Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

TEACHING SIMULATION WITH MOR/DS

Guy L. Curry

Bryan L. Deuermeyer
Richard M. Feldman
Texas A&M University
College Station, Texas 77843, U.S.A.

ABSTRACT

The goal in many introductory simulation courses
1s to focus on the concepts of simulation and min-
imize the time spent in learning language specific
techniques. The MOR/DS (Microcomputer sup-
port for Operations Research and Management
Science—Discrete Simulation) language has been
developed with this goal in mind: to provide a
microcomputer environment designed for teaching
simulation. In this paper, we discuss its use as a
teaching tool for simulation and as an introduction
to languages that students will most likely use after
leaving school.

1. INTRODUCTION

Simulation is an enjoyable subject to teach, be-
cause 1t 1s relatively easy to provoke interest and
enjoyment in students for the topic. As instructors
of an introductory course in simulation, our goals
are for students to leave the course with an under-
standing of simulation, its practical applications and
limitations, an ability to do simulation modeling,
and an excitement for the topic.

Ideally, we would like to teach the basic concepts
of simulation independent of any language. With a
firm grasp of the concepts, students would then be
able to simply learn the syntax of a particular lan-
guage and, “almost instantly”, be an expert. Unfor-
tunately, it does not work that way. It is impossible
to learn simulation without doing it! Therefore, if
the students are to learn simulation, they must pro-
gram. Thus, the next question is, “With what lan-
guage?” Our goal in this tutorial is to present the
use of MOR/DS as a simulation language specifi-
cally designed for teaching. Its full documentation

can be found in Curry, Deuermeyer, and Feldman
(1989).

350

2. LANGUAGE OVERVIEW

The MOR/DS simulation language was developed
to provide a microcomputer environment designed
for teaching simulation. The language extends the
well-known block orientation of earlier languages to
a full structured programming language. MOR/DS
1s a simulation system in which the language and the
editor are integrated to provide ease of use and min-
imal time spent learning so that concepts instead
of syntax can be stressed. On-line help, real-time
animation, and user interrupt capabilities enhance
learning as well as the modeling and analysis pro-
cesses.

The heart of the system is a full featured text
editor which provides the facilities for building and
modifying models and also provides the capabilities
for running simulation models. Commands (editing,
file manipulation, and simulation) are accessed with
a unified collection of function keys and pull down
menus. The integration of the editor, compiler, and
run-time components into a single system facilitates
modeling, debugging and analysis. The modeler can
build, debug, and execute a model without ever hav-
Ing to access operating system commands, or even
leave the editor. This type of environment is less in-
timidating to beginning students and they quickly
get over the fear and anxiety of dealing with a new
and unknown system.

The language provides both simulation block
commands (analogous to GPSS and SIMAN) and
an almost complete Pascal programming structure.
In this manner, routine simulation tasks are readily
carried out with “blocks”, while more algorithmic
non-simulation tasks are directly performed with
programming statements. Sufficient programming
capabilities are available to support the creative
needs of the modeler. The language makes use of
named parameters for simulation blocks so that the
meaning of a parameter is clear because the name
is part of the command. However, the functionality

of MOR/DS remains sufficiently close to GPSS and
SIMAN so that movement between these languages
and MOR/DS is not difficult.

In the remainder of this paper, we present the
MOR/DS language syntax rules, give some exam-
ples for modeling with the language, and then dis-
cuss the system’s use in teaching.

3. LANGUAGE STRUCTURE

Because of the recognized advantages of struc-
tured programming languages, the design and devel-
opment of MOR/DS was carried out with structured
programming as a goal. An MOR/DS program has
three distinct categories: definitions, control state-
ments, and model logic. The formal structure of a
program is:

PROGRAM
DEFINITION
CONTROL
LOGIC

END.

The segment statements must appear in the spec-
ified order following the segment keyword identi-
fier. Statements within a segment always end with
a semicolon so that more than one statement may
be on the same line, or a single statement may be
written on more than one line. Case (i.e., upper-
or lower-case letters) is ignored, and comments can
be included almost anywhere by enclosing the text
of the comment in double quotes. In this paper, we
follow some typing conventions to help the reader
distinguish between system words and user-supplied
names. All system keywords will be typed in bold-
face (e.g., Exp and Sqrt), whereas user-supplied
names use a typewriter font (e.g., myVariable).

