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ABSTRACT

INSIGHT, a general purpose discrete event simulation
language, has been designed to be easy to learn and use, making
simulation accessible to a community of users having little or no
previous simulation or programming experience. Because the
language also presumes that its users have minimal statistical
expertise, considerable attention has been given to statistical
issues within the language, so users can enjoy the benefits of
sound statistical analysis without the burden of detailed
specifications. A wide range of statistical input distribution
types are provided, including a time-varying arrival process and
the univariate and multivariate Johnson System. INSIGHT
simulations automatically produce a summary report, designed
to represent the behavior of the simulation from several
perspectives.  The experimental framework of INSIGHT
promotes proper computation of the variance of means.
Variance reduction using correlation induction can be easily
invoked. A non-procedural method of extending summary
statistics and producing statistics on arbitrary values Is available.
INSIGHTs attention to statistical issues makes sound statistical
analysis a natural partner of modeling. The convenience of such
statistics facilities promotes the routine use of statistical
concepts in examining and constructing simulations.

1. INTRODUCTION

Software design for scientific applications involves trade-offs
among several competing objectives including numerical
accuracy, size of code, and speed of execution. Design of a
simulation language mandates consideration of modeling
flexibility, ease of use, and portability. Statistical issues in
simulation such as random variate generation, statistics
collection, statistical display, and statistical analysis compound
language design because they also impact modeling flexibility,
ease of use, and portability. Various simulation languages
exhibit different perspectives on how to incorporate statistical
aspects of simulation.

Simulation languages such as SIMSCRIPT (Kiviat, et al.
1968) and SIMULA (Birtwistle, et al. 1975), offer statistics
collection and display primitives, but require the modeler to
incorporate them as a part of the modeling process within the
execution of the simulation. This approach has the advantage of
"forcing” the modeler to understand and specify detailed
statistics collection and display within each model, but it also
burdens the modeler with considerable responsibility for
designing and writing statistics collection procedures, which
often detract from the central modeling goals. To provide for
details, these languages contain general purpose programming
facilities that permit extensive manipulation of data. A major
drawback is that they require fairly sophisticated programming
skills in addition to a detailed understanding of statistical
methods. As an example, Law (1979) presents routines in
SIMSCRIPT for variance estimation using replications.

Some languages, such as GPSS (Schriber 1974) and SLAM
(Pritsker 1986), routinely collect statistics and display results
without any direction from the modeler. This approach relieves
the modeler of the "burden” of statistics collection and display.
However, because the modeler does not direct the collection
and display, there is greater chance of misinterpretation of
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results and a loss of understanding. Such languages usually offer
a more detailed statistics collection facility and report writer, but
require procedural instructions within the model to execute the
facilities, thereby diminishing their high level approach. Beyond
these facilities, modelers must resort to another programming
language and design an interface, for instance, using
ASSEMBLER, PL/I, C, or FORTRAN. Furthermore, the
inadequate variate generation in some languages mitigates
against accurate modeling as well as statistics collection.
Finally, in most simulation languages, the user must assume
total responsibility for variance estimation and variance
reduction.

SIMAN (Pegden 1987) requires a formal "experimental
frame" as a part of each simulation. The experimental frame
specifies most dimensions of the sampling experiment including
the input distributions and the output. Each experimental frame
must be tailored to the specific model and there is no provision
for automatic statistics collection and display. Additional
analysis of output is obtained by writing the individual
observations to a file and processing that tile by an output
processor.

It is interesting to note that although the burden of statistics
collection and analysis is extensive, provisions within simulation
languages for easily accomplishing statistical tasks are rarely
completely satisfactory. Law (1983) even states that the
statistics which are available from some commercial languages
can be biased and misleading. Three of the more important
deficiencies of statistics in simulation languages are: (1) there
remains considerable controversy about which statistics should
be collected and how they should be displayed, (2) few
simulation languages have attempted to include specific
statistical procedures, choosing to leave their design and
development to the user (who usually ignores them), and (3) no
simulation language seems to offer a convenient, non-procedural
approach to statistics collection and display of arbitrary
simulation values (Henriksen 1983).

INSIGHT (Roberts 1983) addresses these concerns by
providing three features: (1) an extensive, automatically
produced report which summarizes the behavior of the
simulation from several important perspectives; (2) a built-in,
well defined set of statistical methods for variate generation,
output analysis, and variance reduction, (3) a generally
non-procedural method for easily extending the summary
statistics and producing statistics on arbitrary simulation values.
These facilities not only simplify incorporation of sound
statistics, but enhance statistics use within simulation modeling.
The purpose of this paper is to state how statistical aspects have
been integrated into the simulation language and its utilities and
to suggest why certain design decisions were made.

2. PURPOSE OF THE INSIGHT SIMULATION LANGUAGE

INSIGHT is a high level, general purpose, discrete event
simulation language. It was designed to provide an easy-to-use
simulation language that would extend the scope of simulation
applications and broaden the community of simulation
practitioners. Use of the language does not require prior
simulation or programming experience and presumes limited
statistical expertise.



