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ABSTRACT

Lincar controls arc a well known technique for
achieving variance reduction in computer simulation.
Unfortunately the cffectiveness of a linear control de-
pends upon the correlation betwecn the statistic of in-
terest and the control which is often low. Since statistics
are often nonlinear functions of the control this implies
that nonlinear controls offcr a means for improvement
over linear controls. Nonlinear controls have had suecess
in increasing the variance reduction over a linear control.
This current work focuses on the use of nonlincar con-
trols for reducing the variance of quantile estimates. The
paper begins with a short discussion of lincar controls.
It describes nonlincar controls and the possibility for
improved performance. The final scctions discuss quan-
tiles as controls and the potential of nonlinear controls
for variance reduction in quantile estimation.

1. LINEAR CONTROLS

In the usual scenario one conducts a simulation to
estimate an unknown quantity g using a random vari-
able Y as the estimator. The simulation consists of
replicating n samples of Y, eo Yo, 0 = 1,00, and us-
ing these to estimate gy Lincar control schemes rely
on the availability of a random variable ', with known
C is the

expected value, which is correlated with Y.

control variable,

The standard linear control scheme for a single con-
trol uses the linear additive combination

Y =Y - 2 (C = B[C))

to minimize the variance of the controlled estimate Y.
The value of 3 which maximizes the variance reduction
is 4 = cov (Y, () /var (C'). For the multiple control case
when € and 74 are vectors, CCand 3. control equation
becomes

Y =Y - g (- B[] (1

and the optimal values for 7 are the canonical correla-

tion cocfficients. A common mecasure of effectiveness of
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a lincar control scheme using the optimal value for 1 is

var (Y) _

var (Y)

(1-07) (2

where p is the correlation between Y and "0 For mul-
tiple controls p is replaced by the multiple correlation
cocfficient. (2) implies that one should choose controls
that are “highly” correlated with Y.

o

L.

NONLINEAR CONTROLS

Y — C'" where

is some function of (', and a set of parameters 37 i

One can gencralize (1) to Y

"= h(C, 3*). " could include linear as well as non-
linear terms cach with their own parameters. ¢ will be
relerred 1o as the control function. A control function
with terms that are nonlincar in the unknown parame-
ters is a nonlinear control. In some simulations possible
control variables may have low corrclation with Y. Two

of the possible sources for the low correlation are:

1. thereisin fact very little structural relationship be-
tween Y and the control i.e. a bivariate scatter plot
of Y versus " would look patternless, or

2. the structural relationship between Y oand ("is of a
nonlinear form which is poorly approximated by a
straight line.

In the first case, a nonlincar control may or may not olfer
improvement over the linear control. In the second case,
a nonlincar control can offer substantial improvement
in variance reduction as in Lewis, Ressler and Wood
(1984,

A simple example will show the potential benefits
of nonlinear transformations. Let X" be a Normal (0,1)
random variable and let ¥ = \'2,

cov(Y,\) = E[\?] = E[\?]B[X] = 0

and Y and X" arc uncorrelated. Now allow the nonlinear
transformation €' = X? with p = 2. ('is a \} random



variable with mean 1 and variance 2. It follows that

N

cov(Y,C) = var (.\'2) =2= p(} () = =1.

~

t

Therefore when evaluating a potential control, one
should ask: Can this control be transformed so it will

have a “high” correlation with Y.

Let 8(Y) and o(C) be mean-zero functions of ran-
dom variables Y and (' such that var(6(Y)) = 1 and
var (0(C)) < ~c. Breiman and Friedman (1985) showed
that transformations which maximize the correlation be-
tween (YY) and &(C) exist and are, in the bivariate case,
the conditional expected values :

)= FOY

| Y]
IE[a(C) YT

{E[‘Q] }1/; . and

o(C) =EROY) | .

where || - ||

For multivariate . transformations of the components
of ' which maximize the correlation of Y with a linear
combination of the transformed components also exist.
These transformations are also optimal for variance re-
duction and may be lincar or nonlinear. Transforming
Y is bevond the scope of this paper so we will keep

#(Y) =Y.

Lancaster (1966) has shown that if Y and €' have
a multivariate normal distribution, the h(C, 3*) which
maximizes the correlation hetween Yo and h(C,3%) over
all square summable A(C3%) is the additive linear con-
trol scheme (1) using the cannonical correlation coeffi-
cients for 3* = 4. Whenever the joint distribution of
Y and C is not multivariate normal, a nonlinear con-
trol offers the possibility for improvement over a lincar

control.

