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ABSTRACT

In this
experiments

paper we review  frequency

(FDE) for simulation
analysis and contrast it with conventional
methodology. Fith very few runs of the model
(often one or two runs is sufficient), FDE can be
used to gain information on which  factors
significantly influence the performance of the
simulated system. Two examples are given which
illustrate some of the fundamental differences
between frequency domain and conventional run-
oriented analysis.

domain
sensitivity

1. SIMULATION SENSITIVITY ANALYSIS

To run a simulation program the experimenter
typically must choose values for a large number of
input variables. Broadly speaking, the goal of a
sensitivity analysis experiment is to determine how
the values of these input variables influence the
simulation output. The objective of a particular
sensitivity analysis experiment can range from
merely classifying the input variables to estimating
system response gradients.

1.1 Classification of Input Variables

Input variables can be classified as discrete
(including qualitative variables) or as
continuous. Continuous variables are further
classified by whether or not the output (response)
is differentiable, continuous, or neither with
respect to these variables.

In traditional experimental design literature,
input variables are further classified as being
factors or parameters of the system. Param.
are considered not to be under the direct contro.
of the experimenter whereas factor values are
considered to be part of the system design. In a
simulated system all input variables can be
controlled by the experimenter. Nevertheless, it
is still wuseful to think of these variables as
being either parameters or factors depending on
whether they can be easily controlled in the real
system being simulated. An example of a §ystem
parameter would be the demand rate for a service or
product. An example of a system factor would be the
number of machines to place in a factory cell or
the number of servers in a service facility.

The estimation of parameters usually involyes
collection and analysis of real-world data which

can be a very expensive part of a .simulation
study. The determination of factor settings fop a
good system design requires extensive

experimentation with the simulation and can also be
expensive.
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1.2 Factor Screening

The qualitative classification
variables as being either important or unimportant
is commonly called screening. The objective of
screening is to simplify a model by identifying
which factors should be varied in an experimental
design or which input parameters need to Dbe
estimated accurately from real data and which do
not. The most popular screening approach is to run
a traditional screening design (e.g. group
screening or fractional factorial designs) and
apply conventional regression (including ANOVA)
analysis.

of the input

Efficient screening of factors can be
beneficial as a preliminary step in system design
so that optimization can be done over a smaller
dimension factor space. A qualitative screening of
unimportant parameters can also help in controlling
data collection costs.

1.3 Metamodeling

An intermediate experimental objective might
be to fit a regression model for the simulation
output variables as functions of the values of
input variables. Such experiments are sometimes
referred to as metamodeling experiments. Both
conventional screening methods and metamodeling
experiments are discussed extensively in [Kleijnen,

1987]. Using ANOVA-like techniques qualitative
factors can be included in such experiments.

1.4 Response Optimization

A more quantitative
involves response gradient
methodologies for
restricted to
differentiable
objective of

sensitivity experiment
estimation. Available
such experiments are necessarily
scalar responses and continuously
quantitative input variables. The
such experiments 1is typically in
system design where one seeks optimal values of
input factors. Stochastic optimization with
respect to more than a very few input factors is
known to be a very difficult task. If in addition
some of the factors are discrete or qualitative
then optimization without some preliminary factor
screening is virtually hopeless.

Response  Surface Methodology (RSM) is a
traditional approach to response optimization
[Myers, 1971]. Unfortunately, RSM requires a large
number of simulation runs and is supported by very
restrictive assumptions on system behavior.

A developing

technique for

simulation

optimization experiments is Perturbation Analysis
[Ho, et.al, 1979]. This method is known to give
efficient gradient estimates for certain simple



systems and empirically appears to be useful even in
cases where the resulting gradient estimates are
known to be biased. There is also a potential for
perturbation analysis of discrete factors but this
methodology needs more development before it can be
strongly endorsed. ¥hen possible an appropriate
gradient estimation algorithm such as infinitesimal
perturbation analysis should be used.

1.5 The Domain of PDE

The appropriate domain for frequency domain
simulation experiments as presently developed is in
screening. Most input variables (whether they be
continuous or discrete, quantitative or
qualitative, factors or parameters) can be included
in an FDE. VWhere the cost of a simulation run is
considerably more expensive than the marginal cost
of a single observation of an output variable
during a run, then FDE can be recommended as a
first screening step in developing an overall
experimental design for a simulation study.

Unlike some sensitivity methodologies, FDE
methods are not invasive; the simulation code need

not be altered to run these experiments. However,
the model is run very differently and the output
analyzed differently.

2. FREQUENCY DOMAIN EXPERIMENTS

2.1 Background

We present here only a brief summary of FDE.

