Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

AUGMENTING LINEAR CONTROL VARIATES
USING TRANSFORMATIONS

James J. Swain
Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

Linear control variates provide a convenient means for variance
reduction in a wide variety of simulation and Monte Carlo sam-
pling problems. The effectiveness of control variates can often
be improved using appropriate transformations which increase
the correlation between the primary variate and the trans-
formed control variate. Possible transformations include poly-
nomials, the Box-Cox family of power transformations, and the
inverse-normal probability transformation. Here we consider
generalized transformations using cubic splines which provide
a virtually unrestricted source of transformations. To illus-
trate the transformation methodology, a nonlinear regression
problem is used. In the illustration, the transformed control
is compared to the control when estimating the mean of the
sampling distribution of the estimated parameters.

1 INTRODUCTION

Control variates are used in many statistical sampling exper-
iments to improve the accuracy of the solution. For instance,
an estimate of the mean p of a p-dimensional variate ¥ may
be desired. A direct estimator is Y. This estimator can often
be improved provided that a g-dimensional control variate C
is available with the property that C has a known expecta-
tion (without loss of generality we may take the expectation to
be zero) and is correlated with Y. The well-known controlled

estimate of u is B

Y(B)=Y - BC (1)
where B is a p by ¢ weight matrix to be specified. The variance
of this estimator is readily shown to be

Var|Y(B)] = Var[Y]+ BVar(C|BT
—BCov[Y,C| - Cov[C,Y)BT (2)
which can be minimized by

the choice, B" = Cov[V,C|Var~![C|. For further details, see
Venkatraman and Wilson (1986).

There is a close relation between control variates and lin-
ear regression; both rely on the same general theory, though
there are subtle differences as well, as Cheng (1978) points out.
When the regression of Y on C is linear, B* provides the least
variance estimate of u. Since Cov[Y,C] is generqlly unknown,
B must be estimated. The standard estimator B of B* is ob-
tained by linear regression of the components of ¥ upon the
controls C. This may introduce a bias in 2, since B and c
are uncorrelated only if ¥ and C are multivariate normal or
the conditional distribution of Y given C is independent of C,
Cheng (1978). Nelson (1988) discusses these threats to control
variate theory and recommends remedies for practice.
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As with regression modelling, the residual variation can be
reduced by the inclusion of further terms (for instance, poly-
nomials of the controls, or the inclusion of additional controls),
or through appropriate transformations of the controls. In a
typical regression analysis it is also possible to transform the
dependent variate Y, but this is rarely done in simulation stud-
ies, since the properties of Y are of direct interest, not those of
a transformed variate. We may freely transform C, however,
provided that the correlation between it and Y is not decreased
and the expectation of the transformed control is known or at
least computable.

Transformations are discussed in the next section. In the
third section an application involving a sampling distribution
problem in nonlinear regression is introduced to illustrate the
construction and effectiveness of the proposed transformations.
A brief discussion about future work concludes the paper.

2 TRANSFORMATIONS

There are several general approaches that are used in trans-
formations. Classical regression analysis suggests the use of
power transformations, such as the Box-Cox family. These
transformations have the property of shrinking or expanding
the control by varying amounts, either to improve its correla-
tion with Y or in order to improve its normality. When the
distribution of the control is known, an inverse-normal proba-
bility transformation can also be used for this purpose. Finally,
non-parametric transformations are possible in which the form
the transformation is determined directly from the data, with-
out restriction other than smoothness.

2.1 Parametric Transformations

Power transformations are often used in standard regression
practice to improve the fit of an empirical model. Box and
Draper (1987) provide a good introduction. The Box-Cox fam-
ily provide a parametric version of power models, including the
log transformation as a special case, and suitable for estima-
tion to obtain an “optimal” transformation. Since the response
variable Y is not transformed, the problem is roughly one of lin-
ear regression variable sclection (if variables are to be added),
or nonlinear regression (if an existing control is to be trans-
formed), since the parameters of the transform would enter
the model nonlinearly.