The language is based on a visual or graphical
representation of the system being modeled and is oriented, but
not limited, to the modeling of complex queuing networks.
Permanent fixed elements in the networks are nodes which
represent fundamental processes like queues and activities.
Temporary entities, called transactions, flow through the
network causing the processes to be executed. The precedence
among processes (nodes) in the network is formed by branches
which connect the nodes through which transactions move.
Resources are permanent but mobile network entities which
may be needed to process a transaction at one or more activities.
Resources may be active in deciding among competing resource
requirements. Activities may have multiple resource require-
ments. Queuing occurs primarily for resource availability, but
transactions also may queue for arbitrary system conditions or
synchronization. Attributes of transactions, resources, and the
network may be defined to establish model-specific characteris-
tics. Complications such as balking, reneging, jockeying, pre-
emption, etc. are all included as modeling concepts. ~ Figure 1
shows a simple example of an INSIGHT network model.
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Figure 1: An INSIGHT Network Model
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INSIGHT distinguishes itself from other similarly oriented
languages by containing only seven node types with very flexible
specifications. The network models generally correspond closely
to the actual systems. Sophistication in model behavior is
incorporated by unusual flexibility in describing the behavior of
the nodes, so they can incorporate information about the system
status, entity status, statistical information, etc. without resorting
to general purpose programming. Thus, simple models are
embellished by additional specifications rather than expansion
of the network through additional nodes. INSIGHT graphical
models, even complex ones, retain their visual appeal and
concise description.  Specification expressions add modeling
flexibility not representable by a graphical analogue.

This overview is important because INSIGHT is directed at
a user population composed chiefly of modelers for whom
simulation is a tool for problem solving and "insight". Thus
statistical, as well as modeling, facilities are required at a high
level for routine use. Typical INSIGHT applications include
production planning, bottleneck analysis, staffing, scheduling
and dispatching, inventory control, material handling, facilities
design, cost analysis, machine replacement, and productivity
improvement. Generally, users are Industrial Engineers with
undergraduate degrees, having only modest computer and
statistical expertise. Few users are full-time simulation analysts.

The predominant mode of simulation with INSIGHT is
interactive, usually on a personal computer or workstation.
Modeling, execution, and analysis of simulation output can be
done interactively. Extensive on-line help and support utilities
are available. A textbook (Roberts 1983) and system documen-
tation (SysTech 1988) describe the language and its computer
facilities.

3. INPUT MODELING

Almost every simulation model requires some kind of
statistical input. The broader the range of choices, the greater
the variety of inputs that can be faithfully represented. Input
models, such as distributions, should be easily specified from a
wide range of alternatives.

The INSIGHT modeler can select from eleven standard
statistical distributions for simulation inputs. These include the
beta, binomial, Erlang, exponential, gamma, Poisson, lognormal,
normal, Weibull, triangular, and uniform. Simple specifications
transforming these distributions can be used to sample from
other rarely selected ones like Chi-square, t, F, etc. Existing
distributions also can be easily re-scaled for general use (see
Appendices C and D in Roberts 1983). INSIGHT specifications
can also accommodate various generation schemes such as
inverse transform, composition, acceptance/rejection, etc. The
parameterization of the standard distributions is aided by an
interactive help facility, called InsHelp (SysTech 1988), that
converts between the mean and standard deviation and the
distribution parameters. The following interaction illustrates
conversion between the mean and standard deviation and the
Gamma parameters:

Enter the mean: 5

Enter the standard deviation: 2.5

For the Gamma with mean 5.000000 and standard deviation 2.500000
The shape alpha is 4.000000

The scale beta is 1.250000

Distributions also can be graphically displayed with the InsHelp
facility, as follows:

0.179

0.148+ ..
GAMMA
(4.000,1.250)

+

1.020 11.360

3.088 5.156 7.224 9.292

In addition to the eleven standard distributions, a time-
varying Poisson generator, the Johnson system of distributions
and two arbitrary distributions are also available. One arbitrary
distribution is for discrete (multinomial) input and the other for
arbitrary continuous input.  Either historical data or user
supplied information can be used to specify these distributions.
All distributions can be truncated to any minimum or maximum,
and all random number seeds and sampling mechanisms may be
controlled (for reasons to be described later).

The time-varying (non-homogeneous) Poisson arrival
process generator models arrivals which, while satisfying a
Poisson qistribution, have a mean that varies linearly with time
(see Klein and Roberts 1984). The distribution is specified by a
piecewise, linear rate function and has extensive application in
systems whose input changes throughout the day or are
otherwise a function of time.” Thinning can be used directly in
other cases of time-varying processes whose rate function is a
non-linear function of time.

The Johnson system of distributions (Johnson 1949) is
available to provide even greater flexibility in the choice of
inputs. This four parameter family provides for the modeling of
distributions  containing  any = skewness and  kurtosis.
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Parameterization of the distribution is greatly aided by the
recent availability of software for the fitting of the distribution,
both with and without data (Venkatraman and Wilson 1987,
DeBrota, et al. 1989). Multivariate extensions of the family are
also available within INSIGHT.

The specification of a statistical input is easy. Once
declared, the samples may be obtained by using the System-
Defined Function called SAMple (see the activity time
specification in Figure 1). All statistical inputs are first
described by a declaration. For example, the interaction with
the INSIGHT Modeler to provide an Erlang distribution is given
below:

:distribution
distribution number = 17 2
distribution name = DIST2? Service Time
distribution type = <unresolved>? Erlang
mean = <unresolved>? S
order = <unresolved>? 4
minimum = 0.0?
maximum = (largest real number]?