Further details on implementation of the
methodology can be found in [Schruben and Cogliano,
1987], and a discussion of theoretical issues is
given in [Schruben, Heath, and Buss, 1988]. A
detailed application of the method can be found in
[Sanchez and Schruben, 1986].

In a traditional simulation experiment the

values of the input variables are fixed for each
run of the model. The experimenter is willing to

change the values of these variables only when
making a different simulation run. In an FDE,
input variables are oscillated sinusoidally at

different frequencies (called driving frequencies)
throughout the same simulation run; hence the
moniker 'frequency domain experiment''.

While persons might be quite comfortable with
running a system in the traditional manner, they
might find changing input settings during a run
quite disconcerting (see [Kleijnen, 1987], page
242). Of course, the very concept of ''running a
system', while familiar, is nonetheless abstract
and the definition of what constitutes a run often
arbitrary.

issue here is not the

a system control knob while
system. Both traditional

involve changing system
is whether one must

The philosophical
willingness to turn
experimenting with a
experiments and FDE
variables. The question
hypothetically 'stop and restart’” the system to
make such a change. In conducting an FDE the
simulation code is not changed, we simply do not
stop a ''run’" to change the value of an input
variable.

There
differently

is no question that a system will behave
when its control knobs are twisted
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while the system is running; the practical issue is
what information can be gained in this manner.
Fixed variable, simultaneous experiments have been

inherited from fields such as medicine and
agriculture where there are no practical
alternatives; time compression is not an option.

Where varying an input during an experiment has
been possible, it has found ready application. The
fact is that in many real-world systems FDE are
more common than fixed variable experiments simply
because they provide more information (examples of
FDE abound in electrical engineering, seismology,
nuclear engineering, etc).

After running a frequency domain experiment,
the series of output observations 1is regressed
against sinusoids at the various input driving
frequencies. Such a regression is called harmonic
analysis. Amplification of a particular driving
frequency by the system is an indication that the
response is sensitive to the corresponding input
variable. If a driving frequency is not found in
the output process then the response is presumed to
be insensitive to the corresponding input factor.

While not critical in a screening experiment,
different regression terms (products of integer
powers of the input variables) will result in
different sets of frequencies being present in the
output. The presence of a particular term in the
response regression is indicated in the output by
the presence of an oscillation at a corresponding
set of term indicator frequencies. For example, if
the response is sensitive to the product of two
input variables (called an interaction term in
conventional regression modeling) then there should
be frequency amplification in output at the sum and
difference of the two factor driving frequencies.
Consult the reference by [Jacobson, et. al., 1987]
on selecting driving frequencies for FDE for
further information on term indicator frequencies.

In summary: for FDE a simulation code is not
changed, it is "run'" differently from a traditional
experiment. Like traditional analysis, regression
is used for FDE. However, a different basis is
used; the output series is viewed in a different
coordinate system. The key idea is that rather
than runs of the simulation being the experimental
unit, frequency bands or ‘''tones” in the output
series are the experimental unit. There are many
usable frequency bands in the output of a single
run which provides FDE with a potential advantage.

There have been some recent changes in the
methodology not mentioned in the earlier
references. One change 1is that least squares
regression of the output series on sinusoid
independent variables is used; that is, harmonic
analysis is used rather than spectral estimation.
In addition, the sinusoids are added to input
random variables rather than to input parameters.
These two changes, while making theoretical

treatment of the method more straightforward, have
a fairly minor impact on the practical
applications.

2.2. Implementation Issues

2.2.1. Noise

There is a fundamental difference between how
randotp noise is treated in frequency domain
experiments and in conventional RSM or metamodeling



regression. In the conventional
randomness from all sources is
sum of squares for noise.
the denominator for
significance.

methodologies
""pooled” into the
This is used to compute
an F test for term

In FDE, randomness is not pooled but kept
separate for each potential term in the
regression. We use periodogram estimators at
Fourier frequencies that are not term indicator
frequencies for noise estimation. In this way,
each term has its own numerator and denominator for
tests of significance. These may be term indicator
frequences from a second independent run of the
simulation where all or some of the inputs are held
fixed (called a noise run) or they may be
periodogram components at neighboring frequencies
(within a ''band-width" of an indicator frequency)
from the same run.

Another effective method for reducing the
impact of random noise in the output series is to
make the amplitudes of the driving oscillations as
large as possible. See [Jacobson, 1989] for a
discussion of amplitude selection issues.

