Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

DERIVATIVE ESTIMATES FROM DISCONTINUOUS REALIZATIONS:
SMOOTHING TECHNIQUES

Paul Glasserman
Room 3K-324
AT&T Bell Laboratories
Holmdel, NJ 07733

ABSTRACT

We develop two methods for estimating derivatives of ex-
pectations from simulation of functions whose realizations
We

take as motivating example the estimation of the sensitivity

are discontinuous in the parameter of differentiation.

of expected terminal reward for processes on discrete state
spaces. Both our methods use conditional expectations to
smooth discontinuites. The first smooths the dependence on
the differentiation parameter, while the second smooths de-
pendence on the time parameter. The methods are illustrated
through examples, including stochastic networks, networks of

queues, and Markov processes.

1. INTRODUCTION

This paper considers the problem of estimating derivatives
of expectations from realizations that are discontinuous func-
tions of the parameter of differentiation. It is known that —
in its simplest form — the method of infinitesimal pertur-
bation analysis (IPA) can only be applied in cases where the
realizations are continuous in the parameter (see [4] for a dis-
cussion of the role of continuity in IPA). Here, we develop two
modifications of IPA that “smooth” discontinuities in order

to obtain unbiased derivative estimates.

To motivate the problem of discontinuities, let Z¢(6) be a
parametric family of processes on a discrete state space S.
For f a real-valued function on S, and fixed t; > 0 define the
terminal reward

R(0) = f(Z,,(0)). (1)
Depending on what Z¢ and f represent, E[R(8)] could be, for
example, a mean qneue length at tg, or the probability that
some system is still functioning at t;. Suppose we want to es-
timate 4E[1?(9)]/d0. The IPA estimate is R'(0) = dR(0)/d6.
But since Zy, (0) takes only discrete values, the same is true
of R(0); hence R'(0) = 0 wherever it exists. As a function
of 8, R is (at best) piecewise constant. The “sample deriva-
tive” R'(6) contains no information about the dependence of

E[R(6)] on 6.

This situation should be contrasted with that of cumula-

Yy
/ g(Z:(6))dt.
JO

tive Teward given by

L(0) (2)
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Since L takes on a continuum of values, it cannot be a prior:
declared discontinuous the way R can. In fact, a variety of
conditions on Z(0) ensure that E[L'(6)] = E[L(0)]’; some
are considered in [4],[5] and [6].

To deal with (1) and similar problems we consider two
smoothing techniques. Both use conditional expectations,
but in different ways. The first is an application of smoothed
perturbation analysis (SPA) as developed in Gong and Ho (8]
and Glasserman and Gong [7]. Roughly speaking, SPA uses
an estimate of the form E[R(6)[¢]’ where ¢ is determined by
{Z:(8),t > 0}. The condition £ is chosen so that E[R(6+h)|¢]
is continuous in h. We apply SPA to (1), after considering
simpler problems. Our second approach to smoothing uses
Dynkin's formula to convert (1) to (2) and then applies IPA.
While the two methods are, in general, distinct, we identify
a small class of problems for which both yicld the same esti-

mator.

Previous work on calculating dE[R(6)]/d0 (when Z((0) is
Markov) includes the numerical method in Heidelberger and
Goyal [9], and the numerical and simulation methods con-
sidered in Fox [2]. (Sec also other references in [2].) These
papers partly motivated our work. Our approach based on
Dynkin’s formula has close ties to the elegant compensator
method introduced (earlier, independently) by Zazanis [11]

via the single-server queue.
2. SPA: THE BASIC IDEA

Let v(6) be a random, piecewise constant function taking
only the values x1,...,2m. (Think of v(8) as the outcome of
a simulation conducted at the parameter value 6, in a situa-
tion where re-running the simulation using common random
numbers with 8 slightly perturbed may not change the value
of v.) 1 E[y(0)] is differentiable, then

dE[+(9)] . (0 + h) = ~(6)
CLOL - e [ @)
C LmE E[w(0+h)—v(0)|v(0)]]‘
h|0 h

If the limit and the outer expectation can be interchanged,

this becomes

E [“m E[(6 + h) - w(om(en]
hl0 h



S %P(A,(e +h) =z, v(8)) [z, — ¥(8)]

If we define

Q(l‘hr])=lhirl‘lol}llp("r(9+h):rjl‘7(0) =ur,), (1)
then
> atr(0), 0l = A(0)) (5)

=1

is an unbiased estimate of E[y(8))’. Bringing the limit fully
inside the expectation in (3) (instead of only partially) would

yield the uninteresting estimate v'(6) = 0.