All user-defined variables are declared and initial-
ized in the DEFINITION segment. Five types
of variables are supported: (1) standard mathe-
matical types: sequences, discrete and continuous
intervals, arrays, strings, functions, and reals; (2)
entity types: entity pointers, attribute reals, and
attribute arrays; (3) discrete simulation types: re-
sources, queues, gates, chains; (4) statistical types:
histograms, flow time and variable value statistics,
and distributions; and (5) statement labels. A key
feature of MOR/DS is that all data constructs are
treated in the same fashion. Simulation structures
such as RESOURCES are declared and initialized
in the same manner as ARRAYS and other math-
ematical objects. MOR/DS also provides a simple
mechanism for user-defined functions.

351

The CONTROL segment consists of directives
to control the execution of the simulation. Simula-
tion length controls such as time and processed en-
tity counts, statistical reset controls, random num-
ber seed initialization, and animation lists are all
located within the control segment. Another fea-
ture of the control segment is an executable logic
section (EXITLOGIC) which is performed at the
completion of each simulation run. In this logic, the
control of multiple runs, statistics gathering over
multiple runs, and other functions associated with
the initialization and control of multiple simulations
is provided. Essentially, only programming type
statements, not simulation block commands can oc-
cur within the EXITLOGIC section of the CON-
TROL segment.

The LOGIC segment contains the simulation
model statements. A variety of discrete simulation
constructs such as entity creation and disposal, re-
source requests and returns, queues or waiting lists,
and system as well as user-defined statistical dis-
tributions are provided. In addition, useful pro-
gramming statements such as IF/THEN/ELSE,
WHILE, REPEAT/UNTIL, FOR, DOCASES,
and PRINT are available.

The combination of a full complement of simula-
tion block statements and programming statements
enables structured programming in the context of
a block oriented language. Thus, the advantages of
structured programming are combined in MOR/DS
with the simplicity of the block oriented languages.
A free-form named-parameter syntax for simulation
blocks replaces the more common positional method
used by SIMAN and GPSS. This enhances model
readability and facilitates learning the syntax. An
on-line help facility is available to support working
with the language.

3.1. The Definition Segment

The DEFINITION segment contains definition
and initialization of all variables used in the model
development. The general definition syntax consists
of an identifier, a colon followed by a type designa-
tor, an equal sign and then the variable initializa-
tion:

name : TYPE = initialization,

Name is a string of up to 15 characters followed
by an optional numerical subscript (i.e., x.5). All
variables, except for reals and functions, must have
a type designator. For example, a two-dimensional
array is coded in the form

MyData : ARRAY [«1,2>,<1,2,3>] =
((11,12,13), (21,22,23));

where the values within the array indicate the data
entry index. Thus, MyData[1,2] has the value 12.
Simulation construct types, such as RE-
SOURCE, are initialized through a named keyword
convention. That is, instead of identifying parame-
ter values by location within a list, the parameters
are identified by a keyword. For example, a resource

named server of capacity one is defined by
server .

RESOURCE ={Capacity = 1};

Another example is a queue of capacity 10 and a
FIFO queue discipline:

QUEUE ={ Capacity = 10,
Discipline = FIFO};

myQueue :

Through the use of the named parameters, a pro-
gram is easier to read than when the meaning of the
parameters are simply defined by position. Because
parametess are identified by name, order is not im-
portant. Furthermore, many of the parameters have
default values and so most parameters do not have
to be explicitly listed if the user chooses to use the
default value. For example, the following definition
of myQueue is identical to the above statement be-
cause FIFO is the default queue discipline.

myQueue : QUEUE ={Capacity = 10};

A convention followed in MOR/DS is to use
braces, { }, for a list whenever order is not impor-
tant; thus, a definition requiring named parameters
includes the parameters in braces, whereas the val-
ues for the array use parentheses because order is
important for arrays.