Analyvtically determining the optimal transforma-
tion requires the joint distribution of ¥ and € which
is unknown. For lincar controls a standard technique is
to use the sample estimates of the canonical correlation
coefficients. This is cquivalent to solving a multiple Teast
squares regression of ¥ = Y on . For a nonlinear con-
trol a workable alternative to using the analytical con-
ditional expected value is to approximate the optimal
nonlincar relationship with a wonlinear transformation
R(C,3%). This can be done using any of several para-
metric transformations such as the scaled power trans-
formation il((', ) = (" =1)/p where pis an nuknown
parameter which must be estimated. The complete con-
trol equation could look like:

o= [f'/'-l”
,fl———p Bl

)rl:), (;)
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where A and p are the parameters to be estimated.
These parameters can be estimated using nonlinear
least-squares regression of Y — Y on ¢,

A key component of using controls for variance re-
duction 1s that the expected value of the transformed
control must be known exactly or approximately. The
expected value of the transformed control is subtracted
off of cach term as in (1) and (3) so that if C"is an un-
biased estimator, the control function will be unbiased
with mean zero. A difficulty with nonlinear transforma-
tions is analytically computing the expected value of the
transformed control. In the estimation of quantiles, this
difficulty can be greatly reduced.

3. QUANTILE ESTIMATION

3.1. Quantiles and Monotone Transformations
Let Z be a random variable with a continuous cu-
mulative distribution function Fz(:z) which is strictly
increasing whenever 0 < Fz(z) < 1 and let Z have den-
sity function fz(z). Define the ath quantile of 2, Z,,

as the unique solution for z in the equation

Fz(z) =afor0<a< 1.

B4

Given a simulation sample of Z of size n with order
statistics Z(1)...., Z(n), define a nonparametric estima-
tor of the ath quantile, Z,(n). as in Lewis and Orav

(1988) as follows:

{

where |w] denotes the integral part of w. Let Z,(n) be

Z(na)
Z1 na+1])

5 if na is an integer
Zaln) &

il nov1s not an integer

the sample realization of 7?,,,(11). The (n) will be dropped
when the sample size is clear from the context. For a
given noand a, 2,,,(11) is an order statistic, so the form of
its distribution is known. Unfortunately its distribution
depends on the unknown distribution of the underlying

Z.

Let Y and € be random variables whose distribu-
tion and density functions mect the criteria listed for 2
above. To emphasize the fact that we are controlling
quantile estimates and not means, we will use Yo, and
("\'/. for Y and (. Even though the corresponding quan-
tile of C is not necessanly the best control for the ath

quantile of Y, it is usnally the first choice,

When using a quantile estimator C'4 as a control, the
underlying distribution of € is known and thus the distri-
bution of (',. Using the probability integral transform

Uy = [’(T'(('( ) David (1970) arrives at the following



results for when the rth order statistic is the estimator

from a sample of size n for the ath quantile:

E[C(r) = Fu_l(r"—l)—
1 a(1=a)\ Je () 1 ,
()R @ v
and
var (Ci,)) = all —n) (5)

(n+2) 12 ()

(4) shows that the estimator (A',,. is only asymptoti-
cally unbiased. When using a quantile estimate as a con-
trol, although the biased cxpected value could be sub-
tracted off in the control function, usually the asymp-
totic expected value of the estimator, i.c. the actual
quantile value is used. The o{1/n) bias this produces
isn't the only bias in the control function since in prac-
tice, when the paramecters of the control [unction have
to be estimated using the same data that generates ya
and ¢&,, bias is introduced into ¢, Bias in the control
function becomes important as the sample size or the

estimated controlled variance decreases.

Since the distribution of 6, is known, it may be pos-
sible to compute the cxpected value of i:((l,, 3%y, Tt is
important to note that the random variable being trans-
formed is the quantile estimator and not the underlying
C. For example, if C has a uniform (0.1) distribution
the random variable being transformed, (',, has a beta
distribution which is less tractable. The asymptotic ex-
pected value of this beta distributed random variable
could be computed but it can be casily approximated
using the monotone transformation property of quan-
tiles.

Quantiles have the property that under strictly
monotone transformations of the underlying random
variable, the guantiles transform monotonely as well.
g{) be a strictly monotone
If Pr(C < ¢)

For example, let h()

function and let D = ¢(C). a and

Pr(D < d)= o, then
Pr(D <d)=Pr(C < g '{d)) =0 = d = y(c).