The estimate in (5) requires calculation of g(r,.z;)
(whereas ~(6) is generated from simulation) which can be
difficult. Evaluation of the limit in (4) is generally facilitated
by conditioning on more information. Suppose, then, that
¢ = £(8) represents additional information available through

simulation (including v(8) — i.e., v € #(£{)), and let

Qlr;3:8) =1hi?0‘%1’(7(9+h) =1,l). ()
Proceeding as in (3)-(5), this yvields the estimate
ZQ(IJ?“[% = ()] (7)
=1

We think of Q(z,;£) as the (conditional) jump rate from ~(6)
to r;, and [z, — (0)] as the effect or size of such a jump.
Note that Q(r,;;€) is, indeed, a conditional intensity for ~

viewed as a stochastic process in 6.

Taking this one step further, we can condition differ-

ent jumps on different information. For j = 1,...,m let

~ € o(&;). Writing

El(0+h)=(0) = B | Y PO+ h) = 1, 1¢,)(r, = (6)]
=1

leads to the estimate

> Qi) = (0.

=1

=

Tailoring £, can make each Q(r,;¢,) easier to calculate than
Q(x,;€) with € fixed. We will provide explicit expressions for

Q(-;-) for a variety of examples.

As a trivial but illustrative example, consider the problem

of estimating

— P(X(0) < t) = 3F(t,0),
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when the dependence of X on 6 is via

X(8) = X(1)/6. (9)

If we set v(6) = 1{X () < t} then P(X(0) < )= E[~(9)].

We condition on v(8). Since X is decreasing in 6, when
~(0) = 1 no increase in § can change the value of ~; hence,
when v(0) = 1 the estimate is zero. When ~(68) = 0, we need

to differentiate the rate at which it jumps to one:

1
lim = P(~(8 + k) = 1|v(6) = 0)
hl0 h

lim LP(X (6 +h) < ¢
hlo h

X(8) > 1)

6+h
lim L P(X(0) < ZEL4x(8) > 1)
hlo h 0
L1 F(&LEe0) - F(1,6)
Iim —

hlo h 1- F(t,6)
f(t,6)

1 - F(t,6)

t
r

where f is the density of F. The relation (9) implies that
dX/d§ = —X /0, so this could be expressed as

dX

f(t,8) (_2(7)'\’:‘

1- F(t,6)

(the second factor is the derivative of X evaluated at X' = t).
This jump rate has a simple interpretation which extends to
more general cases: The first factor is the “probability™ that
X is infinitesimally greater than t, given that it is greater
than ¢; when multiplied by —dX/df (evaluated at X 1)

this yields the rate at which X" and t change order.

To obtain the full estimate, we note that this order change
can only occur when X (8) > ¢, and when it occurs, ~ jumps

from O to 1, yielding an effect of [1 — 0] = +1. Thus, we get

>x=z [+1].

Furthermore, noting that (9) implies F(z,6) = F(x0,1), dif-

ferentiation shows that X admits the inversion representation

oo (i

1{X(8) > t}1 R0 " (10)

dX
a6

ayF(X,0)

EENIEWI (an)

Substituting (11) into (10) and taking the expectation we get

3eF(t,0)

1 - F(t.0
(1 - Fit.o)) 7(.0)

1(4,0) o
L= F(1,6) ( ) = 9eF(1,0)

which is, of course, what we wanted.

Consider, next, a modification of the problem above in

which we try to estimate



L P(x1(6) < Xa(0)).