Other examples which illustrate the language syn-
tax and capabilities are:

b'e 5;

Qseq : SEQUENCE = <1,2,4..6>;
myPointer.1 : ENTITY;

f(x,y) = 14x +23y~2,

data : HISTOGRAM = { Cells = 5, MinValue
= 0, MaxValue = 100};
MyName : QUEUE = {Discipline = FIFO,

Histogram = data, Capacity = 3 };

LABELS and ATTRIBUTES are lists of branch-
ing labels and entity variables, respectively. For ex-
ample, each entity created by the simulation has
associated with it the attribute variable called size
and the attribute array called seq when the follow-
ing statement is used:

352

ATTRIBUTES = { size = 0, seq :
ARRAY([<1,2,3>] = (2,5,3) };

3.2. The Logic Segment

The LOGIC segment consists of a sequence of
simulation constructs (blocks) and program state-
ments, each of which describes a particular instruc-
tion or course of action. Statements can be either
simple or compound. (A compound statement is a
list of statements enclosed within the keywords be-
gin and end). Since most programming statements
operate on single statements, the compound state-
ment is the mechanism for handling multiple state-
ments. The MOR/DS language consists of six basic
statement categories:

—

simulation commands,
assignment statements,
transfer statements (goto and gosub/return),

conditional (if, docases),

cuoa

repetitive (while, for, repeat/until),

(e

. printing (print, println),

Statement types 2—6 are patterned after the syntax
of common programming languages such as Pascal
and C. The simulation commands (1) are similar
to the modeling statements of discrete simulation
languages such as GPSS and SIMAN. The general
simulation construct syntax uses a command word
and a list of keyword parameter designators. Pa-
rameters not listed in a block receive the standard
default values. The standard block syntax form is:

optional-label: COMMAND = { Keyword =
erpression <,repeals> };

To illustrate, consider a simple arrival process
with a single capacity resource and a probabilistic
service time. A sample fragment from a logic seg-

ment for modeling such a system would look similar
to:

ARRIVE { Time = Expd(10) };
SEIZE { Name = server };

WAIT { Time = Cuniform(8,16) };
RELEASE { Name = server };
DEPART { };

Expd and Cuniform are the system-defined func-
tions for random variate generation using exponen-
tial and continuous uniform random variate gener-
ation, respectively. Server is a resource and must

have been declared in the definition segment and
could be identical to the RESOURCE example
given in Section 3.1. The SEIZE block requests
the resource named server, and the RELEASE
block returns the resource. The resource is held
for a specified length of time by the insertion of
the WAIT statement between the SEIZE and RE-
LEASE statements. Entities (customers) are cre-
ated and scheduled into the system by the AR-
RIVE statement and the DEPART statement re-
moves them from the system. Entities which can-
not immediately seize the resource are automati-
cally queued in a default resource queue in FIFO
order. A named queue with a user-determined se-
quencing rule can be used by indicating in the RE-
SOURCE declaration that a specialized queue is
needed, via the Queue parameter. A QUEUE
declaration statement is then used to specify the
named-queue characteristics, such as the myQueue
example in Section 3.1.

MOR/DS uses regular assignment statements
(similar to BASIC and FORTRAN) rather than
assignment blocks. An interesting use of the as-
signment statement is to store data into a HIS-
TOGRAM variable. This is accomplished by
merely assigning the desired value to the histogram
name, such as the statement Data = 10 where Data
is a histogram as defined in Section 3.1. The sys-
tem finds the proper data cell in the histogram and
increments the cell count.

3.3 The Control Segment

The CONTROL segment is used to control the
execution of the program, including run length,
print intervals, user programmed activities after
replicate runs, and animation capabilities.

The animation feature is useful for model devel-
opment and is initiated through the use of the key-
word WATCHLIST. For example, assume a queue
named myQueue and a resource named server have
been defined in the definition segment. The num-
ber of entities within each structure can be viewed
during the execution of the model by including the
statement

WATCHLIST :{ myQueue, server };

in the control segment. Each entity automati-
cally has a system defined attribute variable named
WatchChar. If WatchChar is blank (the default
character), then when the entity joins a queue or re-
source, the character printed by the animation fea-
ture is a 'Q’ or 'R’, respectively. If, however, the

353

WatchChar contains a character, then that char-
acter will be displayed during animation. The as-
signment of a character is accomplished in the logic
segment through an assignment statement like

WatchChar = value;

where value is either a single character within quotes
(e.g. ’c?) or a numerical value which indicates
which ASCII character to use.

