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ABSTRACT

The purpose of this study is to mvestigate the fea-
sibility of using a sumulated annealing algorithm in
conjunction with a simulation model to find the op-
timal parameter levels at which to operate the sys-
temn being sinulated. o particalar, we discuss an
effort to use simulated annealing to find o combi-
nation of input parameter values for an automated
manufacturing systemn which optimizes 1 noncon-
vex, nonconcave objective function of the iput pa-
rameters.

This paper contains i brietf deseription of an auto-
mated manutacturing system used to assemble three
products. The problem objective is (o maximize

profit is a function of the levels of three parame-

ters = bhateh size of arviving products, distribution of

products in the batehes, and machine outpat haffer
size. Simulated annealing s then used to search for
the optimal combimation of input paratneter levels
By expernmenting with the simulated annealing pa-
rameters, the algorithm parioncters are chosen such
that the anncaling program will consistently find the
global optimunm after evalnating approximately 36%
of the input variable combinations.

1. INTRODUCTION

A typieal optimization problemn is to maximize
acrcal -valued fonetion 7(x) where feasible points
X = (0,00 00,) are restricted Lo some con-
straint et N C 'R".

mtractable, as s often the case immanulactiuring or

I this problem s analvteally

other practical environments, then the analyvst may

choose to simnlate the system, The optimization of

this simulated system s the focus of this paper.

The ann of sunulation optinmization is o de-
termine the nputs, sometimes called parameters,
which optimize the outputs, or performuance mea-
sures, of the simulation experiment. The perfor-
mance measures may be stochastic functions of the
parameters because of the random nature of the ex-
perimiental model’s inputs. For the purposes of op-
timization, the simulation 1s simply a black box’
which computes a (stochastic) function value for a

eiven combination ol the parameter vidues.

Meketon (1UST) surveys approaches and recent re-
sults i simulation optimization. These approaches
include  standard  non-linear programming tech-
niques. response surface methodologios and stoclias-
tic approximation techniques. A drawback of such
approaches is that they terminate upon finding a
local optimunm. In another survey, Glynn (19386)
presents a framework of optimization problems and
some of their corresponding solution approaches,
The approaches discussed by Meketon ave, accord-
g to Glynn, more appropriate for a class of prob-
fems characterized by aclinite nnmber of continuons
parameters. However, these approaches are appar-
ently not ellective when the parameters are discrete,
e take ononly a countable number of values,

I this paper, we consider the sinulation opti-
mization problem of maximizing the total expeeted
profit of a small, hypothetical automated manufac-
turing system. There are three diserete parameters
ll\t"' 1o <l(z\1'l'ilw lll(‘ H|“’I'?l'i“ll of l|)l$ .\)'SU'I]I. '”I"
v_\;[uw‘lml |rl'u|i( 1S, I»}' construction. a (‘1_)Ill|l|i<‘.’lln'1_|
fnetion which ondy impheithy depends on the pa-
Henee,
this problem is chiaracterized by a finite number of

rameters and has modtiple Toeal maxinma

(ll.\'('l"l"“,' l,;”‘;““q-l‘(‘l's (fllll' I‘- not .'l)ll!'ll;||)|t' .o n[)l‘i-
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mization via the aforementioned approaches. We
propose, mstead, to solve this problem using sinu-
lated annealing.

Simulated annealing s an iterative stochastic
search method, analogous to the physical anneal-
ing process whereby material as gradually cooled
so that a minimal encrgy state 1s achieved. This
method, rather than have a sequence of feasible so-
lutions always follow o descending objective Tune-
tion value path, allows this sequence 1o deseend
along a path most of the time. T thus way, the
path traversed may leave the arca around a local
minimum to locate either a better local winnnum
or, perhaps, the global mimmum. Of course. this
approach may just as casily be applied to maxi-
Motropohis el al. (1953) first
imtroduced the simulated annealing concept while
Kirkpatrick ef al. (1983) suceessfully applied the
approach to deterministic optimization problems.
Bulgak ¢1 al.

one application of simulated anncealing to simula-

mization problemns.

(19838) have recently demonstrated
tion optimizatlon.

The goals of this paper are to demonstrate that
simulated annealing 1= a viable and eflicient ap-
proach 1o solving problems characterized by o fi-
nite number of diserete parameters and o suggest
ways (o overcome some obstacles inherent to sinm-
lated annealing
the antomated manufacturing systen s briefly de-
scribed. The stimlated anncaling procedure and s
associated concerns are discussed in the third see-
tion. The experimental resnlts are contamed i the
comments are

fourth scetion and our concluding in

the last section.
2. THE MODEL

The automated manufacturing svstent modeled
in this study consists of four machines used 1o as-
semble three similar products and a carronsel used
for transportation hetween the machies: Bach ma-
chine has hoth an input and ontput bufler: Prod-
net batehies enter into the system’s inttial mventory
arca at fixed and regnlar tine periods. A more de-
tailed description of the systemnis supplicd by Nanz
(1989).