Transformations of this type often arise in statistical sam-
pling, where polynomial or power approximations of a statistic
are the basis of control variates. One practical difficulty arises
in the evaluation of the expectations, particularly when more
than the first moment is required. Further moments can be ob-
tained numerically, provided the dimensionality of the inputs is



not too large. For instance, in a nonlinear regression problem,
Swain and Goldsman (1989) are only able to derive expecta-
tions up to the third moment for a quadratic control variate,
while Swain (1988b) resorts to numerical quadrature to obtain
the necessary expectations of a similar control variate.

In certain cases, distributional transformations such as the
logit and inverse normal arise naturally. For instance, many
statistics are approximately normal for a wide range of in-
puts. Swain (1988a) illustrates this approach for a problem

with small sample sizes. One difference between the distribu-
tional transformations and the power transformations is what

happens in the middle of the domain of the transformations:
power transformations monotonically stretch or shrink the vari-
ate, while a prcbability transform may stretch the ends and
shrink the middle. More general transformations than the nor-
mal could be used; the Johnson family of distributions is one
possibility.

2.2 Nonparametric Approaches

The classical approaches considered so far consist of a transfor-
mational form, usually indexed by unknown parameters, which
may then be set by judgement or estimation to specify the
precise transformation to use. While this may replace a lin-
ear estimation problem with a nonlinear one, the additional
computational effort is generally not substantial. An alterna-
tive approach is nonparametric regression where the response is
considered to be additive in smooth functions not specified in
advance. These computer intensive methods, Thisted (1988),
generally impose few restrictions on the regression function in
advance, aside from imposing a roughness penalty. This ap-
proach provides considerable flexibility at the expense of addi-
tional computational effort.

For purposes of illustration, natural cubic splines are used
in this paper to demonstrate the possibilities for determining a
transformation. The cubic spline has an implicit smoothness,
since both first and second derivatives are continuous. A some-
what more general approach is discussed in Lewis, Ressler, and
Wood (1989), where piecewise power-transformed variables are
used as the controls. The transformations are nonparametric
in the sense that the break points in the approximation are
selected by the algorithm. They also use the alternating condi-
tional expectations (ACE) method of Breiman and Friedman
(1985) as a basis for comparison, since in principle ACE per-
mits any nonparametric transformation. In general, ACE per-
mits transformations of both response and regressor variables,
though in their example transformations of ¥ were not used.

Nonparametric regression can be used to form a control
variate, provided that the expectation of the new control can
be evaluated. In many simulations both Y and C are functions
of n-dimensional inputs U, where n > max(p,q), so that a
potential n-dimensional integration problem arises. However,
provided the controls C can be constructed or transformed to
a known distribution as a function of the inputs U, the dimen-
sionality can be reduced to a feasible level, and the expectations
provided analytically or numerically.

3 APPLICATION

The sampling distribution of parameters obtained via nonlinear
regression is difficult to determine for small samples. Charac-
teristics of the sampling distribution, such as the mean, vari-
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ance, and other moments, and quantiles, provide ways to eval-
uate the accuracy and precision of estimation. Control vari-
ates based upon linear approximations are introduced in the
next section, and a method for obtaining a transformed con-
trol, without further sampling, is introduced in the following
subsection.

3.1 Nonlinear Parameter Estimation

In the nonlinear regression problem, a response W
(W1,...,W,) is a nonlinear function of unknown parameters
0. The individual responses are given by

Wi = n(z:;00) + E; (3)

for errors E = (Ey,..., E,), generally assumed to be indepen-
dently and identically normally distributed with mean 0 and
common variance 2. Under these assumptions, the nominal
value §, of the parameters 8 can be estimated via least-squares,
with 8 minimizing the sum of the squared residuals,

n

> (i = n(z:i0))’ (4

In a sampling experiment, R replications of n-observations each
are obtained, from which R estimates, 0:-,1' =1,.. ., R can be
computed. The moments and quantiles of the © distribution
can be estimated using appropriate sample statistics; for in-
stance, the mean is estimated using ]_f =R! 2.&1 0;. That is,
Y is some function of the estimated 6; (which depend in turn
upon the inputs, E).

