for lags up to approximately fo=! — N.

(3) The maximum order of equidistribution of every
sequence guaranteed by theorem 1is |p/o| < |p/tm].
Since we usually use p = 521 or 607 and £ = 16 or
32, this upper bound is zero if m is large. On the other
hand, the maximum possible order of equidistribution
is |p/£€], and we can check whether or not this order is
attained using the algorithm proposed by Fushimi and
Tezuka (1983) based on Theorem 2.
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