The Interactive INSIGHT Modeler also makes numerous
checks for statistical validity. For example, if a user requests a
sample from a discrete distribution such as a Poisson for an
interarrival time, the Modeler questions the specification
(interarrival times would generally come from continuous
distributions, such as an exponentia]{. These warnings serve to
remind users of the key role of the statistical input.

4. DEFAULT STATISTICAL OUTPUT

Because INSIGHT was targeted for an audience lacking
programming skills and statistical expertise, a rather extensive
automatic statistics collection and display was adopted to ease
the statistics collection burden and promote a multi-dimensional
view of the simulation behavior. Figure 2 contains an example
of an automatically generated summary report. The decision to
provide automatic statistics magnifies the importance of
statistics collection and display considerations, since any
standardization of statistics displayed cannot be highly model
deFendem. Determination of a set of statistics which is
sutficient for most models, but not excessive for many, became a
two part design decision. First, what entiti.s merit automatic
statistics collection and second, what statistics should be
collected? Related to the collection of statistics is the choice of
numerical and statistical procedures.

4.1 Entities Meriting Statistics Collection

The orientation of INSIGHT restricts the entities which
need to be described. Hence, a minimal set of statistics should
depict the behavior of the “active" network entities.
Transactions can reside only in queues or activities or they leave
the network at a sink. Thus, node statistics which reflect the
number of transactions and time spent by transactions in each
activity and queue node, as well as time spent in the system for
transactions exiting at sink nodes, were chosen. Resources can
be idle, out of the network, delayed, or captured in a queue or
activity. Resource statistics, therefore, were chosen to reflect
the utilization of the resources. Four issues caused us to
embellish this minimal set of statistics in designing the default
summary report of output.

First, for any arbitrary observation period of a simulation,
Little’s Theorem (line length = arrival rate » waiting time)
cannot be used to relate the time-weighted number in the node
or system to the unweighted time in that node or system.
Although some simulation languages compute the unweighted
time in a node or system by dividing the total residency time by
the number of observations (an adaptation of Little’s Theorem),
the approach has two serious deficiencies. If there are
transactions present when the observation period begins and/or
ends (as characteristic of transient simulations), then the
number of observations during the observation period is
unknown and there will be bias in the time computed. Also, by
computing one statistic directly from the other, there is no
opportunity to measure the variation of the computed statistic.
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Therefore, INSIGHT collects and displays both the unweighted
time in queue or activity and the time-weighted number in
queue or activity. The number in queue or activity is computed
for the entire observation period while time in queue or activity
is collected only for transactions leaving the queue or activity
during the observation period (the user can adapt Little’s
Theorem to either statistic to obtain corresponding results).

Second, time in the queue is often variously interpreted.
For instance, should a transaction which does not have to wait in
a queue be included as a zero wait or be excluded from the
computation? INSIGHT provides statistics on both waiting time
including and excluding zero waits (GPSS also provides two
waiting time statistics) since either or both may be meaningful in
certain applications.

The third addition to the set of automatic statistics involves
time in the system. In most simulations, a transaction need not
visit all nodes and, in fact, may encounter the same nodes
several times. Therefore, the time in activities and queues
cannot easily be used to obtain the transaction’s time in the
system.  Furthermore, in more complicated models where
transactions may have resources preempted from an activity,
resuming the activity at a later time, their time in an activity may
exceed their activity time. As a result, INSIGHT collects total
time in activities and total time in queues for each transaction
and presents these as well as the total time in the system for
transactions exiting a sink node during the observation period.
The percent of time a transaction "waits" during its time in the
system can be used to measure the "efficiency” of the system in
processing transactions.

Fourth, the resource statistics present resource utilization
for each resource or resource pool (a pool is a collection of
identical resources), and resource type (a type is an implicit
identifier of several resources). Resource utilization was
defined for the purposes of the default output to be "time busy"
divided by "time present." Time busy includes time a resource is
captured in an activity, in a queue, or delayed. The time present
excludes any time the resource is out of the network.

In addition to the statistics which summarize the behavior of
transactions (node statistics) and resources (resource statistics),
additional information was added to depict the status of the
network, called the Network Status report (see Figure 2). This
report presents the current state of the system and delineates
the period of statistical observation. It contains a number of
counts including total number of transactions created and
transactions currently in nodes as well as a count of all
transaction encounters for each node. Current values of global
attributes as well as current distribution random number seeds
are also included.

4.2 Statistics Collected

Having established what entities are contained in a
summary report, the specific statistics collected for each
becomes important. For any node or resource statistic, the
mean, minimum, and maximum are important summary
measures of location and range. The applicability and
interpretation of a standard deviation varies with the method of
statistics collection. How to properly compute the standard
deviation of the mean remains a research topic (Law 1983) and
is rarely addressed by simulation languages.