An interrupt feature, activated by pressing the
ESC key or by an entity executing an INTER-
RUPT command within the model, allows the mod-
eler to observe various system entity lists. These
lists are delineated by the WatchList setup and can
include queues, resources, gates and chains. The
View option of the interrupt facility allows the mod-
eler to view various entity attributes. Other options
within the interrupt feature include terminating the
simulation, printing out the current statistics data,
and changing the animation watch option status and
delay timing.

4. EXAMPLES

Three models will be presented to illustrate points
involved in teaching the simulation concepts.

Example 1. A machine important to our pro-
duction process fails according to a type 4 Erlang
distribution with a mean of 100 hours. We would
like to simulate machine failures and generate 10
successive failure times.

PROGRAM
DEFINITION
0;

"ten failure times"

failTime
CONTROL
StopCount = 10; '"no.
Randomize =On,;
LOGIC
ARRIVE {Time = 1};
failTime = Erlang(100,4);
Println {’time of failure is ’, failTime:7:2};
DEPART { Quantity = 1 };
END.

failures to generate'

Example 2. A machine important to our pro-
duction process fails according to an unknown dis-
tribution. To estimate this distribution, we observe
the following ten failure times (ordered from low-
est to highest): 39.8, 41.1, 89.5, 91.5, 100.1, 124.2,
126.3, 145.5, 155.1, 181.8. We wish to use these ten
data points to approximate a continuous distribu-
tion, generate 1000 failures from this approximate

distribution, and then determine the mean and stan-
dard deviation of the generated data. To do this, we
will build a piecewise linear function through the
madpoints of the data.

PROGRAM
DEFINITION
fails : DISTRIBUTION(Continuous) =
((0,39.15), (0.1,40.45), (0.2,65.3),

(0.3,90.5), (0.4,95.8), (0.5,112.15),
(0.6,125.25), (0.7,135.9), (0.8,150.3),
(0.9,168.45), (1,195.15));

"

"calculate mean and st. dev.

failTime = 0; numTrails = 1000;

total = 0; mean = 0;

sumSq = 0; stDev = 0;
CONTROL

StopCount = numTrails;
Randomize = On;
EXITLOGIC

mean

""final calculations';

total / numTrails;
stDev = Sqrt((sumSq - numTrails*mean*mean)
/(numTrails-1));
PRINTLN { ’mean and standard deviation °’,
mean:7:2, stDev:10:2 };
END;
LOGIC
ARRIVE {Time = 1};
failTime = fails(Random);
total total + failTime;
sumSq = sumSq + failTime*failTime;
DEPART { Quantity = 1 };
END.

"end of ExitLogic"

Example 3. Consider a job shop (open 24 hours
per day) that has two types of machines, Machine
A and Machine B. There are also two types of jobs
that come to the job shop, Type I and Type II.

Type I jobs arrive according to a Poisson process
with a mean rate of 2 per hour. Each Type I job
must be processed first on Machine A and then on
Machine B. Each Type I job, when it leaves the
system, yields an income of $500.

Type II jobs arrive in batches every hour. Twenty
percent of the batches contain 3 jobs, thirty percent
of the batches contain 4 jobs, and fifty percent of
the batches contain 5 jobs. Type II batches are
processed only on Machine A. A Type II job, when
it leaves the system, yields an income of $200.

All machines act as single server systems. Pro-
cessing time on Machine A is an exponentially dis-
tributed random variable with a mean time of 10
minutes (independent of job type). Processing time
on Machine B is distributed according to a Weibull
distribution with scale parameter 20 minutes and

354

shape parameter 4. Any jobs that arrive when there
are five jobs waiting for service for Machine A will
not enter the system. If a batch of jobs arrives when
there are less than five waiting, enough jobs from the
batch will enter to bring the queue to capacity and
the remaining jobs will not enter. There is unlimited
queue capacity for Machine B.

