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ABSTRACT

We present a discussion of the issues to
consider when setting oscillation amplitudes in
frequency domain experiments, with particular

reference to gradient direction estimators.

1. INTRODUCTION

Frequency domain methodology (FDM) was first
introduced as a screening tool for continuous input
factors in discrete-event simulations (Schruben and
Cogliano 1987). More recently, the approach has been
extended to gradient direction estimation (Jacobson
and Schruben 1988) and discrete input factor

screening (Sanchez and Sanchez 1989).

Three questions which must be addressed when
running frequency domain experiment are: how do we
determine the unit of the experimental or oscillation
index, how do we select the driving frequencies, and
how do we set the oscillation amplitudes. The first
two of these issues have been looked at by Jacobson,
Morrice, and Schruben (1988) and Jacobson, Buss, and
Schruben (1987) respectively. In this paper we look
at the third issue, setting the oscillation
amplitudes in frequency domain experiments, with a

particular focus on gradient direction estimation.
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The paper is organized as follows. In Section 2,
the effect of changes in the oscillation amplitude
on the power spectrum values are discussed. These
effects are looked at with respect to input
feasibility, system noise, and higher degree
polynomial terms in the input/output representation

of the system. In Section 3, the work is summarized.

2. OSCILLATION AMPLITUDE EFFECTS

Setting the oscillation amplitudes for
frequency domain experiments can be a difficult
task. We consider three factors which influence
These factors are:

their selection. feasibility,

noise, and higher degree polynomial terms.

2.1 FEASIBILITY

Schruben and Cogliano (1987) suggested that when
running frequency domain experiments, the simulation
inputs should be varied over the widest range of
values. Therefore the oscillation amplitudes should
be set as large as possible (we always assume that
the oscillation amplitudes are positive). This would
also tend to make it easier to detect the resulting
output signals. One constraint on these amplitudes is
that the input values must remain feasible. To illu-
strate this, consider an M/M/1 queue with input proc-

esses ju(t)$ and $x(t)$, where t=0,1,... is the cust-



omer number entering the system. If we vary p(t)

about p(0)=1.0 at frequency w,=.07 with @1 a uniform

1
(-n,n) phase shift (i.e. p(t)=1+ulsin(2n(.07)t+®1)),

we observe that the oscillation amplitude «, must be

1
less than one, or else p(t) can become negative or
zero. If we vary 2(t) about p(0)=0.5 at frequency
w1=.28 with 62 a uniform (-x,n) phase shift

(i.e. x(t)=0.5+azsin(2n(.28)t+¢2)), we observe that
the oscillation amplitude oy must be less than one

half, or else A(t) can also become negative or zero.

and ¢

1 2 are

Note that the random phase shifts ¢
independent, and are needed to ensure stationarity of
the input processes. In practice however, they are

typically fixed at zero.

In addition to the above constraints on (al,az),
it is desirable for p(t)=x(t)/p(t), the traffic int-
ensity, to be less than one for all t, or on average
less than one over all t. More explicitly, we have

[0.5+a231n(2n(.28)t+¢2)]

p(t)= . (1)
[1.O+alsin(2n(.07)t+¢1)]
From this equation, to ensure p(t)<1 for all t,
we must have
(0.5+u2)/(1.0—a1)<1 (2)
which gives us
q1+u2<0.5 (3)

Therefore we could set (ul,a2)=(.25—A..25-A),
(.3-4,.2-4), or any such combination, for some A>0
small. If we just want the traffic intensity to be
less than one on average, we could choose oy and

such that o +o,>0.5. Determining the exact

% 1

R

and o

1 2 would require us to compute

range for «

T (.5+a231n(2n(.28)t+¢2))

=Lim z
T4+ t=0 (1.+ulsin(2n(.07)t+¢1))T

r(al,uz)
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and set o, and az such that r(ul,a2)<1 as desired.

1
Notice that for u1=.07, u2=.28. and any fixed phase
shifts, r(al,«a) can be computed by taking the finite

sum from 1 to 100, hence making it computationally

tractable.

The above discussion focuses on general frequ-
ency domain experiments. All these issues also apply

to frequency domain gradient direction estimation.

2.2 NOISE

Input/output representations of discrete-event
simulations have been discussed in Sanchez and Buss
(1987) and Jacobson (1988). A generalization of the
Hammerstein Model (Narendra and Gallman 1966) was
introduced as one such stochastic dynamical model
(we will refer to this generalization simply as the
Hammerstein model). This model is depicted in

Figure 1.

Suppose we assume that the polynomial
transform is quadratic (i.e. k=2). From Jacobson

and Schruben (1988) we have the following result.

THEOREM 1: Let y(t) be a quadratic Hammerstein

to
b (J XK(t-T)dFK(T)) + e(t) with
[1&[]=2 0

k>0

model y(t)=

associated steady state expected response Y(x). If
the input x(t) is varied about x(0) in direction d
at frequency w with & independent and identically

distributed uniform (-n,n) phase shifts, then

Lin £(0)=(1/2)<9¥(x(0)),d *5(0) + 1,(0) (5)

w0
where f(w) is the output power spectrum value at w,
fc(u) is the power spectrum of the noise process
$e(t)? at frequency o, K=(r1.xz,....xp) is a vector

exponent, and 8(w) is the dirac delta function.



