Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

RESPONSE SURFACE ANALYSIS OF
STOCHASTIC NETWORK PERFORMANCE

Thomas G. Bailey
HQ AFMPC/DPMY
Randolph AFB, TX 78150

ABSTRACT

This paper describes a response surface approach to the
stochastic network improvement problem. The network addressed
in this study is acyclic, simple, and directed; and, is characterized by
single commodity flow from multiple sources to multiple sinks. The
network is stochastic in that the reliability of network components is
described by a binary distribution of operative or failed states, where
Psi is the ith component’s probability of survival. A new class of
control variables is introduced to reduce the variance of the maximal

flow estimators.

1. INTRODUCTION

In this paper we consider the stochastic network improvement
problem. We limit our study to acyclic, simple, directed networks
which process a single commodity flow from multiple sources to
multiple sinks. The networks are stochastic in that the components
(arcs and nodes) are subject to failure. Individual components are
modeled as binary random variables. The stochastic network
improvement problem is to find those components whose feasible
improvements yield optimum performance given budgetary con-
straints. Our research efforts are presented in the following manner.
First, we discuss the class of networks used in this study, summarize
recent literature pertinent to the problem, and state our performance
measures. Next, we present our rescarch methodology and
demonstrate our approach on a sample network. We close the paper

with a summary and provide recommendations for future rescarch.

2. NETWORK FLLOW AND RELIABILITY

A class of probabilistic networks applicable to this study are
stochastic binary networks (SBN). Ball (1980) defincs an SBN to be
“a system that fails randomly as a function of the random failure of
its components...(where) each component may take on cither of two
states: operative or failed and that the states of any two components
are independent”. Furthermore, he defines a stochastic coherent
binary network (SCBN) as one where the pathset defines the mini-
mal subsct required for system operation and the cutset defines the
minimal subset required for failure . The class of networks that this
paper addresses fit Ball's definition with one exception: component
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failure is not necessarily independent. However, failure depend-
encies among network components are easily implemented in a

Monte Carlo simulation.

Another important class of stochastic networks are randomly-
capacitated networks (RCN). In an RCN, arc capacity varies over a
range of values as a continuous function of a probability distribution.
Arc capacity in a SBN/SCBN network, by contrast, is based solely on
the binary (operative-failed) status of the arc; i.e., if the arc is
operative, there is only one arc capacity. The networks investigated
by this study are not part of the RCN category of stochastic networks.
However, extension of this research to RCN systems would be
straight-forward. For further explanation or research results in this
class of networks, see Fishman (1987a), Somers (1982), and Evans
(1976).

Fishman (1986) provides an overview of Monte Carlo methods
for estimating network reliability. His article reviews four ways to
calculate network reliability for an undirected graph version of a
SCBN: (1) dagger sampling by Kumato and others (1980); (2) se-
quential destruction by Easton and others (1980); (3) bounds estima-
tion by Fishman (1986); and, (4) estimation based on failure sets by
Karp and Luby (1983). Karp and Luby's technique uses failure sets,
(or equivalently cutsets) to estimate the graph’s reliability, and is
most closely related to this study’s methodology. However, instead
of sampling the entire cutset as we propose in this paper, Karp and
Luby’s Monte Carlo simulation procedure rcpeatedly samples
single, randomly selected cuts to determine network reliability. Be-
cause our implementation of the max-flow min-cut algorithm (Ford
and Fulkerson, 1962) evaluates the entire cutset for every replication

in the simulation, Karp and Luby’s technique is not usced.

Fishman provides two papers that deal with Monte Carlo es-
timation of maximal flow on a network. The first paper develops an
algorithm that offers both computational cfficiency and reduced
variance of an unbiased estimator of maximal flow. Hec models
randomly decreasing arc capacities , using a cumulative process that
describes the arc deterioration as normally distributed (Fishman,

1987a).

The sccond Fishman paper is more closcly rclated to this
study's efforts. It combincs two methods of importance sampling in
a Monte Carlo simulation to reduce the variance of the reliability
estimators of communication networks typically described by an



SCBN (Fishman, 1987b). In this study, we investigated the effect of
control variates, not importance sampling, in variance reduction.
However, Fishman provides a proven approach to reducing the
variance of the estimator. A comparison or synthesis of the two
variance reduction techniques would be a useful continuation of this
rescarch.