Let 1; and i; be, respectively, the indices of the smaller and
the larger of the X,(6). We condition on ¢ = (i1, X, ) and

consider the rate at which X1 and X2 change order:

1
lim—-P(X, (6 +h Xia (64 h)|ir, XNy
lim = P(X,, (04 ) > X,y (04 iz, X)) (12)
Suppose there are functions D,, 1 = 1,2 such that
dX,(6)
—— = D,(X,(9),0
- (X.(6),0) (13)

(more on this condition below). Formally, proceeding as

above, we obtain the estimate

dx,,
df

fia (X4 (9)) [
1- F, (Y., (8)
(14)

Since Dy, (X, ) has the interpretation

(%)
46/ x,,=x,,

the []* term is the rate at which the X, change order, given

Dy, (Xy))

that X,, is just greater than X.,. The “+" arises from the
fact that as h | 0, the conditional probability in (12) is zero

unless X,, is increasing faster than X,,. Justification of this

)
limit requires some claboration on the dependence of the X,

on #. This will be carried out in the next section.
3. A CLASS OF NETWORK PROBLEMS

We now extend the examples of the previous section to
some functions of the form

7(8) = [(X1(8), ..., Xn(0)), (15)

where [ maps R™ to a finite sct, and the X,(0) are inde-
pendent. The situation we have in mind is one in which
represents a network property and the X, are stochastic ca-
pacities, arc lengths or lifetimes; but this interpretation is
not essential. Let i1, ...,in be order indices for the X,:

Xy

<X,

L< <X,

-
We restrict attention to [ determined by a function g via

(X1, o0 Xn) = glir, i) (16)
As an example, take the X, to be component lifetimes in a
system that functions so long as at least one component in

each of a collection of fixed subsets C'; functions. Then if g

+
- D,_,(-\',I)] (1{i; = 2}-1{i; = 1}].
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is the indicator of the event

Ny = minmax X,,
) 1€C,
E[v] is the probability that the system ultimately fails due
to failure of component k. Other types of I’ can be handled

using similar techniques.
We begin by taking up in more detail the calculation of

Q(+;+), imposing the following provisional conditions:

(A1Y).

function of .

Each X, is, with probability one, a differentiable

(A2%). Each X,(0) has a density f,(-,0) (with cdf F,(-,0)).

For some of our calculations we will need a strengthening
of (A1’) which generalizes (9). Fix a nominal value of § and
suppose there is a function @, such that

@ (X (0), h) = X (6 + h). (17)
Think of &, as the general solution to the differential equa-
tion specified by (13). Note that ®,(x,0) = r, and

Dp®,(r,0) = }jﬁg h
dX,
= D,(1)= (W) (18)

Also, if ®, has an inverse (with respect to its second ar-
gument), then (17) shows that it is given by ‘b'_l(~.h) =
D, (-, =h).

We impose

(A1). For each X, there is a ¢, satisfying (17) which is con-
tinuously differentiable in both arguments and strictly mono-

tonic in the second argument throughout a neighborhood of

6.

Though somewhat unintuitive, (A1) is fairly general, es-
(A candidate d is
provided by the solution to (11).) To show how (A1) is used,

pecially when (A1) is known to hold.

we return to (12). We can rewrite it as

lim ]—P((b,, (N1, (6),h) > &, AN )L X))
hlo h - -

lim lP(.\’._, <P, (P, (N h), —h)lil,.\',l)

K10 h

i 1 Fo (90, (9, (X0, h), —h)) = Fi (X))
= m — ,

hio h 1= FL(\Ny)

provided

{bx;-(q)ll(-\’11(9)vh)v—h) > -\’ll(o)v (19)



and zero otherwise. Unless (19) holds for all sufficiently small
h > 0, the limit is zero. When (19) does hold for all small A,

the chain rule yields

d

dh

(X))

m [‘1’-2(‘1):1(-'\’:1,'1),—’l)]h=0-

Note that h appears in both arguments of ®,,. The deriva-

tive can be expressed as

1 ,
Lli]c:;(q)’z(@n('\nvh —h) = @, (P, (Xoy, 0), =h)+

1.0)

since the middle terms cancel. If ®; and ®; are C'!, we can

@,z(tb.l(.\"l,o),—h) - ng((bll(-Y!liO

take the limit as h | O separately for h in the first and second

arguments of ®,, to get

llm QI‘(QIl (-\’ll ) h),O) - cbx;(q)ll (‘\’l) ,0),0)
h10 h
+ llm ng((bll (IYzI ,O), _h) - q)tg(q)tl («\’xl VO)'O).
hl0O h
Since ®,,(z,0) = z = &,,(x,0), thisis
q)x -”z »h - t ‘\'l )
lim (X, h) = @ (X4,0)
h]0 h
(I)l'. -\’l ,—h - cbn -\’x ]
+ lim (N ) (Yo 0).
h10 h
Equation (18) now shows that this is
dX,,
— - D, (X,)).
- Dy (X,)

Combining this with the case where (19) does not hold for
all small h yields (14).