Two broad types of simulations may be conducted: transient
(or terminating) simulations where statistics depend explicitly on
initial and final conditions, and steady-state simulations which
are independent of initial and final conditions. Transient
simulations are usually analyzed by replications or runs. When
INSIGHT is directed to use runs as the method of statistics
collection, the mean of every run is treated as an independent
observation (each run is independently seeded). Typically, the
number of runs is specified. Using run means, the mean, a
standard deviation of these values, and a standard error (i.e., the
standard deviation of the mean computed from the standard
deviation of the run means divided by the square root of the
number of runs) is provided. Because the runs can cause the
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* *
* INS SUMMARY REPORT M
* *
* PROJECT NUMBER 1
* *
* TV INSPECTION AND ADJUST *
* *
* 7/12/89 *
* *
* STEVE ROBERTS *
»* *
Rdh kAR kR k Wk
NETWORK STATUS
Rl il s sl ld
CURRENT TIME = 680.247 CURRENT RUN = 10
CURRENT RTC = 0 CURRENT TRANS = 0
CURRENT NODE = 0 CURRENT ACT = 0
CURRENT RES = 0 NUM IN NET = 0
NUM CREATED = 40 NUM DERIVED = 0
MAXIMUM SPACE UTILIZED = 767/ 50000 OR  1.53 PERCENT
NODE STATISTICS LAST STARTED AT TIME = .000
RESOURCE STATISTICS LAST STARTED AT TIME = .000
NODE STATISTICS COLLECTION TIME SINCE LAST CLEAR = 680.247
RESOURCE STATISTICS COLLECTION TIME SINCE LAST CLEAR = 680.247
NODE NODE NUMBER ZERO WAIT
NODE NAME NUMBER COUNT  IN NODE COUNT
QUEUES INSPECT WAIT 2 449 0 122
ADJUST WAIT 4 67 0 23
ACTIVITIES  INSPECT TVS 3 449 0
ADJUST TVS 5 67 0
SINKS GOOD TVS LEA 6 382
SOURCES CREATE TVS 1 382
** CURRENT SEEDS **
SYSTEM = 610234094
DISTRIBUTION 1= 44620978
DISTRIBUTION 2 = 406037205
DISTRIBUTION 3= 192317993
etk dkedhdkkh ko
NODE STATISTICS
e e e ek de e ek ok e ok
*QUEUE NODES* NUMBER OF TRANSACTIONS IN QUEUE
----------- OBSERVATIONS OF THE MEANS -----------
NODE TIME OF STANDARD STANDARD
NUMBER  NAME MEAN OBSERVATION ~ DEVIATION ERROR
2 INSPECT WAIT 1.42561 6829.15 1.64405 .519893
4 ADJUST WAIT  .674818 6829.15 564294 178445
- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE TIME OF
NUMBER  NAME SMALLEST ~ LARGEST MEAN OBSERVATION SUM
2 INSPECT WAIT 0 16 .487983 680.247  331.949
4 ADJUST WAIT 0 4 1.49339  680.247  1015.87
*QUEUE NODES* TIME IN QUEUE INCLUDING ZERO WAITING TIMES
---------- OBSERVATIONS OF THE MEANS -----=----
NODE NUMBER OF STANDARD STANDARD
NUMBER  NAME MEAN  OBSERVATIONS DEVIATION ERROR
2 INSPECT WAIT 21.6831 10 22.1288 6.99773
4 ADJUST WAIT  68.7826 10 46.7156 16.7728
« ALL OBSERVATIONS -« ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER  NAME  SMALLEST  LARGEST MEAN OBSERVATIONS SUM
2 INSPECT WAIT .0000 197.3 6.91560 48 331.949
4 ADJUST WAIT  .0000 272.8 126.984 8 1015.87

*QUEUE NODES* TIME IN QUEUE EXCLUDING ZERO WAITING TIMES

----------- OBSERVATIONS OF THE MEANS --=--------

NODE NUMBER OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATIONS DEVIATION ERROR
2 INSPECT WAIT 29.7728 10 26.9016 7.87458
4 ADJUST WAIT  104.737 10 46.9386 14.8433
- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATIONS SUM
2 INSPECT WAIT .5038 197.3 9.76319 34 331.948
4 ADJUST WAIT  5.514 272.8 145.125 7 1015.87

*ACTIVITY NODES* NUMBER OF TRANSACTIONS IN ACTIVITY

----------- OBSERVATIONS OF THE MEANS -----------

NODE TIME OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATION  DEVIATION ERROR
3 INSPECT TVS  .663770 6829.15 117624 .371960E-01
5 ADJUST TVS .683530 6829.15 .163073 .515682€-01
-- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE TIME OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATION SUM
3 INSPECT TVS 0 1 .666321 680.247 453.263
5 ADJUST TvS 0 1 .848396 680.247 577.119

*ACTIVITY NODES* ACTIVITY TIME

----------- OBSERVATIONS OF THE MEANS -----------

NODE NUMBER OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATIONS DEVIATION ERROR
3 INSPECT TVvsS  10.0957 10 .868443 274626
5 ADJUST TVS 69.6705 10 1.97769 625402
-- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATIONS SUM
3 INSPECT TVS .7268 33.72 9.44297 48 453.263
5 ADJUST TVS 59.25 82.07 72.1398 8 577.119

*SINK NODES* TIME IN SYSTEM

----------- OBSERVATIONS OF THE MEANS -----------

NODE NUMBER OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATIONS DEVIATION ERROR
6 GOOD TVS LEA 61.6362 10 28.9446 9.15309
- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATIONS SUM

6 GOOD TVS LEA 1.550 527.0 59.4551 40 2378.20

*SINK NODES* TOTAL TIME IN QUEUES

----------- OBSERVATIONS OF THE MEANS -+---------

NODE NUMBER OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATIONS DEVIATION ERROR
6 GOOD TVS LEA 37.5501 10 26.2372 8.29692
- ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATIONS SUM