In this paper we consider both expected maximum flow and
source-to-sink reliability as network performance measures.

3. RESEARCIH METIHODOLOGY

The network improvement strategy employed three stages.
First, a FORTRAN-based Monte Carlo simulation model was
designed using a cut-set algorithm for estimating maximal flow and
reliability. Relative to this stage we introduce a new class of control
variables to reduce the variance of the maximal flow estimator.
Sccond, response surface methodology was applied to derive a
mctamodel of expected network performance over the range of
possible componentimprovements. Thisstage involved the sequen-
tial application of Plackett-Burman (1946) screening designs and
full-factorial designs to derive an accurate polynomial approxima-
tion of network performance. Finally, the first-order response equa-
tions for maximal flow and reliability were used as objective
functions in a linear programming formulation of the network im-
provement problem.

3.1 Simulation

The simulation program designed to calculate maximal flow
and rcliability is called MAXFLO (Bailey, 1988). Using an inversion
technique described by Shicr and Whited(1984), MAXFLO first
derives the network cutset from the pathsct. Once the proper cutset
matrix is found, variations in maximum flow for each sample is
modcled by using a one dimensional array representing the status
of arcs. This state vector is based on the current replication's
comparison of random number draws and the individual arcs’ proba-
bility of survival, and is used by the maximum flow calculation
routine in deciding which components in the cutset matrix to ignore
in the current sample.

Variance reduction of the maximum flow estimator requires
knowledge of a concomitant variable that has a known expectation.
In the case of a SCBN, we offer as a genceral class of controls the
total number of nodcs that arc up (or down) in a given subsct. This
control variate is an aggregate scalar measurc of how many nodes in
the subsctare operative. For purposes of clarity, this class of control

variates is referrcd to as survival variables.

Because of the stochastic binary naturc of the network, the
random variable Xi is defined as

Xi =
XI

0 with probability of P,
1 with probability of 1 - P

(1
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where P is the probability of survival (Ps) of component i. The
control variate is defined as

N
SV = E?(i ©)

with expectation

N N
E(g]Xi) = ElPi = fsv 3)

where Nis the number of components in the subset. Therefore, the
controlled cstimate of the mean response (Y) is given by

YP) = Y-BSV-usv) @)

where

SV = j‘%lsvj )
Y is the sample mean of the M samples, and ,3 is the estimated
control coefficient. Components may be nodes or arcs. For further
explanation of variance reduction using control variates, see Bauer
(1987), Kleijnen (1974), Lavenberg and Welch (1981), or Wilson
(1984).

3.2 Response Surface Methodology

Once we have modeled the system we need a way to describe
the performance of the system as a function of feasible component
improvements. We applied response surface methodology to meet
thisend. Since both component survival probabilities and capacities
influence expected maximum flow, N nodes and M arcs provide N

2 .
AN+M) experimental design

+ 2M possible factors requiring
points for a complete, 2-level factorial design. In the case of relia-
bility, only the component parameter of survival probability affects
network reliability, thus requiring 2N+M) design points. Obviously,
in cither case a reduction in the number of factors is necessary. We
employcd a Plackett-Burman screening design because of its small
size and ability to detect mutually unaliased main effects (Box and
Draper, 1987). From this initial screening, a reduced number of
factors showing significant main effects was used to form the full

first-order factorial design.

The sample network and component parameter list is given in
Figure 1 and Table 1, respectively, on the following page. For this
network, the following 19 factors from Figure 1 were selected for
the Plackett-Burman design based on intuitive judgement of their
influence on network performance: Ps for Nodes 8,9, 10, 11, 13, 14
(NSp, N9p, N10p, N11p, N13p, and N14p); Ps and capacity for the
four arcs that go directly from Node 8 to sink Nodes 15, 16, 30, and
31 (A8-15p, A8-16p, A8-30p, A8-31p, A8-15¢, A8-16¢, A8-30c, and
A8-31c); and the capacitics of arcs adjacent to Node 8 (A2-8¢, A3-8c,
AS-8¢c, A7-8¢c, and A8-9c). Capacity improvements are based on
standard increments of 300, 1200, 2400, 9600, and 19200, while Ps