We now apply similar ideas to v as defined via I" and g in
(15) and (16).
ferent values, derivation of an SPA estimate for dE[v(8)]/d6

would seem to require consideration of n!—1 possible changes

Since g could, in general, take up to n! dif-

in v. Fortunately, most of the changes occur with negligible
probability as h | 0. Let : = (4,,...,in) be the sequence of
be the sequence obtained from : by
transposing i, and i;4). Let A(f) be the set consisting of
i(6) and all 1'1(0), 7 =1,.., Then (A1’) and (A2')

imply that

order indices, and let i,

n — 1.

P(i(6 + h) € A(0)) = o(h); (20)

thus, we only need to consider the n— 1 possible order changes

of consecutive 4\',]

For each of these possible order changes we need to find

the conditional jump rate, as in (6). For the jump from ¢ to
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i, we condition on §; = (i, Xi;). The general form of the

estimate (8) is then given by

ZQ(_,,eJ)[g(z,) —g(i))-

(We have abbreviated Q(g(i]);{;) to Q(i];ﬁj).) As in the ex-

ample of the previous section, each jump rate takes the form

-

o [dx, BN
Q(,:¢;) = £;(0) _QO__D'”‘('X") ,
where fl is the conditional density given £, of the residual

lifetime of X This density is given, up to proportional-

t41e
ity, by
n
L)~ fo (X 40 [T = FX, +0).
k=41

Equality is obtained by dividing the right side by its integral
(over 0 < t < o) to make it a probability density. Deter-
mination of this type of normalization constant is the one

non-trivial step in implementing SPA estimates.

We prove unbiasedness of this estimator under two addi-

tional conditions, the first a strengthening of (A2’):

(A2). For each i and 6 there is a \,(6) such that for all
r >0, fi(r,0)/(1 = Fi(z,0)) < \(6).

(A3). There is a constant B > 0 such for every ¢, with
probability one, |[dX,/df] < B(X, +1).

Integration shows that (A3) implies

X6+ h) = X.(0)] < (BM —1)(X,(0) +1).  (21)

Proposition 1. Suppose (A1)-(A3) hold, and suppose that
every X, has a finite expectation. Then, if E[y(6)] is differ-

entiable,

n—1

E | Qi)

=1

P )
- g
Proof. There are two parts to the proof: showing that our
expression for Q(ij;ﬁ_,) is correct, and justifying the inter-

change of the limit and the expectation in

n—1

ZP( (0+h) = £, I€)loli,) = (:)]

llm -
h|0 h

hm ZP (64 h) = l&] [g(gj)—g (1))

The left side is t,he derivative of E[v(6)]; the right side is

the expectation of the estimator. Verification that Q(z;€;)



is correct is similar to the example carried out above so we
omit it. For the interchange, we bound the probability of a

jump:

PO+ h) =, ]6))

1 . . .
< EP('\'J(9+,I)>‘\'_]+1(0+h)|t1)
< l F'J‘H (¢'J(¢‘J+l(‘Y'J‘h)'_h)) - F‘J+l(‘\"1)
Tk =Ry (X))

Applying the mean value theorem and (A2), this is

®, (@, (X, h),—h)) = X,

h

<\ LR

= "+

(22)

The numerator is bounded by
190, (@0, 40 (X0, A), =R =D, (X R)HI®, ., (X R)= X, |

Using (21) for each term and simplifying, (22) becomes

1

< '\'J+1 E(EQBh _ 1)(4\2] +1).

Another application of the mean value theorem yields

<A 2Bhe?BR) (X, +1).

o €
Since E[.\'l]] < =z, the dominated convergence theorem now

justifies the interchange.