6 GOOD TVS LEA .0000 322.0 33.6955 40 1347.82

*SINK NODES* TOTAL TIME IN ACTIVITIES

----------- OBSERVATIONS OF THE MEANS -«---------

NODE NUMBER OF STANDARD STANDARD
NUMBER NAME MEAN OBSERVATIONS DEVIATION ERROR
6 GOOD TVS LEA 24.0861 10 4.81305 1.52202
-+ ALL OBSERVATIONS -- ---- CURRENT RUN OR BATCH ONLY ----
NODE NUMBER OF
NUMBER NAME SMALLEST LARGEST MEAN OBSERVATIONS SUM

6 GOOD TVS LEA .7268 275.6 25.7595 40 1030.38

dedede e de ek ek ek ek e

RESOURCE STATISTICS

P T e ey

~~~~~~~~ OBSERVATIONS OVER RUNS OR BATCHES ----------
TIME EACH RESOURCE WAS OBSERVED = 6829.15

NUMBER(S) MEAN NUMBER OF  STANDARD

OR TYPE NAME UTILIZATION OBSERVATIONS ERROR  SMALLEST LARGEST
1 INSPECTOR 66377 10 .03720 46288  .83045
2 ADJUSTOR .68353 10 .05157 .35170  .84840

--------- FOR THE CURRENT RUN OR BATCH ----------
TIME EACH RESOURCE WAS OBSERVED = 680.247

NUMBER(S) TIME IN PERCENT ~ FRACTIONAL
OR TYPE NAME STATE NAME STATE OF TIME UTILIZATION
1 INSPECTOR
IDLE 226.984 33.368
AT AN ACTIVITY 453.263 66.632
TOTAL BUSY 453.263 66.632
TOTAL PRESENT 680.247 100.000 666321
2 ADJUSTOR
IDLE 103.128 15.160
AT AN ACTIVITY 577.119 84.840
TOTAL BUSY 577.119 84.840
TOTAL PRESENT 680.247 100.000 848396

Figure 2: Automatically Generated Summary Report
from INSIGHT



number of observations for unweighted statistics and/or the
time of observation for time-weighted statistics to vary from run
to run, each mean and standard deviation is computed by
weighting the time-weighted values by their respective
observation time period and the unweighted values by their
respective number of observations. This latter step also tends to
produce statistics which are more identically distributed among

runs. The summary report in Figure 2 was produced by multiple
runs.

Steady-state simulations are usually analyzed by batches
within a single simulation run (althougz replications could be
used). In directing INSIGHT to use batches as the statistics
collection method, the user typically specifies a minimum
number of batches for all statistics and stipulates a batch size
(the number of observations of unweighted statistics composing
a batch) and a batch interval (the length of time in which
time-weighted statistics are observed to comprise their batch).
If the resulting batches are large enough, they can be treated as
independent observations, just like the means of runs in a
transient simulation (no weighting is needed because the batch
sizes and intervals are identical). With batch analysis, the
number of batches is likely to vary among entities, so the
number of observations or time of observation is also reported.
The following interaction shows how easily a batch means
analysis is produced:

run
collection method = RUN? Batches
number of batches = 1? 10
batch interval = <unresolved>? 500
batch size = <unresolved>? 15

When statistics are collected into batches, output analysis
follows the form of replications because the batch means are
treated as independent observations. For example the following
illustrates statistical analysis within interactive INSIGHT
execution:

THE FOLLOWING OPTIONS ARE AVAILABLE TO OBTAIN STATISTICS:
1. STATISTICS FOR A NODE
2. RESOURCE UTILIZATION STATISTICS

. TIMES IN STATES FOR A RESOURCE

. STATISTICS IN A TABLE

. STATISTICS FOR A BREAKDOWN ROW IN A TABLE

. HISTOGRAM FREQUENCIES

. RETURN TO MAIN ANALYZER MENU

NV s W

CHOOSE ONE? 1

THE FOLLOWING STATISTICS TYPES ARE AVAILABLE:

. NUMber of transactions in a specific queue

. time in a specific queue INCluding zero waits

time in a specific queue EXCluding zero waits

. NUMber of transactions in a specific activity

. activity TIMe in a specific activity

total time in the NETwork when leaving at a specific sink
total time in QUEues when leaving at a specific sink

. total time in ACTivities when leaving at a specific sink

®NOWVEWN -

CHOOSE ONE? 2

WHICH NODE NUMBER? 2

WAITING TIME INCLUDING ZERO WAITS [N QUEUE 2

MEAN OF ALL BATCH MEANS = 71.2405

STANDARD DEVIATION OF ALL BATCH MEANS = 61.4704

SMALLEST OBSERVATION WITHIN ALL BATCHES = .0000

LARGEST OBSERVATION WITHIN ALL BATCHES = 297.7351

NUMBER OF OBSERVATIONS (AN UNWEI[GHTED STATISTIC) = 64.0000
STANDARD ERROR OF ALL BATCH MEANS = 7.6838

MEAN OF CURRENT BATCH = .0000

NUMBER OF OBSERVATIONS [N CURRENT BATCH = 13.0000

SUM (MEAN*OBSERVATIONS) OF CURRENT BATCH = .0000

DO YOU WANT A CONFIDENCE INTERVAL FOR YOUR MEAN? y

THE FOLLOWING CONFIDENCE LEVELS ARE AVAILABLE:
1. 99 PERCENT
2. 95 PERCENT
3. 90 PERCENT

CHOOSE ONE? 3

A 90% CONFIDENCE INTERVAL HAVING 63 d.f. = [ 58.4131, 84.0679]

An important difference in the execution of the simulation when
batch means are used for statistics collection is that the length of
the simulation run is no longer deterministic. The simulation
run will last long enough for all the batch means to be collected.
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In the previous example, every statistic being collected must
have at least 10 batches (more will be said about run length
control later).

Whether statistics are collected by runs or batches, an
addition to the summary statistics is made automatically to