)
Figure 1: Network Diagram
Tablel: Network Component Parameters

Component  Ps  Capacity Component  Ps  Capacity Component  Ps  Capacity
N2 3 - N27 1.0 - A9-13 638 1200
N3 i - N28 3 - Al0-15 3 4800
N4 S - N29 7 - Al0-16 6 4800
N5 8 - N30 5 - Al10-17 7 2400
N6 1.0 - N31 8 - Al10-18 9 1200
N7 3 - A2-8 9 1200 Al0-19 1.0 1200
N8 N - A3-8 1.0 1200 A10-20 1.0 1200
N9 i - A4-8 49 300 A10-21 3 1200
N10 S5 - AS-8 .6 300 All-15 6 4800
N11 8 - A6-8 135 1200 All-16 3 4800
N12 1.0 - A7-8 48 300 Al1-17 6 2400
N13 3 - A8-9 .9 9600 All-18 7 1200
N14 i - A8-15 .6 75 Al1-19 9 1200
N15 5 - A8-16 3 75 Al11-20 1.0 1200
N16 8 - A8-30 .6 1200 All1-21 1.0 1200
N17 1.0 - A8-31 7 1200 Al12-23 6 2400
N18 3 - A9-10 1.0 4800 Al2-24 3 1200
N19 i - A9-11 1.0 4800 Al13-22 .6 300
N20 5 - A9-12 6 4800 Al13-23 7 2400
N21 8 - A9-13 3 4800 Al13-24 9 1200
N22 1.0 - A9-14 .6 4800 Al13-25 1.0 300
N23 3 - A9-27 1.0 2400 A13-28 1.0 2400
N24 i - A9-28 3 2400 Al4-22 .6 1200
N25 ) - A9-29 252 600 Al4-25 3 300
N26 8 - A9-30 245 1200 Al4-26 .6 300
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improvements are a uniform increase of .2. The design was run on
a VAX 8650 under VMS 4.6 using 10000 replicales at cach design
point.

SAS PROC GLM was used to calculate the regression results,
which appear in Table 2. The results show that of the 19 factors,
only five account for a significant portion of the sums of squares for
expected maximum flow: N8p, N9p, A2-8¢, A3-8c, and AS5-8c.
Together, these five factors explain 95% of the variation of expected
maximum flow. Table 2 also shows the regression results for the
reliability response, with N8p accounting for the significant amount
of the variation in reliability. Because thisisa screcning design, only
the main effects are estimated (Plackett and Burman, 1946); how-
ever, the number of factors is reduced enough to allow for a full

factorial design.

Since there are five remaining factors, a full factorial design
requires only 32 design points (25). Additional design centerpoints
arc also required to test for second order effects, and to form the
basis of a second order design. Since 10 centerpoints are required
if we expand to a 2* central composite, uniform precision design
(Montgomery, 1984), all 10 are simulated in addition to the required
32 design points. These centerpoints also provide a good statistical
sampling for second order effects. Again, 10000 replicates were
taken at each design point. Tables 3 and 4 show the results of the
full factorial design and regression.

Table 2: Sums of Squares of Screening Design

Sums of Squares

Source Maximum Flow  Reliability
MODEL 3299594.387 1705.785
N8p 1249935.001 1673.718
N%p 196741.382 14.416
N10p 246.837 0.808
Nl1lp 3649.321 0.007
N13p 2223.266 0.255
N14p 168.386 0.001
A8-15¢ 30.076 0.002
A8-15p 3943.274 0.481
A8-16¢ 359.484 0.421
A8-16p 5383.399 3.715
A8-30c 261.075 0.318
A8-30p 3749.855 2.113
A8-31c 80347.080 0.648
A8-31p 25760.694 5.429
A2-8¢ 153612.938 0.662
A3-8c 1203365.268 1.270
AS5-8¢ 339612.880 0.392
A7-8¢ 17895.632 0.592
A8-9¢ 2308.539 0.538