4. TERMINAL REWARD IN QUEUEING
NETWORKS

We return, now, to the problem described in the intro-
duction, in the special case where Z¢(6) is the state (vector
of queuc lengths) in a closed Jackson-like queueing network.
Through choice of fin (1), E{R(8)] could be, fur example, the
mean queue length at {; at a fixed node, or the probability

that some node is idle at t5.

We use the following notation:

7, = epoch of ith transition;
Y, = ith state = ZT+;
a, = node from whi::h tth departure occurs;
Xa; = queue joined by jth departure from node a;
Xa; = Jjthservice time at a;
fa,Fa = service time density and cdf at node a.

The service times X, depend on §; the sequence, \, of rout-

ing indicators, and the initial state, Yo, do not.

We first consider a (slightly casicr) discrete time version of

terminal reward, given by R,(8) = f(Yn(8)). We condition
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on

En = (Y0571, .., Tnsan, ..., ant15\)-

The node any41 from which the nert departure occurs is in-
cluded, but the epoch th41 of its occurrence is not. Given

Y5 and {Z,,0 <t < 7}, but

not the entire evolution of Z,.

&5, we can reconstruct Y7, ..

Let a(6) = (a1(8),...,an(6)). Let A,(8) be the set con-
sisting of a(6), any sequence that can be obtained from a(§)
by transposing some a,(6) and a,4+1(8), i < n, and also the
van—1(8),an41(0)). If the ser-

vice times satisfy (A1’) and (A2') then

sequence a*(0) = (a1(9),...

P(a(6+ k) & An(6)) = o(h). (23)

In- other words, the probabilty of multiple order changes
among the service completions is negligible. Our estimator
of the derivative of E[R,(8)] will, therefore, take the form

Z Q1 &n)E[f(Ya (8 + h)) = f(Yn(0))[én, a(8 + h) = a'],

a'€.4,

where
Q(a'i€n) = lim + P(a(0+ h) = a'|én).
hlo h

Given €n and a(0+h), Y5 (0) and Y5 (64 k) are known. More-
over, Y, does not depend on the order of uy,...,an. Given y
and Yy, it is enough to know how many departures occurred
from each node to determine Y5, ; the order in which the de-
partures occur does not change Yy,. If a(6 + h) € A, (0) and
a(f + h) # a*, then a(8 + h) is just a permutation of a(0)

and Y, (6 + k) = Yn(8). Our estimator therefore reduces to
Qa" &n)E[f(Ya(8 4+ ) = f(Yn(9)|én,a(8 + k) = a”].

If we define Y} to be the nth state when an and a4 change

order (Y} € a(€n)), we get simply
Qa™ &[S (Y})) = f(Y)]-

It remains to calculate Q(a*; &,), which is the rate at which
an and an4q change order. The general form of this rate

should by now be clear:

Q(a*in) = J(0) [1 B (di}'J‘ >rn+1=rn]+;

dé

f(U) is the conditional probability density that ap4, occurs
just after a,, and the []* term is the rate at which they

change order, given that they occur simultaneously:.



Given £n, the residual time (at ) until 75,41 is the resid-
ual service time at node a4 conditioned on being the short-
est residual service time at any node. If {4 is the age (at ™)
of the current service time (if any) at node a, then this den-

sity is, for r > 0,
F(2) ~ fanyr (tangs + ) H(1 - Fa(ta + 7)),

where the product runs over non-idle nodes a other than

An41-

The second factor in Q(a*;&n) is evaluated using IPA.

There is a sequence X, ;, (determined by &n) such that

™ = E Xeesin
k

and
dr, dX :
= = —dk = Dy (Xiwse )
dé dé
k k
Similarly, if Th41 = ™m + .\'a"_“k — i.e., the service time
that ends at 7,41 began at 1, and is the kth service time at
an41 — then
dTn41 ) dTm
—_— = —— 4+ Da, ), (Thn — ™).
(== = P )

Thus, these terms are easily computed as the simulation
evolves.
Theorem 1. Suppose the service times satisfy (A1)-(A3)
and have finite expectations. If E[R,(6)] is differentiable,
then

dE[R, ()]

fO)l) = —————.

