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ABSTRACT

An FMS 1s a highly integrated manufacturing system.
The inter-relationships between its components are not well
understood.  Consequently, it has not been possible to develop

closed form analvuic models of FMSs. Computer simulation has

been extensivelv apphed to study their performance. The optimal
design of FMSs 1s an important problem. In this research a com-
puter simulation moedel of an FMS is interfaced with the Hooke-

Jeeves algorithm to search an optimum design without full facto-

nal experimentation. Some modifications of the HJ algorithm are

needed to accommodate the stochastic nature of computer simula-

uon.

1. INTRODUCTION

The optimal design of flexible manufacturing systems

(FMS) is a complex problem. This is because an FMS is a higb-

Iy integrated manufacturing svstem and the inter-relationships

between its vanous components are not well understood. Due to
this complexity, it has not yet been possible to develop closed
form analytuic models to accurately determine the level of per-
formance of different designs.

Computer simulation s a widely used numeric modelling
technique for the analysis of complex

svstems such as FMSs

(Cheng 1985, Jain & Folev 1986, Kalkunte et. al 1986, Melli-

champ & Wahab 1987). However, simulation 1s an evaluative
technique (Suri 1984), ie. it provides an accurite estimate of per-
formance for a given set of decisions. To search an optimal set
of decisions, an evaluative technique must be interfaced with a
generative procedure 1e. a procedure that generates alternate sets
decisions.

of One such generative procedure is the Hooke-Jeeves

algonithm.
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The Hooke-Jeeves (HJ) algorithm is a search procedure use-
ful for searching the optimum of complex functions. However,
for this procedure to work, it must be possible to evaluate the
function deterministically.

A function represented by a simula-

tion model cannot be evaluated deterministically. Any measure

obtained from a simulation experiment is a stochastic variable
characterized by some probability distribution. Consequently, the
HJ procedure must be modified to allow the stochastic evaluation
of the function being optimized.

In this research, a modified version of the HJ procedure is
developed. A simulation model representing an FMS is interfaced
with the modified version of the HJ procedure. Application of

the procedure is demonstrated through an example.

2. NEED FOR MODIFICATION OF HJ ALGORITHM

The HJ algorithm is a widely used search procedure to
optimize a function and identify the corresponding levels of the
variables that affect 1t. The method performs two types of
search routines cyclically: an exploratory search and a pattern
search. The exploratory search is conducted along the individual
coordinate directions in the neighborhood of a reference point.
The pattern search proceeds along the direction defined by the
starting and ending points of the exploratory search.

However, the HJ] procedure requires deterministic evalua-
ton of the function being optimized. Here, this function is rep-
resented by a simulation model which provides a stochastic esti-
mate for a given set of decisions. Consequently, the HI
procedure will need modification with respect to some of the sta-

tistical aspects of simulation.



2.1 Statistical Aspects of Simulation

Estimates of response obtained from a simulation model
are random variables. Consequently, the estimate obtained from a
single simulation run could vary greatly from the true value of
the response.

Inferences made using single estimates would have

a significant probability of being erroneous. Therefore, several
values of the response must be obtained for valid inferences to
be possible. However, values of the response obtained from dif-
ferent points of a simulation run are usually not independent.
Thus, statistical analyses based on an assumption of independent
identically distributed (IID) observations are not directly applicable

(Law & Kelton 1982).

The statistical analysis of data obtained from a simulation
model differs depending on whether the system is terminating or
non-terminating.

Terminating systems are those which operate

during certain fixed intervals of time. Non-terminating systems
are those which do not have any boundaries on the duration or
period of operation. An FMS is generally modelled as & non-
terminating system.

Non-terminating systems are analyzed on the basis of data
collected when the system has achieved steady state.  Steady
state is achieved when the measures of performance or responses

are defined as:
() — lim vy —
Flx)= 20 F, (x) for Cl0)=anyc

where
F(x) = steady state value of the measure

F; (x) = Transient distribution of the measure given an

initial condition C(0) = c.
Steady state does not mean that the response for a single
after some point

simulation run will become constant n time,

but that the distribution of the measure becomes invariant. Con-
sequently, any realization of the measure from a simulation run
is an unbiased estimator of the true value of the measure. In

the FMS design problem, this measure is preductivity (Nandkeol-

yar 1988).