2.2.2. Serially dependent output: Gain

Serial dependence (system memory) causes some

of the most difficult problems with conventional
time-domain simulation analysis (e.g.
initialization bias, interval estimator coverage

failure). It is not too surprising that serial
dependency also causes problems in the frequency
domain. The frequency domain manifestation of
system memory is called gain and it is perhaps the
most troublesome problem in FDE. Gain is the
phenomenon where some input frequencies will be
naturally filtered out by the simulation model
whereas others might be naturally amplified.

In typical simulations of queueing systems
there is a tendency for positive serial correlation
between observations in the output series. In the
frequency domain this positive memory makes the
system in the frequency domain behave as a low-pass
filter. Low frequencies, if present in the input,
are amplified by the system; high frequencies are
filtered out. The impact of system gain on FDE has
several interesting aspects; however, from a
practical viewpoint it means that driving
frequencies must necessarily be chosen at the low

end of the frequency spectrum. The use of low
driving frequencies is the only effec@ive' means
developed so far for dealing with gain in FDE;

Slowly oscillating inputs tend to work well where
fast oscillations do not. The price of using only
low driving frequencies is that the wusable
frequency bands are much narrower resulting in an
increased run length. (See [Schruben and Cogliano,
1987] for a limited discussion of this issue.)
This is satisfactory when the cost of increasing
the run length is not significant compared with
other costs of a simulation study.

The tables in [Jacobson, Buss and Schruben,
1987] can be wused to choose driving frequencies
across the whole visible spectrum (0 to .5 cycles
per observation). A slight modification of the
algorithm in this reference can be used to select
driving frequencies across just a lower portion of
the visible spectrum.

Filtering techniques which have been
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stunningly successful in other frequency domain
applications (i.e. Kalman filtering in image
processing) remain to be tried 1in FDE. The
application of filtering, a frequency domain
counterpart to variance reduction techniques via

dependency induction, is a current topic of research
by the authors.

2.2.3. Aliasing

In discretely sampled output there is also the

problem of frequencies higher than .5 cycle per
observation being aliased (folded) onto lower
frequencies. These aliased frequencies might be
confused with lower frequency term indicator

frequencies for other variables. The potential of
aliasing (not really a serious problem 1in this
application since potential aliases are known) is
reduced if low frequencies are used.

2.2.4. Indexing

When running a frequency domain experiment the
input oscillations and the output observations must
have a common index. It is important that each
output observation have an index that is common to
all oscillations that might contribute to the value
of the observation.

At first glance, simulation clock time is an
obvious choice for an index; however, this index
does not work as one might expect (see [Jacobson,

Morrice, and Schruben, 1988]}). In open queueing
simulations the wuse of the customer arrival
sequence number as an index 1is quite effective.

The oscillations are then made
per customer. If the customers are shuffled (say by
feedback) the output is sorted before harmonic
analysis. In closed queueing networks, assigning a
new identification number to a customer each time
it passes a data collection point also works; this
requires a little care [Sargent and Som, 1988]. In
a factory simulation where part assembly may occur
then the output product number (order number) is
used as the common index for all parts on the bill
of material for that product [Yucesan, 1988]. In
all these cases, frequencies are in units of cycles
per output observation (see [Sanchez and Schruben,
1986] for a detailed illustration).

in units of cycles

2.2.5. Qualitative or Discrete Factors

In the above referenced example by Sanchez and
Schruben there were discrete or qualitative input
factors such as the probability distributions used
or the number of discrete resources in the system.
In FDE such factors can be included in the same
experiment as continuous quantitative factors.
Including all types of input in the same FDE run is
one of the strengths of the approach. In
[Schruben, 1986] a technique for including discrete
factors in a simulation is presented. The trick is
to randomize over discrete sets using an oscillating
randomization scheme (e.g. a coin flip with an
oscillating probability of coming up heads). This
works largely due to FDE not pooling system noise.
[Sanchez and Sanchez, 1989] present two enrichments
of this randomization technique for multiple valued
factors.

3. CONTRASTING FDE WITH CONVENTIONAL REGRESSION

The supporting assumptions for least squares
regression and ANOVA are basically that the samples



are independent and identically distributed (iid)
Normal. Sufficient conditions to insure that FDE
will work include that the system can be modeled as
a time-invariant linear filter that transforms the
input to the output. A Hammerstein-like model of
the simulation has been developed that has many of
the characteristics of discrete event simulations
[sanchez and Buss, 1987]. Empirical evidence
suggests that this model is a good approximation to
the behavior of many discrete event simulations for
low driving frequencies (We mention again that the
lower the input frequency the Dbetter the
performance of FDE but the longer the required run
length...no free 1lunch here!?). A more complete
analysis of the relative power of conventional
least squares and FDE is presented in section 4 of
this paper. Here we examine two empirical studies
from [Sargent and Som, 1988].
3.1. An M/M/1 Queue
Frequency domain experiments with an M/M/1
queueing system were studied extensively by
[Sargent and Som, 1988]. The response of customer
waiting time, W, to changes in the mean service
time, S, was examined. They attempted to contrast
ordinary least squares (OLS) with FDE; however,
they failed to apply the two different
methodologies to the same system. In their study,
the authors applied ordinary least squares (OLS) to
the deterministic equation of the mean system
response and applied FDE to the simulated
stochastic system. Thus their experiments do not
provide any basis for comparison.