E(Q(a%i &)/ (v7) - o

This (almost) follows from Theorem 1 of [7], which is a
result about generalized semi-Markov processes. A condition
less general than (A1) and (A3) is used in [7]; the gap is filled

by the argument used to prove Proposition 1.

We now consider the case of R(6) = f(th (6)). Let Ny be
the number of transitions in [0,t]. Denote N, simply by N
and let a = (aj,...,an). Let A include a and sequences ob-

tained through a single transposition, as before. But instead
of a*, add to A

a+ = (rl],,..,aN,aN+1)

and
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The sequences a4 and a_ are, respectively, the result of or-
der changes between tnv41 and t;, and between 7y and t;. If
the service times satisfy (A1’) and (A2),

P(a(0 + h) ¢ A(9)) = o(h).

Moreover, of the elements of A(8), only ay and a_ result in
Zy (0 + h) # Zi; (8), so we only need to consider these order
changes. Let Z; and Z_ denote Zi, (6 + h) when a(6 4 h) is
a4(0) and a_(8) respectively.

If we condition on é4 = &n and - = {n_1, We get

+
R d
Qay;€+) = f+(0) [‘( T(]jVoH) ' ]
TN4+1=U

and

drn
dé

)]

To evaluate the densities f4 and f—, let tq be the age of the

Qla_ié-) = f-(0) [(

current service time at node a at t;. Then for all = > 0,
F4(@) ~ Sapgi (tangs +0) [ [0 = Falta +2)),
a
while for 0 < =z <ty — 7N,

(@) ~ fan(tay +2) [J(1 = Fatty = v = 2)).

a

In the first expression, the product runs over non-idle nodes
other than ay41; in the second, it runs over those nodes (if

any) that initiate a service time at 7.

The following is similar to Theorem 3 of [7]:

Theorem 2. Under the conditions for Theorem 1,

dE[R(6
COOL = B[QGarsenl(24) - 1(24)

+ Qla—iE0)f(Z2-) - £(Z4)]] -

5. REMARKS ON SPA

(5.1). The SPA estimator calculated above for the derivative
of expected terminal reward in queueing networks extends to
a class of generalized semi-Markov processes (GSMPs). If
an denotes the nth event to occur, and Y, is the nth state
visited by the GSMP, the main condition we require is that
Y% not depend on the order of aj,...,an. This also happens
to be an important condition in applying IPA to cumulative
functionals (like (2)) of GSMPs.



(5.2). The function ®, required by (Al) never appears in
the SPA estimator and need not be known explicitly. All
that is needed is D, — the derivative of &, at h = 0. As
noted above, a candidate D, is provided by (11).

(5.3). Evaluation of the densities £(0) that enter into the
jump rates Q(-;-) can be difficult. (A notable exception is
the case where all X, are exponential.) In general, condition-
ing on more information makes calculation of Q easier; but
conditioning on too much may fail to smooth jumps. Hence,

SPA tentatively prescribes

Condition on the largest F that makes E[v(6 + h) — ~v(6)|F]

continuous in h.

On the other hand, in considering variance, the principle
of conditional Monte Carlo (Fox and Glynn (3], Proposition
1) applies: If 7 C G, then for all A,

(6 +h) —~(6)

6+ h)—~
EE[7(+}: )

(6 .

Airp| < B o]
Modulo an additional interchange of limit and expectation,
this implies that an unbiased SPA estimator based on F has
smaller variance than one based on G. Hence, variance re-

duction suggests
Condition on the smallest F that makes E[~(6)|F]’ tractable.

In practice, the first of these considerations seems to be

the more critical one.

6. TERMINAL REWARD VIA DYNKIN'S
FORMULA

We now describe a different method for estimating the
sensitivity of expected terminal reward. Let Z; be a Markov
process with infinitesimal generator Q. Dynkin's formula
states that if T is a stopping time (for Z;) with finite expec-

tation,

T
E(f(Zr)] = Elf(Z0)] + E [/ QI(Z:)dl] : (24)
0

(See, for example, Karlin and Taylor [10], p.295.) Since Q

can be defined by

Qo) = lrg U120 = 21 112)
hl0 3

(24) is reminiscent of the fundamental theorem of calculus.
Taking T = 7 and T = t; covers the two cases considered in

Section 4.