include the statistics for the last (current) run or batch. These
values (refer to Figure 2) enable the analyst to examine the
statistical characteristics of the simulation just prior to its
termination. Resource statistics for the last run or batch contain
the time each resource occupies each resource state.

When only one run is specified without having statistics
collected into batches, the standard deviation is obtained from
individual observations. Such observations are generally not
independent and the standard error is not computed, to
discourage erroneous confidence interval computations. No
overrun or overbatch statistics are possible, so all statistics are
relevant to the current (only) run. Furthermore, when the
Interactive INSIGHT Analyzer is being used and there are no
overrun or overbatch statistics, a warning is issued and no
confidence interval will be computed. These actions remind
users of the importance of understanding the statistics being
collected.

4.3 Numerical Accuracy

An implementation decision essential in statistics collection
involves the specific numerical procedure used to maintain the
statistical records. Here, the trade-off among precision, space,
and execution is particularly critical. Traditional calculator
algorithms which require a sum and sum of squares are
notoriously imprecise on computers, but used in many
simulation languages. The large number of observations in a
simulation magnifies the inaccuracy by producing large sums
which overflow the floating point mantissa of most computer
words resulting in a loss of precision and spurious values.
INSIGHT uses the algorithms by West (1979) and Chan and
Lewis (1979) to collect means and deviations (for unweighted
and weighted statistics). These maintain a running mean and a
measure of deviation which is a simple, quick calculation from a
standard deviation. Therefore, the ease of obtaining
intermediate results and the increased precision more than
compensate for the extra space and slower updating of statistics.

5. EXTENDING STATISTICS COLLECTION AND DISPLAY

A modeler can request statistics on arbitrary values of the
simulation by requesting a table on the identified values (see
Chapter S ot Roberts 1983). Tables can be specified as direct
enhancements of automatically collected statistics or as new
statistical entities. Enhancements of the automatically collected
statistics might involve aggregation, such as the time in several
queues, or breaking down the resource utilization by the
locations where the resource serves. Tables can be specified as
time-weighted or unweighted collections of arbitrary entities.
For example, the time-weighted number in inventory or the
unweighted cost of production may be collected automatically
and displayed by declaring a table. Figure 3 contains two
examples of INSIGHT tables, an unweighted time to obtain
service and a time-weighted number waiting at a restaurant.

Tables provide more flexibility than the default statistics
because they are individual statistical entities. A table may be
compiled into runs or batches or simply collect individual
observations. A table may specify a histogram which produces a
distribution of values. Furthermore, a table can be broken down
by the value or period of any arbitrary expression which is
evaluated when an observation is collected into the table.

5.1 Table Declaration

The table declaration is a non-procedural specification of a
desired statistic. For example, the following statement

TABLE, 2 TIME IN NETWORK, (7), NET, 11, 15, 21



** TABLE NUMBER 5w
WAITING TIME FOR SERVICE

"""""" OBSERVATIONS OF THE MEANS -----------

NUMBER OF STANDARD STANDARD
BREAKDOWN VALUE MEAN OBSERVATIONS  DEVIATION ERROR
PARTY S1ZE: 4.000 16.6213 10 1.00071 316451
PARTY SI12E: 2.000 12.6307 10 .835732 264282
PARTY S1ZE: 5.000 17.3542 10 .510459 L161621
PARTY SIZE: 1.000 11.4306 10 .443607 .140281
PARTY SIZE: 8.000 22.6605 8 2.20769 780535
PARTY SIZE: 3.000 14.0575 10 283149 .B95396E-01
PARTY SIZE: 6.000 18.7222 10 1.01635 .321399
PARTY SI1ZE: 7.000 21.5801 10 1.34647 425791
PARTY SIZE: 10.00 27.4532 4 5.06748 2.53374
PARTY SI1ZE: 9.000 24.0987 7 2.91454 1.10159
AGGREGATE 16.1626 10 360968 .114148

- ALL OBSERVATIONS --- CURRENT RUN OR BATCH ONLY

NUMBER OF

BREAKDOWN VALUE SMALLEST  LARGEST MEAN OBSERVATIONS
PARTY SIZE: 4.000 12.1520 33.6300 16.9971 14
PARTY SIZE: 2.000 10.3918 18.4230 14.4837 8
PARTY SIZE: 5.000 13.2060 26.8368 17.5757 8
PARTY SIZE: 1.000 9.27554 15.8376 11.9552 6
PARTY SIZE: 8.000 18.6143 27.4368 20.2966 1
PARTY SIZE: 3.000 11.1698 20.8693 13.8004 18
PARTY SIZE: 6.000 14.8677 26.4948 19.0900 "
PARTY SIZE: 7.000 16.9282 29.3869 22.2457 3
PARTY SIZE: 10.00 . 20.8683 35.4519 30.8985 2
PARTY SIZE: 9.000 17.4410 30.2863 22.2422 2
AGGREGATE 9.27556 35.4519 16.6833 73
** TABLE NUMBER 6 **
NUMBER WAITING BY TIME
----------- OBSERVATIONS OF THE MEANS «----=----
TIME OF STANDARD STANDARD
BREAKDOWN PERIOD MEAN OBSERVATION ~ DEVIATION ERROR
5706 PM  1.000 .185674 600.000 .325979 .103084
67T07PM  2.000 .995795 600.000 1.95874 .619407