In the FMS design problem, inferences have to be drawn

regarding the superiority of one design over another. In order to
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make these inferences, it is usually not enough to obtain one

unbiased estimate of the true mean but rather to construct a con-
fidence interval for the true mean of the measure.
Several techniques appear in the literature for obtaining

the desired confidence intervals based on computer simulation.

The method of batch means is the most commonly used proce-

dure. Under this procedure, let

where,

v is the steady state average response
Y; is the ith realization of the response.
Assume that {Y;i21} is a covariance stationary process

with E(Yp)=v for all i. The simulation run length m is divid-

ed into n batches of length d such that m nd. Now,

is the batch mean of batch j. And,

m

n
ZYj(d)
Pnd)=4=1
n

1s the grand mean of the measure.

In order to make valid inferences about the performance
of the system, the batch means could be used to construct a con-
fidence interval for the true mean provided:

a.  The batch means are IID random variables, and

b.  The batch means are not correlated.

Both these conditions can be satisfied if d is large. Fur-

ther, due to the central limit theorem, which can be invoked if

Y {d) will be 1ID normal ran-

both n and d are large enough, b

dom varables with mean r. Now an approximate 1(XX1 - a)

percent confidence interval for v may be written as

ST(d)(")

Yind) £t
Jn

n-1(1—-a)/2



where

n

Zl)’jw—T(n,dJ]2

st in= ji‘—”-l

This estimate of variance of the mean may now be used
to draw inferences about the performance ol one svstem com
pared to the performance ol another system. In this case, a
hypothesis ol the form:

Il“:x'A=v”

HA: va>ig
may be tested where v yandvpg are the true means of the meas-

ure for two systems A and B. The appropriate test statistic is

)'A(nA.d)—TB(nB.d)

=
.‘/ s;(—l— )
n, B
where
(=152 (n D) +(ny—1sZ (ny)
52= A }A A B }b' B
P nA+"B—2

1s the pooled variance of the means.

3. MODIFICATION OF THE HJ ALGORITHM
The general algorithm for maximizing an objective func-
tion 15 described by the following steps (Bazarra & Shetty 1979):

1. Start with an arbitrarily chosen point

Nq={xy.x3,..x,} called the starting or base point, and prescribed

step lengths Ax; in each of the coordinate directions u; = 12,
. Set ko= 1L

2. Compute the value of the objective function
pr=f(Xp) Set i =1, and the temporary base point Yro=Xg.

3. The input variable x; is perturbed about the current
temporary base point Yjpjip w obtain the new temporary base

point as

¥

. + . .
ki texHy if, pt o= 0 i1t AN > LY )

Y= ki 1T e e oy :
ki ! if.p —f()k,i-l_A'Iiui'>ﬂ)k,i—1'

Yo
ki-1 otherwise
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Set i =1i+l. If i > n go to step 4, otherwise go to step 3.

4. 1If Yk,n=Xk.setAch=ijv’2, j =12 .,n goto

step S, otherwise go to step 6.

S, If m;.lx(AXJ)<e, go to step 8, otherwise set i 1,

and go to step 3.

6. Set the new base point X,y =Yy . Establish a pat-
tern direction §=X;,1— X and find a point

Xt irph = (x, 1 4A8) > py, = XD

)'k+]‘0:

Xk+1' otherwise

A is the step length along the direction of the pattern search.

7. Set k = k+1, pp=pYroh i = 1, go 10 step 3.

§. Stop.

This procedure may be used to mimmize a function by
either reversing the direction of the inequalities, or by multiply-
ing the objective function by -1.

The HJ procedure assumes that the value of the objctive
function can be determined without error for all combinations of
input variables. This is not the case in the FMS design problem
since the objective function is estimated on the basis of simula-
Due to the stochastic nature of these experi-

tion experiments.

ments, the value of productivity is not deterministically known.

3.1 Stochastic Nature of Objective Function
The productivity of a particular FMS design is evaluated
the nature of simulation, the

by a simulation model. Due to

results are stochastic. This means that the value of productivity
obtained from the experiments belong to some probability distri-
bution. Using the concepts of blocking, and the central hmit
theorem, the value of productivity obtained from each block can
be assumed to belong to a normal distribution.  These results
allow the estimation of a mean value of the productivity and
standard error of the sample means for a particular design.