The first-order model has an R-Square value of .988, indicating
a high degree of fit of this model to the data. (Small, but statistically
significant, two-way intcractions are also present; however, they are
ignored because of their practical insignificance). Furthermore, an
additional check for sccond order effects was calculated using the
centerpoint data from runs 33 through 42 in Table 3. The resulting

Table 3: 2° Fxperimental Design for Sample Network

Est. Max  Est.
Run N8p N9p A2-8c A3-8c AS-8¢ Flow Rel.
1 - - 1169.152  62.78
2 R - - + 1376.310 "
3 - - - + - 1548.608 "
4 - - + + 1750.167 "
S - + - - 1310.505 "
6 - B + - + 1516.162 "
7 - + + - 1687.208 "
8 - + + + 1886.432 "
9 - + - - 1288.522 64.21
10 - + - - + 1527.113 "
11 - + - + 1743.144 "
12 - + - + + 1974.992 "
13 + + - - 1464.682 "
14 + + - + 1700.581 "
15 + + + - 1915.268 "
16 - + + + + 2144.053 "
17 + - - - 1434.863 7733
18 + - + 1679.648 "
19 + - + - 1889.871 "
20 + - - + + 2127.018 "
21 + + - - 1614.300 "
22 + + - + 1857.175 "
23 + - + + - 2065.141 "
24 + - + + + 2298.823 "
25 + + - 1573.297  79.52
26 + o+ - - + 1865.037 "
27 + 4 - + - 2129.271 "
28 + o+ - + + 2414.532 "
29 +  + + - - 1781.073 "
30 +  + + - + 2070.851 "
31 + + + + - 2332.181 "
32 + o+ + + + 2614.178 "
33 0 0 0 0 0 1801.424  71.37
¥ 0 0 0 0 0 1833.608  71.02
350 0 0 0 0 1820961  71.29
36 0 0 0 0 0 1820931 7143
37 0 0 0 0 0 1816.268  71.20
38 0 0 0 0 0 1815.133  70.86
39 0 0 0 0 0 1803.838 7043
40 0 0 0 0 0 1797.171 7091
41 0 0 0 0 0 1779.531  70.25
42 0 0 0 0 0 1816.184  70.92
Codcd Uncoded
Value Value
N8p N9 A2-8c A3-8c AS-8¢
- .70 .70 1200 1200 300
+ .86 .86 2400 2400 1200
0 .78 .78 1800 1800 750
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Table 4: ANOVA and Parameter Estimates of 2° Design

Source  DF  Sum of Squares F-Value
Model S5 3742567.705 428.800
N8p 1 1031177.244 590.73
N9p 1 345985.548 198.21
A2-8c 1  239270.791 137.07
A3-8¢ 1 1661489.497 951.82
AS-8c 1 464644.626 266.18
Error 26 45385.368
Total 31 3787953.074

Param. = 0 Std. Error

Parameter Estimate T Value of Parameter

Intercept  1804.692 24435 7.386
N8p 179.511 24.30 7.386
N9p 103.981 14.08 7.386

A2-8¢ 86.471 11.71 7.386
A3-8¢c 227.863 30.85 7.386
AS-8¢ 120.500 16.32 7.386

F-statisticis 1.1017, considerably lower than the F o510 value of 5.12,
thus indicating no significant second-order cffects have been
detected. Based on the results in Table 4, the responsc of maximum
expected flow for the coded variables is described by the first-order

polynomial

Y = 1804.692 + 179.511(N8p) + 103.981(N9p)
+ 86.471(A2-8c) + 227.863(A3-8¢c)
+ 120.5(AS-8c). (6)

A more useful version of Eq (6), using the uncoded values, is
found by converting the coefficients. For this example, the uncoded

version is

Y = -2,103.19 + 2243.389(N8p) + 1299.763(N9p)
+ .144(A2-8¢) + .380(A3-8¢)
+ 268(AS-8c). )

Both equations are valid only for the region of the response surface
defined by the input domain of Table 3. Tests were conducted to

confirm the statistical assumptions of constant variance and normal

distribution of the residuals.