The three parameters. e the decision viriables
of the simulation, describing the varable featnres
of the system’s operation are 1) the size of the ar-
rival hatches, 2) the distribution of products within

In the next section, the model of
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the arrival batehes, and 3) the size of the ontput
butlers at each machine. BEach parameter may take
on multiple vadues: There are six different hateh size
values, five dillerent bateh distributions of products
and four different local output hutler conficurations,

The performance measure is total expected profit,
averaged over a time interval exeluding the initial
transicnt period. Profit s defined as the total rev-
cnne minns the tortal cost. Revenne s acerued Trom
the sale of cach of the products while costs are -
curred from the purchase of raw matcerial, holding
partially completed products in iventory, and as-
sembly costs. This profit function has multiple local
maxima and is therefore representative of many ob-

jective functions in practical situations. Such fune-

tions tend to he troublesome for traditional mathe-
matical progrinming algorithims.

3. THE ALGORITHM

Simualated anncaling is a stochastic optitization
method which performs well on combinatornal proh-
[ems and only uses specifie nction values, e,
derivatives or other special funetion information are
not required. Henee simulated annealing onght cor-
tainly to he a candidate solution approach for <im-
ulation optinization,

The alegorithin begins by randomly choosing
point e in the parameter space, evaluating that point
(.o running a sindation experiment) and assign-
to |,
Subsequently an adjacent feasible point a satisfy-
s || e ==
evaluated, and the corresponding function evaloa-

the corresponding function evaluation,

g
I is randomly sclected and then

The |Hlilll a becomes the
current point e with probability ————

— . where
1 - 1
I+ 7

s acparameter desertbing the carrent temperature

tion s assigned 1o .

of the annealing process. The temperature Ths then
decreased and this tteration s I'«'|H'i|["1]

The algorithm’s hehavior is strongly dependent
on the existmg, temperature. At high temperatures,
the probability of aceepting the adjacent point s
laree, thus allowig aceeptanee ol downhill moves
on the way to Llarger uphill moves As the temper-
atire decreases, however, the probabilhity of aeeept-
illf.ﬁ, <|1)\\'Illli|] Hioves decrenses wlnde the |»I'H|>.’||>l|il}'
of accepting updull moves mereases

A seqnence of non

mereasimye  temperatures



{T()};2), where T(j) is the temperature during
the jth iteration, define an anncaling schedule . Ge-
man el al. (1981) demonstrate the convergence of
the simulated anncaling approach when 1'(j) sat-
S T o

sties T0U) 2

imdependent of j. Henee, to ensure that convergenee

for some constant. ¢ which is

Lo a global optimum occurs, the temperatare should
be decreased gradually, However, the applicability
of this result to stochastic functions, 1o, simnla-
tion evaluations, is unknown and, further, the con-
vergenee may be too slow to be useful e practice.
Therefore, we chose amore rapid, heuristic anneal-
ing schedule which Ackley (1987), among others, has

used.

Our annealing schedule is determined by a set of
four parameters, {7, 7y v k}. The algorithm s -
tialized at a starting temperature 70 The enrrent
temperature T, s maintained for & iterations and

,I ;ltv"' .

The algorithm stops after the current temperature

then decreased at a rate » so that T, = 1 -
passes helow a threshold value T

An mmportant aspect to the eflicient use of ths
sintlated annealing algorithm is the sclection of an
anncaling schedule so that the solution ohtained is o
global, or at least a local. optimum when noa proor
knowledge of the objective function “terraim’ exists
If the temperature decreases too quickly, then the
solution obtaimed may not cven be alocal optimun.
On the other hand, if the temperature decreases too
slowly, an excessive number of expensive function
evaluations may have been performed. A bricl dis-
cussion of the algorithm’s performance for various
values of these annealing schedule parameters may
now he appropriate.

A high initial temperature means there is a high
probability of accepting downhill moves at the start
of asearch while a lower mitial temperature results
i a dower probabihity. Similarly, using a relatively
ligh final temperature imiplies there is oa relatively
high probability of aceepting downhill moves at the
end of aoscarch while using a low final temperature
results inoa relatively low probability of aceepting
downhill moves and thereby inereases the tendeney
to locate a local, i not global, optimun at the end

of o search.

Temperature decay rates, roocloser to T eanse the
temperature to decrease slowly and thus allow the
algorithm to scarch o relatively broad area and to

accept a relatively Targe number of downhill moves,
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Hence, using such decay rates 1s, perhaps. prefer-
able in steep, hilly terrain where the global optimum
may be several peaks away from the current point.
Conversely, use of decay rates closer to 0 may be
appropriate for less hilly terram where fewer steep
downhill moves would he necessary to explore the
space well.