The stochastic nature of the evaluation of the objectve
function causes two problems. Since the function can only be
estimated by a prabubility distribution, improvements in the value
of the function can be established only when statistically signifi-

cant improvements occur. Also, repeated evaluation of the objec-



tive function for the same set of input variables can create prob-
lems when the objective function is a stochastic variable. The
most critical problem is cycling. Cycling can occur if a point
previously found to be superior (inferior) is later found to be
inferior (superior) to the same reference point. In addition, com-

puting effort 1o rerun simulations would be wasted. Some modi-

fications to the HJ procedure are warranted to accommodate these
problems.

In order to overcome these problems, repeated samples
must not be drawn. Instead, a sufficiently large sample size
should be chosen to ensure reliable estimates of the mean and
standard error.  Objective function values obtained for every
evaluated configuration must be stored and reused in hypothesis

tests.

3.2 The Modified Hooke-Jeeves Algorithm
Three modifications have been made to the HJ algorithm
to accommodate the idiosyncrasies of this problem.

a. The procedure for determining an improvement in the

response has been modified to accommodate its stochastic nature.

Consequently, only statistically significant improvements in the

value of the response are recognized, and therefore trigger a shift

in the base point. The original algorithm assumes that the

response can be evaluated deterministically, so that infinitesimal
improvements in its value are recognized.

b. Figure 1 is a plot of productivity as a function of

input x;. Consider the points 1 and 2. The mean values of

productivity at these points are p; and pp. Now, if

Py —ﬁl < zs?

where z is the unit normal variate and s

P is the standard error

of the mean, the direction x; will not be identified as a direction

in which improvements can be achieved. However, consider

another point 3. The value of productivity at this point is P3

Now, if

P3—P; > 255

this direction x; will be identified as a direction in which

improvements can be achieved. Consequently, in order to

improve the capability of the algorithm to identify potential
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Figure 1 Impact of Step Size on'the Hooke-Jeeves Algorithm

directions of improvement, Ax; must be as large as possible.
Large values of Ax; alone does not solve the problem. Note that
at point 4,

P 4 —f)l < ZSI?

The HJ algorithm with modification a alone would not identify

x; as a direction where improvements can be achieved.

This requires the second modification. In the original HJ

procedure, each axis is explored for a given step size. If no axis
produces a superior point, the step sizes are reduced by a predet-
ermined factor and the exploratory search is conducted again.
The reduction in step size is permanent. Here, this procedure is
modified. An axis is explored starting a predetermined initial
step size. If a superior point is not found, the step size is
reduced by a predetermined factor. This procedure is followed
until either a superior point is found or the step size reaches a
predetermined value €. When either of these occurs, another axis
is explored and the step size of the previously explored axis is
set back to the initial value.

Large values of initial step size are likely to produce bet-
ter results, but greatly increase the number of alternate evalua-
tions to be performed. Consequently, initial step size should be‘

chosen with great care.



Figure 2 demonstrates how this modification helps identi-

fy directions of improvement which may otherwise have been

missed. In this figure,

Py=Py <255
however,
773 - ;‘71 > zs}_’

so that x; is identified as an improving direction.

Figure 2:  Modification of Hooke-Jeeves Algorithm

c. The stopping criteria for the original algorithm is

reached when the step size along all the coordinate axes is

reduced to some predetermined finite value €. For the FMS
design problem € is specified as zero. In addition, all reference

points and step sizes are integers. This is because the decision

variables (i.e. number of machines) can only be integer quantities.
The modified HJ algorithm is:

1. Start with an arbitrarily chosen point

X1 ={x1.x2,..x,) called the starting or base point, and prescribed

step lengths Ax; in each of the coordinate directions u¥; = 1,2,
.0 Set k = 1.

2. Compute the value of the objective function
pr=f(Xg). Set i = 1, and the temporary base point Y =Xp.

3.

If Ax; = 0 go to step 4. The input variable x; is
perturbed about the current temporary base point Yy ;1 to obtain

the new temporary base point as
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R
Vi1 tAXEpif, pT = [y g HAxu) > f(yk.i—l)”‘rv

=Y —Ax.u,, . —
Y i =1 ki1 2N, p =f(Yk,i_l—Axiui)> f(Yk’i_1)+zsﬁ

Yk.i-l' otherwise

If Yg;=Ygp1 set Ax;=INT(Ax;/2) and go to step 3, otherwise

go to step 4.

Set i = i+1. If i > n go to step §,

4. Reinitialize Ax;.

otherwise go to step 3.

Establish a pat-

5. Set the new base point Xpi1 =Yg p-

tern direction S=Xj41—Xg If S=0 go to step 7 otherwise find
a point

et i ph = (x4 > pyy = £,

Yinpo=

X k+1 otherwise

X is the step length along the direction of the pattern search.