77108°PM  3.000 3.16577 600.000 3.56404 1.12705
8709 PM  4.000 5.50680 600.000 4.62230 1.46170
970 10 PM  5.000 4.17871 600.000 4.40021 1.39147
AFTER 10 PM  6.000 .967956 638.867 1.02648 .324601
AGGREGATE 2.48375 3638.87 2.19095 692841

- ALL OBSERVATIONS --- CURRENT RUN OR BATCH ONLY

TIME OF

BREAKDOWN PERIOD SMALLEST LARGEST MEAN OBSERVATION

5 70 6 PM 1.000 .000000 5.00000 1.06918 60.0000
6 T0 7 PM 2.000 .000000 9.00000 6.46208 60.0000
770 8 PM 3.000 .000000 14.0000 11.9160 60.0000
8 70 9 PM 4.000 .000000 19.0000 14.2983 60.0000
9 70 10 PM  5.000 .000000 17.0000 8.59685 60.0000
AFTER 10 PM 6.000 .000000 9.00000 690494 64.6297
AGGREGATE .000000 19.0000 7.08986 364.630

Figure 3: Tables Broken Down by Value and by Period

causes INSIGHT to create a table (Table 2) which includes the
time in the NETwork for all transactions exiting at sink nodes
11, 15, and 21. Nothing else is needed as the statistics are
collected automatically. To obtain resource use of resources 6
and 7, broken down by their five possible service locations, only
the following statements are needed:

TABLE, 3 UTILIZATION, (7)BUSY, 6, 7
BREAKDOWN, 3,, RES(NODE, CUR(RES)), S

The convenience of such statements is that the modeler simply
declares what statistics are desired without telling INSIGHT
how they are to be collected. Even when a new statistical entity
is being identified, only the table declaration is needed. For
example,

TABLE, 4 INVENTORY, (7)WEIGHTED, INV(1.T0.10)
BREAKDOWN, 4,, IDNUM, 10

requests a table on the time-weighted number in INVentory (not
a native network entity) broken down by the model
identification number (IDNUM), given here as an attribute.
The modeler need only model the changes in inventory status in
the network model, leaving INSIGHT to collect and "break
down" the statistics automatically.
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The interpretation of a table can be requested to agree with
the method of statistics collection (i.e., runs or batches) or it can
collect observations individually. This latter specification is
recommended only when table entries are known to be
independent. The statistical quantities in a table correspond to
those described for the node and resource statistics (see Figure
3).

A useful dimension of the table declaration is that the
hreakdown expression can be interpreted as a value or period,
somewhat analogously to weighting of statistical entries. A
value distinguishes among table entries, whether unweighted or
time-weighted, by the value of the breakdown. A period
distinguishes among table entries by interpreting the breakdown
expression as a time period. Figure 3 presents both types of
breakdown criteria. The first table in Figure 3 is broken down
by the size of the party (a value) waiting for service; the second
table illustrates the number waiting at a restaurant broken down
by hourly periods. Breakdown periods are especially useful in
examining time-dependent behavior of a model, such as the
build-up of a queue during the day or the difference in
utilization of resources between two shifts.

5.2 Histograms

A histogram is an additional optional display of a table used
to reflect the distributional characteristics of the table’s statistic
(the histogram applies only to the aggregate value in a table).
The histogram may be a display of the distribution of values
from an unweighted statistic or the distribution of time from a
time-weighted statistic. Figure 4 shows examples of each of
these two types of display. Note that both the relative frequency
(density) and the cumulative frequency (distributior% are
enumerated.

A complete specification of a histogram includes the
number of histogram cells, the lower bound of the first cell, and
the cell width. However, INSIGHT requires only specification
of the number of cells and will adaptively construct a histogram.
The other specified values for histograms are rarely known
before a simulation and this feature can be of considerable
convenience to the modeler, especially during earlier stages.
For instance, the following table declaration,

TABLE, 1 WAITING TIME, 15, (7) EXC, 2, 4, 6

causes a table of the waiting time excluding zero waits in three
queues and produces a histogram of 15 cells. No other
instructions are required to obtain the entries for the table or
the histogram, making both displays readily available with one
non-procedural declaration. For final presentation, the cell
width or lower bound may be declared explicitly.

5.3 Generalizing Batches

As the batch statistics collection method is implemented in
INSIGHT, all statistics are collected into the same batch size or
batch interval depending on whether they are unweighted or
time-weighted. For example, if the waiting time at one queue in
the network requires 100 observations per batch to achieve
independent and identically distributed batch means, but
another queue requires only 50 observations per batch, you have
no choice but to specify a general batch size of 100. If, however,
the second queue accumulates its observations slowly, then the
simulation may run inordinately long to accumulate sufficient