We would like to know the mean hourly income.

PROGRAM
DEFINITION
queueh : QUEUE = {Capacity = 5};
: RESOURCE = {Capacity = 1,
Queue = queued};
: RESOURCE ={Capacity = 1};
: DISTRIBUTION(Discrete) =
((0.20,3), (0.5,4), (1,5));
LABELS = {enter, out, finish};
ATTRIBUTES = {type = 1};
totalCost 0; hourlyCost
numHours 100;
CONTROL
StopTime = 60*numHours;
WATCHLIST = { queueA, machA, machB,

"two-machine job shop example"

machA

machB

size

0;

EventChain};
WatchStatus = SingleStep;
EXITLOGIC "final calculations"
hourlyCost = totalCost / numHours;

PRINT {’One run yields a realization of’};
PRINTLN { hourlyCost:8:2, ’ per hour’ };
END;
LOGIC

"arrivals for Type I jobs"
ARRIVE {Time = Expd(30)};
WatchChar = (Entity Number MOD 26) + 97;
"the 97th ASCII character is ’a’ "
GOTO enter;
"arrivals for Type II jobs"
ARRIVE { Time = 60,
Quantity = size(Random)};

"end of ExitLogic"

type = 2;
WatchChar= (EntityNumber MOD 26) + 65;
"the 65th ASCII character is ‘A’ "
enter:
SEIZE {Name = machA, Qexcess = out};
WAIT {Time = Expd(10)};
RELEASE {Name = machA};
IF type = 2 THEN
begin
totalCost totalCost + 200;
DEPART { };
end;
SEIZE {Name = machB};

WAIT {Time = Weibull(20,4) };
RELEASE {Name = machB};
totalCost totalCost + 500;
DEPART { };

out: DEPART { };

END.

5. USE OF MOR/DS IN CLASS

There are three key issues that students should
gain an understanding of during their first expo-
sure to simulation: (1) the statistical appreciation
of processes to be simulated, (2) the entity driven
nature of discrete simulations together with the use
of future event chains, and (3) the statistical appre-
ciation of output analysis. We shall indicate the use
of MOR/DS in helping the students gain an appre-
ciation for each of these issues. We would like to em-
phasize at this point that we are simply providing
some observations regarding successful approaches
in introducing simulation to students. There are
many alternative approaches, many of which may be
better than what we have observed, but we present
our observations in the hope that some instructors
may find them beneficial.

5.1. Statistical Variation of Processes

The first two examples in the above section serve
to emphasis two of the principles involved in dealing
with randomness. To begin the process of learning
to appreciate the generation of random numbers,
several small examples similar to Example 1 can
be given to students. The syntax needed to pro-
gram examples like these is simple enough so that
students can do their own programming and exper-
imentation after one day of exposure to MOR/DS.
When doing examples like this in class, if the state-
ment Randomize = On is used, the class can com-
pare output and immediately see variation.

Example 2 can be used to illustrate two ma-
jor sources of error common to modeling processes.
Most of the time, the modeler does not know the
exact distribution(s) of interest; therefore the first
source of error is the sampling error when obtaining
the relevant probability laws. The second source of
error is the statistical variation inherent in a simula-
tion. Of course, if the sampling error is significant,
then no matter how long the run and how many
replicates are made, the model will be inaccurate.
This point is easily emphasized to the student by
combining the first two examples. Example 2 indi-
cates there is an unknown distribution generating

3s5

failure times, and it gives a data set of failure times.
Instead of using the given data set, have the stu-
dents generate their own data through the use of
Example 1. That is, use the output from Exam-
ple 1 as the random sample for Example 2. Thus,
the student can see exactly where the error is occur-
ring. If the program in Example 2 is run for different
lengths, further evidence is produced emphasizing
errors generated with statistical experiments.

5.2. The Future Event Chain

Upon first encounter, discrete simulation pro-
grams (models) are difficult to comprehend, because
while they look similar to regular computer pro-
grams they do not behave, in general, like regular
programs. Consequently, until the basic operation
of block-oriented simulation systems is understood,
there is an element of mystery that may cause the
student difficulty with building models.