3.3 Optimization of Response Surface

Given that Egs (6) and (7) accurately describe the response
surface of maximum flow, several insights into this network’s perfor-
mance are available.

First, any improvement in network maximum flow should
focus on getting more information from the source nodes to Node
8. This is demonstrated by the fact that three of the five significant
parameters are the capacities of arcs incident to the source nodes.
Furthermore, this occurs in spite of the fact that four arcs from Node
8to the sink nodes were screened for both capacity and survival rate.
Apparently, network flow is diverse enough after Nodes 8 and 9 to
insure that some flow will get through.

A second useful observation is obtained by comparing the
response surface of expected maximum flow to that of network
reliability. Following the same procedure used for finding Egs (6)
and (7), the uncodced version of the network reliability response
surface (in percentages) is given by the first-order polynomial

Y = 62.84 + 9.4(N8p) + 94(N%) + 71(A8-31p)  (8)

The insight provided by this response surface is the dominant
influence of Node 8 on network reliability (which is probably due to
the node’s position in the network). Apparently, flow from the
source nodes arrives often enough that if Node 8 survives, then at
least one of the sink nodes will receive flow as well. Since Node 8 is
also the sccond most influential component in the maximum flow
response surface, any improvement of it’s survivability will incrcase

network performance in both areas.

The response surfaces described above can also be used direct-
ly to solve the network improvement problem. For example, assume
we wish to maximize the expected maximum flow of the sample
network as described by Eq (7), subject to the following constraints:

1. The cost of hardening nodes 8 and 9 is $10k per .1 unit
of Ps. The total cost of hardening cannot exceed $15k.

2. The cost of increasing arc capacity for A2-8c, A3-8c,
and AS5-8cis $5k per 100 units. The total cost of incrcased
capacity cannot excecd $150k.

3. The total cost of improvement cannot excced $160k.

4. Eq (7) is valid only for the region of space defined by
the experimental design. Thercfore, the five
components’ values are implicitly bound by the uncoded

values given in Table 3.
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Let the improvement variables 115 and 11o represent the amo-
unt of hardening for nodes 8 and 9; and, C».g, Cas and Cs-8 the
increase of capacity for arcs A2-8¢, A3-8c, and AS-8c, respectively.
Since the coefficients of Eq (7) arc applicable to both the original,
uncoded variables and the improvement variables, the objective
function can be re-written for just improvement variables (minus the
intercept term). Thus, alincar programming formulation that maxi-

mizes expected maximum flow subject to the listed constraints is

Maximize Z = 2234.389(11s) + 1299.763(11v) + .144(C2)
+ 380(Ca8) + .268(Cs.8) ©)

subject to

Hs + Ho <= .15

Crg + Cag + Css <= 3000

100(Hs) + 100(Hg) + .05(Cz.8) + .05(Cag) + .05(Cs.8) < = 160
(10)

and

O<=Hs <=.16 0<=1lloe<=.16

0<=Cra<=1200 0<=Css<=1200

0 < = Cs.s < = 900.
(11)

The three inequalities in Eq (10) formulate the cost restrictions of
Items 1. 2, and 3 respcctively, while the constraints in Eq (11) reflect

the implicit bounds of the design space mentioned in Item 4.

Using standard linear programming techniques, the optimal
solution for this sample problem is 1147.558, where Hs = .15, 1o =
0.0, C2. = 800, C3.8 = 1200, and Cs-8 = 900. Adding the intcrcept
to the optimal flow improvement gives an estimated maximum flow
of the improved network of 2235.12. This represents an increase of
1065.968 over the unimproved estimated maximum flow of 1169.152.
As a further enhancement, multiple optimization is possible by using
Eqs (7) and (8) in the constraints of a goal programming formula-
tion.

4. CONCLUSIONS

‘This paper has shown one approach to applying response sur-
face methodology to the stochastic network improvement problem.

Using expected maximum flow and source-to-sink reliability as the

mcasures of network performance, we demonstrated how the resul-
tant first-order polynomial metamodels can be applied in a linear
programming formulation for optimal network improvement. For
further research, we suggest combining other techniques, such as
importance sampling, with survival variables in reducing the variance

of the estimators of maximal flow and reliability.
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