The oscillation direction d completely defines
the oscillation amplitude for each input, since
x(t)=x(0)+dsin(2nrwt+®) can be rewritten as
xi(t)=xi(O)+disin(2nut+¢i) for i=1,2,...,p.
Therefore we have «i=di for i=1,2,...,p. From
equation (5), the dirac delta function represents a
discrete jump of size (1/2)<VY(X(O)).d>2 in the
cumulative power spectrum F(w), as «w+0. We would like
to set the oscillation direction such that this dis-
crete jump is easily identifiable. From (5), it is
clear that this can be achieved by increasing ||d|]1.
To demonstrate this, consider an M/M/1 queue as
described in Section 2.1, with p(0)=1.0, 2(0)=.5, and

output process }W(t)?, the customer waiting times in

the system. We set the oscillation direction

d=Y(-1,1), the direction of the gradient of the
steady state expected waiting time, where
¥=.01,.10,.25,.35. We made four sets of five repl-
ications of a frequency domain simulation experiment,
each set corresponding to a different Y and each
replication involving one signal run (i.e the inputs
are varied) and one control run (i.e. the inputs are
fixed). The simulation run lengths were n=1000 with
driving frequency w=.10 for the signal runs. We
obtained ?c(.10)=.0131 using all twenty control runs.
Table 1 shows how the average values for f(.lO) and
f(.iO)/fs(.IO) change as Y is varied. These results
give some indication of how the noise effect in a

system can be reduced in the frequency domain by an

increase in the oscillation amplitude.

The relationship between oscillation amplitude
and noise discussed above holds for systems with
additive noise components. For systems with certain
types of non-additive noise components, such as
x(t)e(t) (see Jacobson 1989), this noise reduction

effect will not necessarily be exhibited.
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TABLE 1
M/M/1 Frequency Domain Experiments

Y T(.10) ?(.10)/?5(.10)
.01 .020 1.5
.10 .072 5.5
.25 .721 55.0
.35 1.597 121.9
2.3 HIGHER DEGREE POLYNOMIAL TERMS

In Section 2.2, we assumed that the degree of
the polynomial transforms in the Hammerstein model
were at most quadratic. This is a reasonable assumpt-
ion to make if we are examining a simulation response
locally. However, frequency domain methodology is
often thought of as a global sensitivity analysis
technique (Schruben and Cogliano 1987). We now dis-
cuss how cubic and higher degree terms can signifi-
cantly distort input term screening and gradient

direction information in the frequency domain.

Consider the cubic model y(t)=x3(t). Varying
x(t) according to the equation x(t)=x(0)+asin(2nut)
(& fixed at zero) gives us
y(£)=x3(0)+3x° (0)as in(2nwt) (6)
+3x(0)azsin2(2nut)+agsin3(2xut)
Using the trignometric relations
sin®(2nut)=(1-cos(2n(20)t))/2 and
sin3(2nut)=(3/4)sin(ZRut)—(1/4)sin(2n(3u)t),
equation (6) becomes
y(£)=x>(0)+3x* (0)asin(2net)
+3%(0) (o/2) (1-cos(2n(2w)t)) (M
+(o3/4) (3sin(2not)-sin(2n(30)t)) .

Notice that the coefficient of sin(Rnwt) is

3X2(0)d+3(a3/4). This coefficient is twice the output



power spectrum value of jy(t)$ at frequency w. At
this frequency, we would like to identify sz(O)a,
the scaled (by «) derivative of Y(x)=x3 evaluated at
x(0), rather than 3(«3/4). The presence of 3(«3/4)
results in a cubic effect term at a linear indicator
frequency. In fact, this cubic effect term will

override the linear effect term at frequency w if

3x2(0)a53(u3/4).

(8)
This gives us the inequality
2|x(0) | <o. (9)

Therefore for |x(0)| small (near 0), o must be set
sufficiently small («<<2|x(0)|, or more generally, «
should be closer to zero than |x(0)|) to ensure that
the cubic term does not dominate the power spectrum
value at the linear indicator frequency. This puts an
upper bound on the size of «. For x(O)ERp and osc-
illation direction d, similar results can be derived
which also tend to force ||d||1 to be close to zero

for x(0) near local optima.

3. SUMMARY

We have identified and discussed three factors
which influence the size of the oscillation amplitud-
es for frequency domain experiments. We noted that to
ensure input feasibility and reduce higher degree
term effects, the amplitudes should be set as small
as possible. Furthermore, to reduce the noise effects

the amplitudes should be set as large as possible.

It may not be possible to set oscillation amp-
litudes which satisfactorily address all three con-
straints. This situation will tend to arise when exp-
eriments are run with the inputs close to a local
optimum. For such situations, the priority of these
constraints should be feasibility, higher degree

terms, and noise effect. This leads us to conclude
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that we should set the oscillation amplitudes as
large as possible such that the inputs remain feas-
ible and higher degree term effects do not dominate
the power spectrum values at linear term indicator

frequencies.
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FIGURE 1: The Hammerstein Model
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