When we applied standard OLS and FDE to the
same simulation, the factor screening results were
essentially the same. The regression analysis is
summarized in Table 1. It is based on 20 runs of
6000 data points where 1000 data points where
truncated on each run in ordeE to rgduce the
initial transient effect. The R and R"-adjusted
statistics are used to compare the fit of each
regression model. X = S - 7 represents the shifted
mean service time, i.e., S ¢ [5,9] is shifted to X
e [-2,2]. Based on these statistics, the linear
and quadratic terms are important, the cubic term
is questionable, and the fourth and fifth order
terms add nothing to the model.

The FDE results are summarized in Table 2.

They are based on two runs (a signal run and a
control run - see [Schruben and Cogliano, 1987] 1&
of length 65536 each (the run length of 2

facilitates the use of the Fast Fourier Transform)
with no truncation for initial transient effect.
During the signal run, the input factor, X, is
varied according to

X(t) = 2.0 cos (B n (t / 1024))

The signal-to-noise ratio is constructed from the
ratio of two periodogram ordinates (the numerator
from the signal run and the denominator from the
control or noise run). Under certain regularity
assumptions and the assumption that the terms in
the model have no effect on the waiting time, this
ratio has an asymptotic F distribution with (2,2)
degrees of freedom (see [Brillinger, 1981], Chapter
5). Only the signal-to-noise ratio values
associated with the linear and quadratic terms are
significant when compared with the 95th percentile
of an F2 2 distribution, which is equal to 19.00.
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Table 1: Waiting Time Regression Results
for M/M/1 Queue Using OLS.

Met amode 1 R® R*- agj
¥ =231.2+15.8X 0.835 0.826
W= 22.6+ 586X 0.134 0.088
¥ =22.6+15.8 X + 5.86 Xz 0.968 0.965
¥ =22.6+ 11.2 X + 5.86 X2 + 0.982 0.978
1.75 x 3
W =23.1+11.2 X + 4.77 X2 + 0.982 0.978
1.75 X2 + 0.290 x*
W=23.1+12.4 X + 4.77 Xz + 0.982 0.977
0.43x° + 0.290 x* + 0.273 X°
Table 2: FDE Results for Waiting
Time in M/M/1 Queue
Term Signal-to-Noise Ratio
X 1712.7
X2 96.733
& 10.443
xt 2.0103
x° 0.83664
Here FDE and least squares behaved the same
for the identification of significant factors; with
our model implementation the FDE was much less
expensive. Least squares does allow estimation of

model parameters whereas FDE as applied here only
permitted factor screening; so something was gained
by the extra expense of the least squares
experiment.

3.2. A tandem queue

A more interesting example, also from the
Sargent and Som reference cited above, is a tandem
queueing system consisting of an M/M/1 queue
feeding into an M/D/@ queue. Again Sargent and Som
do not apply OLS and FDE to the same system (OLS
calculations were made with a deterministic
function and FDE experiments were run with a
stochasitic simulation). Quite expectedly, they
get different results. However, this time when we
ran the experiments using the same simulation we
still got different results! In this example, FDE
indicates that the total customer waiting time is
strongly influenced by the deterministic service
time; OLS analysis concludes that this service time
is not an important factor.



Sargent and Som incorrectly conclude that the
least squares results are right while the FDE
results are wrong. Clearly, the service time of
the second M/D/o system has a strong influence on
customer waiting time. Any change in this service
time changes not only the average customer waiting
time but the entire sample path of all customer
waiting times by exactly the same amount; this
factor is a perfect control! The failure of OLS to
detect the importance of the second service time is
due to its pooling of mean-square-error from all

sources as mentioned above.
compute the denominator in the OLS F-statistics
comes primarily from the first queue. This
randomness from the first queue is large enough to
mask the response to the second queue. Changes in

Random noise used to

the service time for the second queue do not
""explain' very much of this pooled variation.