Suppose, now, that Q (hence, Z;) depends on a parameter
0. If Zy is fixed, then 99 E[f(Z5)] = 0. Thus, in this case,
Dynkin’s formula transforms a terminal reward problem to
a cumulative reward problem with which we can try to use

IPA. The problem we end up with does not quite have the

form (2). Instead, we must consider

Yy
/ 9(0,Z.(08))dt, (25)
0
where

90,5)= Qos(x) = > dalr,v)f(y)

y
depends erplicitly on  because Qg does.

Consider the case of (right-continuous, non-explosive)
Z(0) on a discrete state space. Let Y,(0) be the ith state
visited by Z;(8); let 1,(8) be the epoch of the ith transition
of Zi(0); and let N = N, (6) be the number of transitions in
[0,t). We may rewrite (25) as

N-1

29(9,3’-(9))[n+1 =]+ (T = 7x5)9(8,Yn(9)).

=0
Thus, differentiating (25), we get

N

t/ d
/ aey(e.z.(ondz+ZT;j[g(e.r,_n—y(e,v,)l. (26)
4]

=1

(In this expression, the integrand is the partial derivative of g
with respect to its first argument only; that is, with respect
to the explicit dependence on 6.) Sufficient conditions for
the IPA estimate (26) to be unbiased are given in [6]. Other
conditions on Z; — based on viewing it as a GSNP with
exponential clock times — can be based on the conditions in
[5]; cf. Remark 5.1.

This approach to sensitivity analysis of expected terminal
reward can be applied even when Z; is not naturally Marko-
vian; or, to put it another way, when supplementary variables
must be appended to make Z; a Markov process. Burman
(1], p.855, exhibits the infinitesimal generator for GSMPs. In
[1], reward functions f that depend on clock ages are allowed;
but here we restrict attention to functions that depend only
on the discrete part of the state. Using s, s’ (o denote states,
o to denote events, p(s’; s, a) for transition probabilities, t,
to denote the age of the a-clock and pa (ta) for the hazard

rate of the a-clock, we get

QI ) = DD pls'is o (L) = f(s))

a3

(Burman (1] allows speeds.) 10 only the clock distributions

depend on 8, this yields the IPA estimate

N
l] dT,
/ Qu(Zt+ S Q2 4) = Qui(Z,- ),
0 > .

=1

where



39Qo f(s,{ta}) =
E’/—"a(ta) E’Ua(ta) dta ’, , no_ .
SO (Ralted , Balle) Zu )y (55 - S0

7. FURTHER REMARKS

(7.1). It should be stressed that, perhaps surprisingly, the
domains of SPA estimators for terminal reward, and esti-
mators based on Dynkin’s formula plus IPA are roughly the
same. The main condition that makes 1IPA work (sce Remark
5.1) also makes SPA feasible. The significance of this condi-
tion is that it “localizes” the eflect of event order changes,
which is important for both methods. The relative efficiency

of the two methods is problem-dependent.

(7.2) In SPA, conditioning is used to smooth discontinu-
ities due to changes in 8. In Dynkin's formula, conditioning

smooths the dependence on t, via the definition of Q.

(7.3) Let 4, be a point process and \; an intensity for A;.
Zazanis [11] considers derivative estimators that smooth by
replacing an integral against dA,; with one against \.d{, both

integrals having the same expectation. Since

T
[(Z1) - f(Zo) = / df(Z:),
0

Dynkin's formula (24) can be viewed as replacing an integral
against df(Z:) with one against Qf(Z:)dt = E[df(Z:)|Z],

where, again, both have the same expectation.

(7.4) There is a class of problems, which we now describe
briefly, for which Dynkin’s formula and SPA yield the same
estimator. Consider, again, the case of a discrete state
Call 6 a scale parameter if whenever
ds(x,¥) > 0, 4 (x,¥)/Qo(x,¥) = qj(x)/qe(x). This makes
[a6(r,y)/qe(x)])’ = 0, 50 0 is a parameter of the holding times

Markov process.

but not the embedded transition probabilities. Suppose 8 is

a scale paramecter and suppose also that every qy(r) > 0

(i.e., the holding times are decreasing in ). Then the IPA

estimator obtained via Dynkin's formula coincides with the

SPA estimator for terminal reward based on
E=(Yo,... . Ynim, ooyt

where N = Ny is the number of transitions in [0, f;]. Though

we omit the derivation, both estimators hecome

Y
Qs(z,)- /
J0

Our results for expected terminal reward have im-

q (,Z')dt
q(Ze)

(7.5).
plications for steady-state derivative estimation.