The number ol iterations to be performed at each
temperature, b, also aflfects the performance of the
algorithim. As & is inereased, more points are evalu-
ated and larger arcas of the terrain may be searched.
This enhances the algorithm’s chances of locating a
global optimmm.

The choice of suitable parameters requires explo-
ration of the parameter space and experimentation
with combinations of simulated anncaling parame-
ters. Sinee this experimentation may require a large
number of function evaluations, simulated annealing
appears to be most attractive at present for those
applications where a number of similarly landscaped
variations on a particular model will be run. Only
one startup effort. would be needed to choose the
mitial parameters. Optunization of variations of the
system would then proceed with the chosen param-

clers
4. RESULTS

Each of the 120 combinations of automated man-
afacturing system parameters was simulated using
the model  developed in the SINAN simulation
and the point estimate representing the

expected total profit from each simulation run was

language

placed in acdatatile, This datafile was constructed to
conftrm that the objective function contamed mul-
fiple loeal maxima, e, was neither convex nor con-
cave. In fact, the expected total profit was non-
convex, nonconcave across hateh size and across the
range of distributions. The global optimun of 127.2
occurs ata bateh size of 45, using Distribution 2 and
Output Bufler Configuration 1.

Shnualated annealing parameters were chosen by
evaluating combinations of the initial and final tem-
peratures, temperature decay rates, and number of
terations performed at each temperature. Com-
prter runs were made at three rates of temperature
decreaser 08006, and 044 The mitial temperature
wits set at 100 for all of the runs and the final tem-
perature was set to 10 for half of the rans and 5 for
the other half. The nunnber of points, &, evaluated



at cach temperature was varied from 3 to X

Five separate runs were made at each combina-
tion of simulated anncaling paramecters using five

different starting points. The results of one sct of

simulated annealing scarches are shown in Figure 1.
(Less than five distinct points may appear at each
iteration level, &k, since some of the runs achicved
the same maximum point.)
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Figure la: Maximum Profit vs. Number of Tterations,
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Figure 1b: Maximum Profit vs. Number of Jterations,
[uitial Temp=100, Final Temp=5, r=0.%

From Geman of al. (1054). recall that optimal
annealing schedules decreased the temperatire very
slowly. Hence, if we hypothesize that an optimal
anncaling schedule applied to simulation optimiza-
tion were to behave ina similar manner, then hetter
solutions should he ahtained with parameter values
vielding slower sequences of teperature decrease
Similarly, a sequence which is longer i length onght
to result in better solutions. Thercfore, o lower fi-

nal temperature (77 = 5) aslower rate of temper-
ature deercase (1= 0.8) and a larger mnber of
iterations perforined at each temperature (b = 8)

should supply anncaling schedules vielding beter
solutions.  Our results do, e fact, support these

conclusions.  Furthermore, the annmealing schedule
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arising from these preferences. {7, = 100, 7y
Hr = 0.8k H}‘
cating the global optimum. On average, 43 distinct
points (cach requiring o separate simulation run), or
approximately one third of the system’s parameter

wis the most consistent at lo-

space, were evaluated using this anncaling schedule.
5. SUMMARY

A simulated anncaling algorithm was used in con-
Junction with a simulation model to locate the com-
bination of input parameter valnes which optimize
a nonconvex, nonconcave objective function of the
mput parameters of an automated manufacturing
system. A SIMAN simulation modecl was developed
to evaluate system profit as a function of the levels
of three parameters  batel size of arriving prod-
ucts, distribution of products in the batches, and
machine output buffer size.  Simulated annealing
parameters were chosen so that the simulated an-
nealing program would consistently find the global
optimun after evaluating approximately 36% of the
120 input variable combinations. This demonstrates
tlie viability of tlus technique for simulation opti-
mization when the problem is to determine which
combination of input parameter values optimizes a
svstem’s performance

Determining an appropriate anncaling schedule
which will produce a near-optimal solution when
little or no information of the objective function ter-
rain is known is difficult. In general, the investigator
cannot afford to reduce the temperature too slowly
and reducing the temperature too quickly may not
be effective. Henee, some expertimentation may he
reguired to select suitable simulated annealing pa-
rameters. The simulated annealing algoritlnm would
therefore appear to bhe most attractive for apphea-
tons where a number of simlarly landscaped model
variations will he investigated. Once parameter val-
ues have heen determined for one model, the result-
mg anncaling schedule could be used for the other

models.

At present, there are few il any, alternate ap-
proaches to simulation optimization under the con-
ditions considered m this paper. We are m the pro-
coss of developig and testing an alternate method
of optumization using an mteger simplex search ap-
proach. We mtend to compare this method with
simulated anneahing andd to determine which tech-
nique would he most eflicient given marginal knowl-



cdge of the output space terrain.
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