6. Set k = k+1, fr=f(Yzp) i = 1, go to step 3.

7. Stop.

These modifications essentially require that the null

hypotheses in the appropriate one tailed hypothesis tests of the

form:
T ) J.
HO. P ( _pk,i—l
L _
HA' P > Prj-1
or,
R .
Hy 7" =Pryq
LA s
Hp P> Prpy

be rejected in favor of the alternate hypothesis for a prescribed
level of confidence. The standard error for these hypothesis tests

are computed as the pooled standard errors respectively as fol-

lows:
g 2 ) (-)
- 2 +(-) _ —+(-)12
PUIIRES RS N (A M
2 1 1
S = X| — + —
p nytn,=2 [nl nzjl
or
< A_ A 2 2
DI AED UL
2 1 1
sZ= x| — 4+ —
P ny +n2—2 [nl n2]



Here nqandny are the sample sizes used to estimate the

mean value of the objective function at the points considered in
the hypotheses being tested. Usually, equal sumple sizes are tak-

€n.

3.3 Effect of the Modifications

The modifications made to the HJ algorithm are mamly
procedural and do not violate any of the major assumptions of
the original work. However, there are some questions regarding
the statistical aspects of the large number of hvpothesis tests that
are conducted in a sequential manner. Note that euch hyvpothesis
test of the nature

HOZ#i=‘“j

HA:;J.i > H;
involves a risk of making a erroneous decision.

Type 1 error, rejecting a null hyvpothesis when in fact it
is true, is committed with a probability a. If the hypotheses
were independent, as the number of hypotheses tested increases,
the type I error cumulates according to 1—(1—a)? where n is
the number of hvpotheses tested. However, this is not the case
here. Each hypothesis test is a one-tailed test in which the base
point is based on the result of the previous hypothesis test.

For example if the ith hvpothesis 1s

Hypmy =g

HA:#] > pg
and the null hypothesis is rejgcted, then the i+ 15! hypothesis is

Hypy=my

HA:,u2 > 1y
If this null hypothesis 1s also rejected, then the type I error
made in rejcting the null in the following hvpothesis 15 less
than a.

Hyjy =g

H pimy > Hg
Hence, due to the interdependence of the sequence of hvpotheses

being tested, the type I error does not accumulate.

Of greater importance here 1s TVpe 1l error, failling to
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reject the null hypothesis when in fact it 15 false. If a tvpe Il

error is committed, a point which 1s trulv a superior point

would not be identified. This could seriouslv impair the progress

of the algorithm.

Consequently, it is important to minimize B, the probabili-
ty of committing a type I error. 1—8 15 known as the power
of the test, and is to be maximized.

The power of the test 1s a complex quantity. It depends

on the difference between the means that it must be able to

identify (uq—pup), the number of data points in the sample

means n, the standard deviation of the distribution, the signifi-
cance level of the test «, and whether a one-tailed or a two-
tailed test is being conducted (Snedecor & Cochran, 1980). The

power of a test is given by:

Vnly ,—u )
1-8=Problz > 2, _ ~—=" B
—-a p
Since o is not known, it is replaced by its estimate s

and the normal variate Z is replaced by t with the appropriate

degrees of freedom. Hence,

Vil = p)
1—B = Probjt > tpdma™

s
It 1s seen that (1—B) can be increased by increasing n, a.
(ua—up) or decreasing s.

High values of n would increase costs

since more replications would be needed. Large values of a

would result in a high rate of type I error. Since (,uA—;AB)
and o are exogenous to the design problem, only n is under the
control of the designer. Hence, power can be increased only by
increasing n. This may make the implementation of the procedure

uneconomical. In addition, large values of o would also increase

power, though this may produce unacceptable levels of tvpe 1
error.
4. EXAMPLE

The I'\MS desipn problem involves the specification of the
level of inputs required to produce a set of parts in a way that
productivity 1s maximized.

Here an I'MS 1s modelled using computer simulation.

Since simulation is an evaluatuive technique, this model is inter-

faced with an opuimization routine to search the optuimal design.



Table I Part Families, Operation
Time
Part Operation Sequence
Family 1 2 3 4
1 1 2 3 4
2 3 2 1 4
3 1 3 2 4
A modified Hooke-Jeeves (1) algorithm is used as the search
procedure.