Control variates are readily constructed in this case, and are
documented in Swain and Schmeiser (1989, 1988), for instance.
A linear approximator A is computed using

A =0y + [FT(0o)F(80)) ' FT(60) E (5)

where the errors E are the ones used to generate W, 6 is the
nominal value of § to be estimated, and F(f) is the n by p
Jacobian matrix of first derivatives, || 9n(z:;8)/48; ||, with the
derivatives evaluated at §,. The approximator is constructed
by making a linear approximation of n(z;0) at 6 = 6, as a
function of A, and solving the resultant linear least-squares
problem for A. Note that in a Monte Carlo experiment 6, is
known. When the errors E are Nor[0,0%I], A has a normal dis-
tribution with mean 8 and variance matrix o?[FT (65) F(6o)]~".

Linear approximation is widely used in the analysis of non-
linear models, both as the basis of optimization and in the
approximation of the statistical properties of the estimated pa-
rameters. Nonlinear models can be classified according to the
divergence between the properties of their estimators and the
properties of the approximating linear model. The divergence
arises from two sources — intrinsic nonlinearity due to the cur-
vature of the nonlinear response surface (the linear response
surface is planar) and parameter effects nonlinearity due to
the uneven spacing between coordinate lines on the response
surface (coordinate lines are equally spaced in the linear case).
These effects have been quantified by Beale (1960) and most re-
cently, using differential geometry, by Bates and Watts (1980).
In a survey of models, Bates and Watts report that parameter
effects nonlinearity is typically the more significant problem
when models diverge from linearity.

5(0)



3.2 Construction of Transformed Controls

The linear approximation control variate A is effective in
Monte Carlo studies involving nonlinear parameter estimators,
Swain and Schmeiser (1988). In many of the cases studied
the optimal control weight matrix is very close to the identity
matrix, I. Use of a constant weight matrix eliminates the diffi-
culties of computing the weights and the bias problem caused
when C and B are estimated using the same sample. The loss
of efficiency is generally less than 5%.

Transformations can be used to further improve the effec-
tiveness of linear control variates. In certain cases with non-
normal errors, transformations of the errors E to normality
has been effective, Swain (1988a), but in general the relation
between 6 and the errors or the linear approximator is compli-
cated and not easily characterized. Thus recourse to nonpara-
metric functions is a useful alternative.

Three approaches may be used to obtain the 6,8 pairs for
the regression. One could obtain a preliminary, independent
sample of © and A, from which p univariate transformations
would be obtained. This reduces the overall effectiveness of
the their use, since it involves additional sampling, but in a
large study could be effective. Additionally, one can exam-
ine the correspondence between the two response surfaces in
terms of their “coordinates”. For instance, any point on the
nonlinear response surface can be linearly projected onto the
linear response plane and its é coordinates determined by a
second linear transformation. By following the changes in one
6 coordinate (with the others fixed), one could obtain values
of 6§ that match each one. A slightly more difficult approach
is to start with values of é and to determine the values of
0 that most closely correspond using nonlinear least-squares.
The contrast between this approach and the sampling approach
discussed initially (they both involve nonlinear least-squares)
can be likened to the difference between “unplanned” and “de-
signed” regression experiments: both do about the same thing,
but the latter can do it more efficiently. In this case, since
the solution to the last point will be close to the next solution
(in terms of § parameters), the least squares estimation should
progress quite rapidly.

Whatever approach is used, the new approximator, 7, can
be constructed using a nonparametric regression of the § upon
the 6. It appears that in cases of low and moderate nonlin-
earity (where the linear approximation works well), any of the
approaches will suffice. For cases of higher nonlinearity the
third approach is preferable. As a practical matter, the ex-
perimenter will be observing the control variate, so it makes
sense to design the experiment in the units to be observed. In
addition, in cases of high nonlinearity, the coordinate lines on
the nonlinear response surface arch and bend, and in extreme
cases (far from the nominal point n(X;;)) can re-cross é coor-
dinate lines, rendering the inverse mapping impossible. Thus
a matching based upon é coordinates works best in practice.