When the experimental range for the service
rétes for the first M/M/1 queue is narrowed, the
R® value for thg M/D/o® queue approaches 1. In

fact, the OLS R~ assigned to the service time for
the second queue can be changed almost arbitrarily
by changing the range of values used for the
service rate in the first queue. FDE does not pool
random noise so the influence of the M/D/® queue is
clearly seen in the analysis. When regression is

correctly used, conclusions concerning service
rates for the first M/M/1 queue for OLS and FDE are
again essentially the same as the second queue

contributes no noise to the system.

4.0. POWER COMPARISON: FACTORIAL vs FDE

Consider a conventional screening experiment
using a fractional factorial design where we are
only interested in testing for main effects of K
input factors. An appropriate model for the two
level factorial experiment is,

K

Y(s) = = AiXi(s) + e(s), s=1,..
i=1

M, (1)

where
Y(s) is the output response for run s,
K is the number of input factors,

Ai is the coefficient for the ith input

factor,
Xi(s) is the level of input factor i on run s,

3e(s)§8§1 are iid N(O,oa) random variables,

and M is the total number of runs.
The model for FDE is,
K
Y(t) = Aicos(uit + ¢i) +e(t), t=1,..,N
i=1
where

K and Ai are defined as in (1),

Y(t) is the output response for observation t,
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©y is the frequency (in radians per unit of t)

of input factor i,
K .
3¢i;i=1 are iid U(-m,n),
N - 2 .
35(t)it=1 are iid N(0,0”) random variables,

and N is the total number of observations.

Suppose that the cost of producing one
additional observation within a simulation run is
one unit and the set-up cost for each simulation
run, in the same unit of measure, is C (C includes
costs of program loading and any necessary
compilation or truncation for initialization bias,
etc.). Then the total cost, Cl' associated with

the two level factorial experiment is,

cl=M(c+1) (2)

because each one of the M runs of the simulation
has C wunits of set-up cost and generates one
observation. The total cost, C2, for the FDE is,

C2 =C+N (3)

since the set-up cost is incurred once and all N
observations are generated from one run of the
simulation. In this analysis, we make only one run
for the FDE test because term indicator frequencies
are used to estimate the main effects. Their
neighboring frequencies, which are not used as term
indicator frequencies, are wused to estimate the
error.

Equating C1 and C2 in (2) and (3) yields,

N=M(C+1)-C (4)
where (4) provides the number of observations for a
FDE that equates its total cost with that of the
factorial experiment.

Under iid normal assumptions, it is easy to
construct F-tests to test for the significance of
the input factor in either model (for factorial
experiments see [Box and Draper, 1987], Chapters 4
and 5, and for harmonic analysis see [Hartley,
1949] or [Anderson, 1971], Chapter 4) and compute
their power. Figure 1 is a graph of power versus C

for both tests (which have level of significance
Ozglgo Here M is fixed at 32 and K equals 25 (a
2 fractionated design of resolution III is
used).

When C = O, the two level factorial test
uniformly dominates the frequency domain test in
terms of power. However, as C increases the
factorial experiment becomes more costly relative
to the FDE. For the same total cost (see the

relationship in (4)), many more observations (and
degrees of freedom) can be generated for the FDE,
thus increasing the power of the frequency domain
test. Therefore, in this example and wunder the
stated assumptions, the frequency domain method
gives superior power when the set-up cost of each
run is higher than the cost of four or five
observations. For example, if we were simulating a
queueing system and observing customer waiting
times then FDE have better power if the set-up cost
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Figure 1: Power versus Cost Curves for Fractional
Factorial and Frequency Domain Experiments.

per run is greater then the cost of simulating five
customers.

. It is important to note that the assumption of
independent error is more realistic for the
factorial experiment than it is for FDE;
observations from the same run are typically not
independent. This assumption might bias the power
comparison in favor of FDE. Positive serially
correlated error will reduce the power of the FDE
F-tests. On the other hand, it may also result in
the need for more initial data truncation and
increase run set-up costs (which favors the use of
FDE).

Therefore, the analysis in this section should
be viewed as providing guidelines for not using FDE
(i.e., when run set-up is nearly free). The power
of FDE tests with correlated error is a topic of
current study.

5. CLOSING COMMENTS

When the marginal cost of each observation is
small compared to the cost of a simulation run, the
running of a preliminary FDE can be an effective
and efficient method of initial factor screening.
Isolation of important qualitative and quantitative
input variables makes conventional experiments, data
collection, parameter estimation, and system
optimization significantly easier. Screening can
also be used to detect programming errors in an
otherwise working simulation code. As with any
factor screening methodology, the user is cautioned
against drawing quantitative conclusions with this
methodology.
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