4.1 Problem Definition
Consider an FMS that receives orders for parts according

to some arrival process. These parts could belong to a single or

several part families. Here, parts that undergo the same sequence

of operations are assumed to belong to the same part family.

Fach part fumily consists of several part types. Though each

part type belonging to a part family follows the same route,
they are differentiated by the individual processing time for each
operation.

The FMS is assumed to contain machines that together
can perform all the operations for all the part families under

consideration.  In order to provide sufficient capacity, several

unmits of each type of machine are installed according to a func-

tional layout.

Each group of similar machines has a limited number of

input buffer spaces from which parts are drawn for processing.

Upon  completion of processing, parts are placed 1n a limited

capacity output buffer. In addition to  bufters attached to

machine groups, a limited number of buffers are available at a

central location where arriving parts are stored before being
released to the svstem.

Automated guided vehicles (AGV'S) transport parts from
the central buffer to the 1input buffers ol the appropriate

machines, and from the output buffers to input buffers or the

exit station.  Several AGVS mav be emploved to provide suffi

caent material handling cepaaity.

4.2 Problem Parameters
Assume that an MS is capable of conducting four opera
Tons.

these four operations.  Assume alse that these parts are grouped

It s, therefore, capable of processing all parts that require
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Sequence and Processing

Mean Processing Time

1 2 3 4

20 15 35 10

35 15 20 10

20 35 15 10
into three part families ie. groups of parts that follow the same
route.

Parts that arrive to the system all tequire four operations

families are defined. Table 1

to be completed. Three part
shows the sequence of operations for each part family, and the

corresponding processing time. Note that operation number 4 is

always the last one 10 be completed, and that each operation
requires the same amount of time for all part familes. If a

machine must process parts from different part families consecu-

tively, a set-up time is incurred.

Within each part family there are several individual
parts.  These parts follow the same sequence of operations as
other members of the part family, but require a different

amount of time at each operation. Here, this specific processing
time is achieved by multiplving the mean processing time for the
part family for an operation by a factor drawn from discrete
probability distributions. The mean of these distributions is 1.

The discrete probability distributions used for these three part

families appear in Table 2. Note that this translates to n4 parts

in each part family, where n is the number of factors defined

for a part familyv. For example, in part family 1, there are 34

parts.
Table 2 Probability Distributions of Processing Time Multi-
pliers
Part
Family
1 Factor 0.80 1.00 1.30
Probability 0.30 0.50 0.20
2 Factor 0.80 0.93 1.20
Probability 0.10 0.60 0.30
3 Factor 0.80 1.00 1.20
Probability 0.30 0.40 0.30

Parts are assumed to arrive at the FMS at fixed intervals

of 40 time units with a batch size of 5. All parts in a batch

belong to the same part family, though they may not be the



same part. All part families are represented equally in the set

of arriving parts.

Four types of machines are employed in the system - one
for each operation. An objective of the design process is to deter-
mine the optimum number of machines of each tvpe that must
be employed.

Three types of buffers are defined for the FMS. The cen-
tral buffer stores parts until they can be released to the shop.
The input and output buffers are Jocated near machines. Input
buffers provide space for parts that must be processed on the
corresponding machine. Output buffers store parts that have been
processed at the corresponding machine and are awaiting transpor-
tation to the next station. Usually a limited number of buffer
spaces are available. The FMS design process attempts to deter-
mine the optimum number of buffer spaces at each location.

The material handling system is assumed to consist of
AG\V's.  Several units of AGVs may be employed and they trav-
el at a speed that takes them 1 time unit to move from any
An objective of the

location to any other location in the FMS.

FMS design process is to determine the optimum number of

AGVs to be employved.
Work 1n process is another form of input to the system.
Though it cannot be directly determined by the designer, it is

affected by the design parameters.

4.3 Objective Function
Productivity is the objective function that must be opu-

mized and the settings of the design parameters that result in

this optimum level is to be identified.

Productuvity s defined as:

where,
Q = The number of parts produced by the system
C; = the cost of input 1
I; = the level of input i
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4.4 Modified Hook-Jeeves Procedure
In order to be elfective, this search procedure requires the

careful selection of some of its parameters. These parameters are

the initial step size along the coordinate axes and the pattern

direction, the significance level of the hypothesis tests that will

be conducted, and the power of the tests in detecting practically
significant improvements in productivity.
The initial step size along the coordinate directions is a

very critical parameter of the HJ procedure. A large value of

the step size will result in the identification of a large number

of candidate designs to be evaluated. This could become very

costly.  While a small value for the step size could result in the

evaluation of a fewer number of alternate FMS designs, 1t may

cause the procedure to miss the optimum. Hence, a balance

between the amount of computer time used and the risk of stop-

ping at a sub-optimal design must be reached. Inuimate knowl-

edge of the specific system could help in estabhishing a good val-
ue for the initial step length.