3.3 Monte Carlo Results

To demonstrate the potential of the transformed controls, two
nonlinear models are used as examples. These are the B and
C reactant models of Guttman and Meeter (1965). These two
models represent the normalized concentrations of two reac-
tants B and C in the decomposition A =B— C, with initial A
concentration of 1, and no B or C. Under linear decomposition
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the two responses are:

b
0, — 0,

(e~921 _ e—B,t)

(6)
(7)

nB

1- (8,67 — 6,¢7%)

1

nc 9, — 0,
While the two models appear similar, the B response model
possesses moderate nonlinearity, while the C response model
has high parameter effects nonlinearity. The high nonlinearity
is due to a negative correlation between the two parameters
and insensitivity in the response parameters to the value of the
6.

Two experiments are performed using these models. For
purposes of illustration, the mean of the parameter estimator
O is estimated, though in practice other statistics about the
estimator would be desired. In both cases the nominal value
of the parameters is 67 (1.4,0.4). The simulations were
performed using the Fortran code provided by the Ratkowsky
(1983) text, with random numbers from the IMSL generator
GGUBS.

The B response model has fairly moderate nonlinearity,
and the linear approximator performs very effectively for this
model. The experimental design (in the time variable, t) is
XT = (0.5,1.,2.,4.,6.) for the nonlinear estimation problem,
and o? = .0004 for the error distribution. In this experiment,
a replication consisted of 100 sets of 5 y; observations, from
which 100 estimates § were obtained, together with 100 obser-
vations of the two controls, A and II. From these observations
a replicate of the estimated means and variances are then ob-
tained for the direct and control estimates. These observations
were replicated 100 times to obtain the average variances and
from them the average efficiencies. For instance, based on these
10,000 regressions, the direct estimator # and the identity con-
trols 8(6) = 6 — (6 — E[8]) and §(n) = 6 — & have the following

variances:

; 0039 00017
Varl]l = ‘0017 00021 ]

z [ .000014 00000053
VarlBé)l = | 00000053 .00000037]

z [ .0000071 00000053
Varlo(m] = | 00000053 .00000013]

The determinants of these three quantities are respectively
1.1E-6, 5.1E-12, and 6.8E-13. The use of A controls alone
results in an efficiency of about 200,000, and the transformed
controls increases this approximately an order of magnitude
to 1.6 million. Both components of the mean are estimated
more precisely with the transformed controls than with the A
controls so that the relevant confidence intervals would be 30
% to 40 % shorter than with the A controls alone.

Because of the higher nonlinearity, the C response model
has lower efficiencies. The design for the regression experiment
is XT = (1,2,4,6,8) and the error variance is o? = .0001.
The same procedure is repeated, with 100 replications, each
replication consisting of 100 regressions. A number of difficul-
ties were encountered in this illustration. The range of the A
approximator includes values that are infeasible, since the re-
sponses in equations (6) and (7) do not apply when 6, = 6,,



and attention is restricted to the region 6, > ;. However, the
sampled § include values outside the region in which the trans-
formation is fit, requiring some method of extrapolation. The
method applied here is to extrapolate linearly from the first
(or last) two data pairs for that coordinate. This choice per-
formed more effectively than using linear extrapolation based
on the spline coefficients. The averaged variance matrices for
the three estimators were:

Var|d] _ 026 -.0026
-.0026  .00033
Var[g(é)l _ .00023 .000018
.000018 .0000064
Varlé(w)] _ .00013 -.0000010
-.0000010 .0000020

The determinants of these three quantities are respectively
1.7E-5, 1.2E-8, and 2.7E-9. Thus the use of A controls alone
results in an efficiency of about 1,500, and the transformed
controls increases this approximately half an order of magni-
tude to 6,500. The large parameter effects nonlinearity could
be the reason that the transformed controls are not more suc-
cessful, and it is likely that a transformation that uses both
components of A would be more successful in this case. Even
so, the components of the mean are again estimated about 30
% more precisely with the transformed controls than with the
A controls alone.

4 CONCLUSION

The use of nonparametric transformations is promising as a
method of improving the effectiveness of linear control vari-
ates. Further improvements appear possible when multivariate
transformations are used using nonparametric regression or the
method of Lewis, Ressler, and Wood (1989). In addition, these
methods should be of even greater use when used to estimate
statistics such as quantiles, where the relation between the con-
trol and the primary variate is less likely to straight.
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