Let us begin with a brief and simplified discus-
sion of the operation of a standard computer pro-
gram. Internal to the underlying system is an in-
struction counter that indicates the next instruc-
tion to execute. After each instruction is processed,
this instruction counter is incremented. The cycle
of “get instruction, execute instruction, and incre-
ment counter” is repeated until some termination
criterion is met. The instructions that are executed
are usually calls into a library of run-time routines
established by the compiler; these eventually lead
to low level instructions understood by the com-
puter (microprocessor) itself. In fact, the instruc-
tion counter is maintained by the microprocessor.

MOR/DS makes use of this same conceptual
structure except for two critical differences: each en-
tity maintains its own instruction counter, and only
active entities can cause the execution of a command
(that is a program statement or a simulation block).
Furthermore, MOR/DS provides its own controller,
and calls to its event-routine library perform the
necessary commands.

MOR/DS maintains both active and inactive en-
tities. While the external behavior suggests that
several entities are active concurrently (this is rel-
ative to simulated time), the fact is that exactly
one entity is actually active (this is relative to real
time). It is the operation of the controller, through
the active entity and the inactive entities, that gives
a simulation program its distinctive characteristics.

The inactive entities are stored on either a spe-
cial list called The Future Event Chain or lists such

as queue lists. Each entity on the Future Event

Chain has a time at which it is scheduled to become
active, and this time may be established in a num-
ber of ways. The two most obvious methods are
by an ARRIVE block or by a WAIT block, each
of which calculates the scheduled time by adding a
user-specified value to the current simulation time.
Of course, other less straight forward mechanisms
can do this as well. When an event is scheduled,
the time is stored in an internal entity attribute and
the entity is placed onto the Future Event Chain.
The members of Future Event Chain are sorted by
increasing time and then by FIFO; the entity with
the earliest scheduled time is at the front of this list.

At any point during the operation of the simula-
tion, the active entity is executing commands while
the Future Event Chain keeps track of other enti-
ties and when they are scheduled to occur. At some
point, the active entity encounters a delay command
(which means an event time is calculated and the en-
tity is stored in the Future Event Chain), a blocking
command (as in an attempt to seize a resource and
the entity is placed on a queue list), or a depart
command. The controller then takes the front ele-
ment from the Future Event Chain, and this entity
becomes the active entity and begins executing the
commands as indicated by the entity’s internal com-
mand counter. So long as no simulation clock time is
consumed several different entities may go through
the inactive — active — inactive cycle, thus giving
the impression of concurrency.

The WATCHLIST and View option are help-
ful features in tracing the logic flow of a model for
students just beginning to understand the concept
of entity-driven programs. We demonstrate this
through Example 3. Notice in Example 3 that the
command WatchStatus = SingleStep is used. This
command forces the simulation to pause after each
step until a key is pressed. Another command you
should notice in the LOGIC segment is the two as-
signment statements for WatchChar. These two
statements indicate that as soon as an entity enters
the system, they will be represented in the anima-
tion screen as a lower case letter for Type I jobs
and as upper case letters for Type II jobs. When
the program is executed the following will appear
on the screen.

Watch Simulation

QUEUEA [
MACHA |
Resource Queue |
MACHB |

356

EVENTCHAIN |cceee

At time zero, the only entities in the sys-
tem are those created initially by the ARRIVE
blocks. These entities appear as ’C’ because their
WatchChar is blank and thus they use the default
character for a chain. The five entities appearing
in the Future Event Chain refer to the single entity
created by the first ARRIVE block and the batch
of (randomly generated) four entities created by the
second ARRIVE. We now hit the space bar and the
following appears.

Watch Simulation Time = 10.50
QUEUEA [
MACHA [b

Resource Queue
MACHB |

EVENTCHAIN |bcccce

From this we see that the first entity has seized
resource MachA and has entered the WAIT block.
That first entity is also on the Future Event Chain
because the action of the WAIT block is to place
an entity on the Future Event Chain.

To view the individual entities, the ESC key is
pressed which causes the following to appear.