Z(0) = Zoc(0) and

If, say,
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lim

t—oo

dE[/(Z(8))] _ dE[f(Zo(0))]
dé dé '

then our estimators of dE[f(Z.(8))]/d8 are asymptotically
unbiased estimators of the derivative of the steady-state mean

E(/(Z-.(0))].

(7.6). In estimating the derivative of expected terminal re-

ward via likelihood ratios, the fact that R is discontinuous is

irrelevant. Kven so, Dynkin’s formula may have applications

here as well. If Ly, (9) is the likelihood of {Z:,0 < t <t}
!

under Qg, then
Y Ly,
/ Qo f(Ze)dt-
0 il

L, ()
may have smaller variance than

L;, (6)

f(Zt,)"m-

Fox [2] reports the same order-of-magnitude computational
costs for estimating cumulative reward and its derivative as
for terminal reward and its derivative, so the transformation

is worth considering.

REFERENCES

(1] Burman, D.Y., “Insensitivity in queueing systems”, Ad-
vances in Applied Probability, 13, pp.846-859, 1981.

[2] Fox, B.L., “Complexity of gradient estimation for tran-
sient Markov chains”, Technical Report, University of
Montreal, 1987.

[3] Fox, B.L. and Glynn, P.W., “Discrete time conversion
for simulating finite-horizon Markov processes”, Techni-
cal Report, University of Colorado, Denver, 1989.

[4] Glasserman, P., “Performance continuity and differ-
entiability in Monte Carlo optimization”, Proceedings
of the Winter Simulation Conference, M. Abrams, P.

Haigh and J. Comfort, (eds.), pp.518-524, 1988.

Glasserman, P., “Structural condtions for perturbation
analysis derivative estimation: finite-time performance
)

indices” | submitted for publication, 1988.

Glasserman, P., “Derivative estimates from simulation
of continuous-time Markov chains”, submitted for pub-
lication, 1989,

Glasserman, P. and Gong, W.B., “Smoothed perturba-
tion analysis for a class of discrete event systems”, sub-
mitted for publication, 1989.

Gong, W.B.
analysis of discrete event dynamical systems”, JEEE
Transactions on Automatic Control, 32, pp.858-866,
1987.

and Ho, Y.C., “Smoothed perturbation



[9] Heidelberger, P. and Goyal, A., “Sensitivity analysis
of continuous time Markov chains using uniformiza-
tion”, in 2nd International Workshop on Applied Math-
ematics and Performance/Reliability Models of Com-
puter/Communication Systems, University of Rome II,
pp-93-104, 1987.

(10] Karlin, S. and Taylor, HM., 4 Second Course in

Stochastic Processes, Academic Press, New York, 1981.

[11] Zazanis, M., “Compensators and Derivative Estimation
for Queueing Systems”, Proceedings of the 26th Allerton
Conference, pp.549-555, 1988.

PAUL GLASSERMAN is Member of Technical Staff in the
Operations Research Department at AT&T Bell Laborato-
ries. He received a Ph.D. from the Division of Applied Sci-
ence, Harvard University in 1988, and an A.B. in Mathemat-
ics from Princeton University in 1984. His interests include
derivative estimation, Monte Carlo optimization and queue-

ing theory.

Room 3K-324

AT&T Bell Laboratories
Crawfords Corner Rd.
Holmdel, NJ 07733

WEI-BO GONG received the M.S. degree in engineering
from the China University of Sciences and Technology in
1981. He worked as an Instructor at the same university
for two yvears. In 1987 he received the Ph.D. degree from
Harvard University. He is on the faculty of the Department
of Electrical and Computer Engineering, University of Mas-
sachusetts at Amherst. His research interests include analysis
and optimization of discrete event systems, such as computer-

communication networks and flexible manufacturing systems.

Electrical and Computer Engincering
University of Massachusetts, Amherst
Amherst, MA 01003

389