The quantile estimator transforms monotonely as well.
If 7y is the estimator for the oth quantile of ') the
estimator for the ath gquantile of ¢(C), g(C);y will equal
g(C'iry). One can transform the gquantile estimates di-
rectly and use ¢(C,) as the asvmptotic expected value
in ("' This eliminates mouch of the analytical difficulty
when using nonlinear transformations of quantile esti-

mates.
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3.2. Methods for Computing the Controlled Es-

timate

There are several methods for generating the con-
trolled estimate. For any method to be considered com-
plete in addition to the point estimate, it must provide
an estimate of the variance of the point estimate. For
cach of the methods, the elements of 3° have to be esti-
mated. To estimate the parameters via nonlinear least
squarc regression, one needs more than one estimate of
both )A; and f,, Multiple estimates can be generated
by sectioning the data. The general procedure for a size

n data sct follows.

1. Separate the n samples of ¥ and C into v sections
ol length | where v x [ =n.

t

Compute o (), =1,...,vand
(D=1, 0.

3. Use these v pairs of estimates as data for the re-

gression.

Let 3*(v,1) be the estimated parameters based on v es-

timates from l-sized samples.

The first method is a straightforward sectioning
method. A subscript S denotes an estimator based on
sectioning. Each of the §a(l) is controlled using the
estimated parameters. The final controlled point and

variance cstimators are

gj’.\i,a(”) = ?5,,)(1)

(Cant, 7 (00)))

<§:.,.(1) —h

and

r=1

The initial idea behind the second method was to

use a point estimator of

~ ~

Vi (n) = Ya(n) = h ((;(m./r(p.z)) ‘

T
Ye. (n) IfY

I and 2 wonld be identical. Unfortunately, as a quan-

he goal was to improve the bias characteristics of
3 werc a mean and h() was linear, method

tile estimator, )A','(.,\(n) has no readily available variance
estimate due to the dependence on the underlying distri-
bution as in (5). Independent replicixlions could be used
to generate multiple realizations of Y% a(n) and take the



sample average as the estimate. For comparison’s sake,
the sample size must remain at n. Therefore the second
method separates the n samples into & “independent
replications” each of sample size m where k x m = n. A
subscript R will denote the replications method estima-
tors which are:

'711?”1(,1) = A"n,q(m)
| &
% Z (Y”"‘(m) —h <("\,x(”7)y/3.(u, m/v))) ,
=1
and
1 5 — )
Sk = k(k —1) Zl: ( T (m) = )"R,a('r")> .

Two possible alternatives for attempting to reduce
bias as well as estimate the variance are the jackknife
(Efron and Gong, 1983) and splitting (Beale, 1935).
Lavenberg, Moeller and Welch (1982) examined the use
of the jackknife for producing confidence intervals for a
linearly controlled estimate of the mean under the as-
sumption that Y and ' had multivariate normal dis-
They found that the jackknifed confidence
interval was usually larger and more computationally

tribution.

expensive than the standard lincar control based con-
fidence interval. Nelson (1988) analyzed at the perfor-
mance of several estimation methods when the normal-
ity assumption was violated and compared the methods
to the standard linear control of the mean. He found
that the jackknife was usually dominated by the split-

ting estimator.

3.3. Research Issues

Selecting a particular method and the paramcters of
the method such as n, v or k, requires consideration of
bias, computational aspects versnus effectiveness and the
effects of inducing normality. Several rescarcl issues are
involved. A complete description of the sources, magni-
tudes and effects of bias is necessary. For a fixed sam-
ple size, computing a nonlincar controlled estimate is
more expensive. In some situations, it can improve the

achieved variance reduction cnongh to justify its use.

Weiss (1964) proved under mild conditions that
sample quantiles from a multivariate population have
an asymptotic multivariate normal distribution where
the covariance is a function of the multivariate distribu-
tion of the underlying population. A key research issue
is the interplay between 1 and » and the rate at which
v should increase as n increases. If v stays fixed while
n goes to infinity, then the asymptotic multivariate nor-
mal distribution of the quantile estimates will eventu-

ally ncgate the uscfulness of a nonhinear control. It is

4s3

not clear at what »n and v combination this will begin
to be significant.

For a fixed sample size n there is a trade-off bc-
tween wanting v large and wanting ! large. The bias
and variance of the sectioned estimates are both de-
crcasing functions of [. The larger ! the smaller the
range over which h needs to approximate the true con-
ditional expected value. Under generally applicable con-
ditions outlined in Gallant (1975), the parameters being
estimated in the nonlincar regression are asymptotically
normally distributed with decreasing variance as v in-
creases. Guidelines for selecting v as a function of »

necd to be determined.

4. SUMMARY

Noulinear controls have been effective in improving
the variance reduction over linearly controlled estimates
of the mean. Controlling quantiles with nonlinear con-
trols is analytically tractable if the nonlinear transfor-
mations are limited to strictly monotonic functions. The
performance of the available methods with respect to
bias, variance estimation and the selection of parame-
ters will be discussed during the talk.
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