System clock = 10.50

Entity: 1 is at:[8] WAIT
- Continue

- Print current results
- Watch status

Delay duration 300

- Single-Step ON

- View lists

- To terminate run

- To abort system

ON

>0 < WO xXYWO
1

Since we wish to view lists, the V key is pressed;
thus producing:

View Entities Clock Time 10.50

Num Sym Time Key | Attribute Values
MACHA
1 b 18.720 0.000 | 1.000
EVENTCHAIN
1 b 18.720 0.000 | 1.000
6 51.769 0.000 | 1.000

2 60.000 0.000 | 1.000
3 60.000 0.000 | 1.000
4 60.000 0.000 | 1.000
5 60.000 0.000 | 1.000

Press any key to continue and ESC to quit

From this view list, we see that the current simu-
lated clock time is 10.50 and the single entity in the
system is in MachA and is scheduled to release that
machine at time 18.720. There is another entity
scheduled to enter the system at time 51.769 and a
batch of four entities scheduled to enter the system
at time 60. We next press the space bar to continue,
which produces the interrupt menu. We press C to
continue which produces the next animation screen
as follows

Watch Simulation Time = 18.72
QUEUEA |
MACHA |

Resource Queue |
MACHB b

EVENTCHAIN |cbeecee

Notice that the future event chain continually re-
orders its entities so that they appear in increasing
order of event time. We see from this that the next
event to happen will be the arrival of another job.
Every time we hit the space bar, the watch list will
advance one event. If we hit the space bar two times
the screen will appear as follows:

Watch Simulation

QUEUEA [DEF

MACHA c
Resource Queue

MACHB P
EVENTCHAIN lgceeece

We next hit the ESC key and then the V key to

view the entities:

View Entities Clock Time 60.00

Num Sym Time Key | Attribute Values
QUEUEA
3 D 60.000 0.000 | 2.00
4 E 60.000 0.000 | 2.00
5 F 60.000 0.000 | 2.00

MACHA

357

2 C 74.276 0.000 | 2.00
MACHB

6 g 70.145 0.000 | 1.00

EVENTCHAIN

6 g 70.145 0.000 | 1.000

2 C 74.276 0.000 | 2.000

8 120.000 0.000 | 1.000

9 120.000 0.000 | 1.000

10 120.000 0.000 | 1.000

11 120.000 0.000 | 1.000

7 1756.082 0.000 | 1.00
Press any key to continue and ESC to quit

By using a computer in the classroom and dis-
cussing these screens, students will begin to under-
stand the concept of the entity-driven nature of dis-
crete simulation faster than mere words can convey
the concept.

5.3. Analysis of Output

It is important to begin emphasizing to stu-
dents as soon as possible that simulations are statis-
tical experiments, and one data point is not enough.
A subsegment of the CONTROL segment is called
EXITLOGIC, which is designed specifically to
help in the analysis of multiple runs or obtaining pe-
riodic information within one run. At the end of a
simulation run, or if an entity enters a HALT state-
ment, the EXITLOGIC will be executed. There
are three special statements designed for control
purposes. These are (1) the CONTINUE state-
ment, which resumes the run at the current Clock-
Time when the EXITLOGIC is finished, (2) the
RESET statement, which resumes the run at the
current ClockTime but clears all statistics vari-
ables, and (3) the CLEAR statement, which clears
all entities, sets the ClockTime to zero, clears all
statistics variables, and then resumes the run.

Through the use of EXITLOGIC, it becomes
possible to do the necessary calculations to obtain
results from replicate runs, batch means, regener-
ative procedures, or other special purpose proce-
dures for output analysis. An example of its use
for batch means in estimating hourly revenue from
an M/M/1/5 queueing system (each customer yields
$5 revenue) follows:

PROGRAM "EXITLOGIC for batch means"
DEFINITION
que : QUEUE = {Capacity = 4};
ser : RESOURCE = {Quecue = que};
batchSize = 10; '"hours within batch"

numBatch = 25; "number of batches'

batchCount = 0;

cost = 0;

sumCost = 0; ssCost = 0;

mean = 0; std = 0,

LABELS = { out };
CONTROL

BlockListing = Off;