After some preliminary experimentation, an initial  step

size of 2 along all coordinate axes was chosen. This is because

the stopping point for this step size produced productivity values

within 2% of the stopping point when the step size was 4.

Three times as many alternate designs were evaluated in the lat-

er case. Preliminary exploratory investigations found that a pow-

er of approximately 70% is achieved when n = 10, o = .15, s

2 and (ug—upg) = 1.
Recall, the modified HJ procedure requires a high value of

power as opposed to a low level of significance to identily

superior designs.

4.5 Simulation Model
A simulation model for this problem was developed using

SIMAN. This model was directly interfaced with with a

FORTRAN program of the modified Hooke-Jeeves procedure.

The initial set of decision variable ie. the number of

machines of each type etc., is user supplied. Subsequently, based

on the results of each run, the modified HI procedure makes

alterations to the design varisbles. Each rtun is diided inte twe



segments. The first segment is used to achieve steady state and

data from this segment is discarded. The second segment 15

divided into ten batches in a way that the data 1s not auto-

correlated.  For each batch, a value of productivity is computed.
The mean of the ten realizations and the corresponding standard
error are used by the modified HJ procedure to generate alternate
Only statistically significant improve-

sets of decision variables.

ments in productivity are recognized.

S. RESULTS

A partial output from the program appears as Table 3.
It is seen that the program continuously seeks better sets of
design variables by systematically searching the neighborhood of

the starting point. For this problem, there were fourteen vari-

Table 3:

=
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ables which were explored. Four variables (A-D) correspond to

the number of machines of each type, four variables (E-H) corre-
spond to the number of input buffers at each group of similar
machines, four variables (I-L) correspond to the number of output
buffers associated with each group of machines, one variable (M)
corresponds to the number of AGVs in the system, and one vari-
able (O) corresponds to the size of the central buffer. N is the
number of alternate designs evaluated.

At the starting point (N=1), a productivity of 12.50 is
achieved The first significantly better design is found at N=11
with a productivity of 13.40, and the optimum is identified at
N=37 with a productivity of 13.68.

Note that at N=5, a productivity of 12.58 is achieved but

is not identified as an improvement since statistical significance

was not achieved.

Progress of Modified Hooke-Jeeves Procedure

J K L M O PROD
5 5§ 85 5 10 12.50
5 5 5 5 10 11.78
5 5 5 5 10 10.64
5 5 5 5 10 12.17
5 5 5 5 10 12.58
5 5 5 5 10 11.72
5 5 5 5 10 4.78
5 5 5 5 10 12.17
5 5 5 5 10 9.89
5 5 5 5 10 11.59
5 5§ 5 5 10 13.40
5 5 5 5 10 12.11
5 5 5 5 10 6.50
5 5 5 5 10 12.82
5 5 5 5 10 11.72
5 5 5 5 10 13.44
5 5 5 5 10 13.19
5 5 5 5 10 13.39
5 5 5 5 10 13.24
5 5 5 5 10 13.34
5 5 5 5 10 13.36
5 5 5 5 10 13.38
5 5 5 5 10 13.27
5 5 5 5 10 13.37
5 5 5 5 10 13.26
5 5 5 5 10 13.37
5 5 5 5 10 13.31
5 5 5 5 10 13.24
5 5 5 5 10 13.35
5 5 5 5 10 13.36
5 5 5 5 10 13.38
5 5 5 5 10 13.24
5 5 5 5 10 13.22
5 5 5 5 10 13.36
5 5 5 5 10 13.32
7 5 5 5 10 13.13
3 5 5 8 10 13.68
3 7 5 5 10 13.44
3 3 5 5 10 13.26
3 6 5 5 10 13.15
3 4 5 5 10 13.42



6. CONCLUSIONS

A modified version of the HJ procedure has been devel-
oped to accommodate the stochastic nature of simulation. The
procedure developed here provides a technique for using simula-
tion with a generative procedure for identifying optimum designs
The

of complex systems without full factorial experimentation.

application of this procedure is demonstrated through an example.
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