Randomize = On;

EXITLOGIC ‘"batch calculations";
batchCount = batchCount + 1;
sumCost

sumCost + cost;

ssCost ssCost + cost*cost;

IF batchCount < numBatch THEN

CONTINUE
ELSE begin
mean = sumCost/numBatch;

std = ssCost - numBatch*mean*mean,;

std = Sqrt(std/(numBatch-1));

PRINT {’mean and standard deviation:’};
PRINTLN {mean:7:2, std:10:2 };

end; "end of ELSE"
END; "end of ExitLogic"
LOGIC

ARRIVE {Time = Expd(5)};

SEIZE {Name = ser, Qexcess = out};

WAIT {Time = Expd(5)};

cost cost + 5;

RELEASE {Name = ser};
out:

DEPART { };

"arrivals for batching"

ARRIVE {Time = 60*batchSize};

cost / batchSize;

cost

HALT;

cost = 0;

DEPART { };
END.

As is illustrated in the above program, most pro-
gramming statements are available within the EX-
ITLOGIC. The utilization of this subsegment can
facilitate output analysis and help in proper analy-
sis.

REFERENCE

Curry, G. L., Deuermeyer, B. L., and Feldman R.
M. (1989). Discrete Simulation: Fundamentals and
Microcomputer Support. Holden-Day, Inc., Oak-
land, California.

358

AUTHORS’ BIOGRAPHIES

GUY L. CURRY is a Professor in the Depart-
ments of Industrial Engineering and Agricultural
Engineering. He received the B.S. and M.S. degrees
in mathematics from the University of Oklahoma
and Wichita State University, respectively, and a
Ph.D. in industrial engineering from the University
of Arkansas. Prior to joining Texas A&M Univer-
sity, he was an operations research analyst with the
Boeing Company and a senior operations research
analyst with Sun Oil Company. Dr. Curry has re-
ceived two Texas A&M University system awards
for research, and while at Texas A&M, he has been
principal or co-principal investigator on over two
million dollars of externally funded research. His
research interests include systems analysis, math-
ematical optimization, and modeling of biological
systems. He 1s a member of ORSA, TIMS, IIE,
ASAE, and is a registered Professional Engineer in
Texas.

Guy L. Curry

Industrial Engineering Department and
Agricultural Engineering Department

Texas A&M University

College Station, TX 77843, US.A.

(409) 845-5576

BRYAN L. DEUERMEYER is a Professor of In-
dustrial Engineering. He received a B.A. in chem-
istry from the University of Minnesota, and an M.S.
and Ph.D. in industrial engineering from Northwest-
ern University. He served on the faculty of the Kran-
nert Graduate School of Management at Purdue
University before joining the faculty at Texas A&M
University. Dr. Deuermeyer is an associate editor of
Management Science. His research interests are in
computer science related to modeling and analysis,
mathematical optimization, and combinatorics. He
is a member of IIE, ORSA, TIMS, Sigma Xi, and is
a registered Professional Engineer in Texas.

Bryan L. Deuermeyer

Industrial Engineering Department
Texas A&M University

College Station, TX 77843, U.S.A.
(409) 845-5049

RICHARD M. FELDMAN is a Professor of In-
dustrial Engineering. He received the B.A. and

M.S. degrees in mathematics from Hope College
and Michigan State University, respectively. He
also received an M.S. in industrial engineering from
Ohio University and a Ph.D. in industrial engineer-
ing from Northwestern University. Prior to join-
ing Texas A&M University, he spent three years as
an operations research analyst with the Goodyear
Atomic Corporations and one year as an operations
research analyst at the Michael Reese Medical Cen-
ter. Dr. Feldman has received several departmen-
tal and college awards for teaching while at Texas
A&M. His research interests are in stochastic pro-
cesses, simulation, and mathematical and biological
modeling. He is a member of IIE, ORSA, TIMS,
and is a registered Professional Engineer in Texas.

Richard M. Feldman

Industrial Engineering Department
Texas A&M University

College Station, TX 77843, U.S.A.
(409) 845-5585

359