batches.

When the global batch size and batch interval are
inappropriate for statistics collection, then statistics collection
may be managed by tables. Two general tactics are possible.
The first uses a global attribute to maintain the batch mean
during the collection of statistics within the batch. This mean
can then be collected directly into a table to produce the over
batch results. The second tactic declares one table to collect the
within batch observations and uses a second table to collect
observations on means of the first table (the first table must be
cleared when the batch mean is collected). Either of these
tactics frees the modeler of a fixed batch size and batch interval,



** HISTOGRAM NUMBER 1w
STOCK LEVEL

TIME OF RELATIVE CUMULATIVE <o -CELL LIMIT--
OBSERVATION FREQUENCY FREQUENCY LOWER UPPER
.000000 .000000 .000 “INFINITY .000000
8.39874 .093 .093 .000000 25.0000
19.8017 .220 .313 25.0000 50.0000
21.3357 .237 .550 50.0000 75.0000
20.7181 .230 .781 75.0000 100.000
10.1410 113 .893 100.000 125.000
4.29797 .048 941 125.000 150.000
1.12832 .013 L9564 150.000 175.000
1.02584 .01 .965 175.000 200.000
.600853 .007 .972 200.000 225.000
.794107 .009 .980 225.000 250.000
.828005 .009 .990 250.000 275.000
.862989 .010 .999 275.000 300.000
.000000 .001 1.000 300.000 +INFINITY
90.0000
LOWER UPPER + + + + + + + + + + +
- INFINITY .000000 + +
.000000 25.0000 +ERRNC +
25.0000 50.0000 Raloibebodobboiobd c +
50.0000 75.0000 Rhbdalolededbbobodd c +
75.0000 100.000 Riaielaialelodobododoliel C +
100.000 125.000 AREEEER [4 +
125.000 150.000 Rl c +
150.000 175.000 - C+
175.000 200.000 +* C+
200.000 225.000 + C+
225.000 250.000 + c+
250.000 275.000 + C+
275.000 300.000 + c
300.000 +INFINITY + C
+ + + + + + + + + + +
LOWER LIMIT INCLUSIVE 0.0 0.2 0.4 0.6 0.8 1
** HISTOGRAM NUMBER 4 **
QUANTITY ORDERED
NUMBER OF RELATIVE CUMULATIVE <--CELL LIMIT--
OBSERVATIONS FREQUENCY FREQUENCY LOWER UPPER
0 .000 .000 ~INFINITY .000000
0 .000 .000 .000000 2.00000
2 .015 .015 2.00000 4.00000
0 .000 .015 4.00000 6.00000
9 .067 .081 6.00000 8.00000
13 .096 .178 8.00000 10.0000
19 6 319 10.0000 12.0000
17 .126 Lbbh 12.0000 14.0000
13 .096 561 14.0000 16.0000
13 .096 .637 16.0000 18.0000
15 AN .748 18.0000 20.0000
21 .156 .904 20.0000 22.0000
2 .015 .919 22.0000 24.0000
2 .015 .933 24.0000 26.0000
9 .067 1.000 26.0000 28.0000
0 .000 1.000 28.0000 30.0000
135
LOWER UPPER + + + + + +* + + + + +
-INFINITY  .000000 + +
.000000 2.00000 + +
2.00000 4.00000 +C *
4.00000 6.00000 +C +
6.00000 8.00000 +HEHC +
8.00000 10.0000 gudeek - C +
10.0000 12.0000  Sefaledelololed c +
12.0000 14.0000 Rdahehoileled c +
14.0000 16.0000 Akl c +
16.0000 18.0000 ekl c +
18.0000 20.0000 Rdaaiaileld c +
20.0000 22.0000 Akl c +
22.0000 24.0000 * c +
24,0000 26.0000 A c +
26.0000 28.0000 Rkl C
28.0000 30.0000 + C
+ + + + + + + + + + +
LOWER LIMIT INCLUSIVE 0.0 0.2 0.4 0.6 0.8 1

Figure 4: Histograms for Time-Weighted and Unweighted
Statistics

however, more is required of the user for the simulation to
collect and display meaningful results.

The idea of varying batch sizes and intervals can be
extended to allow these to vary within a statistical entity for an
observation period. For instance, we can obtain regeneration
cycles by allowing the batch size and interval to be defined by
regeneration epoches, detectable within the simulation.
Therefore, we can collect the numerator of the ratio estimate in
one table and the denominator in another. Unfortunately, to
compute the variance of the ratio estimate will require an
estimate of the covariance between the numerator and
denominator which must be collected separately. Likewise, if
jackknifing of results is needed to adjust for estimator bias, the
adjusted estimates must also be kept in separate tables. Hence,
it may be more convenient to use an external file to store
statistics and calculate results.

5.4 External Data Files

INSIGHT can read/write formatted external data files
during simulation execution. When read as input during the
simulation, the simulation can be data-driven (trace simulation).
Also the simulation can be interrogated and respond to user
directives. ~ Simulation output can be written to any file
(including a terminal). Of special interest is that an output file
can store information for further analysis by other software. It
may also be used to print specially tailored output. A file
reference is easily declared by

FORMAT, 2, INPUT.DAT, F8.3, ARR, FB8.3, SER

and can be manipulated by the REAd and WRIte System-
Defined Functions.

6. SIMULATION RUN LENGTH

The length of a simulation should be controlled by the
statistics required from the experiment. For a transient
simulation, the number of replications is specified. For a steady-
state simulation, the minimum number of batches must be met.
However, there are circumstances when greater control over the
statistics collection period is needed. For example, the
simulation models periods of time when no statistics are needed.
Also, adaptive simulation run lengths may be desired to meet
certain statistical requirements.

6.1 Specifying Statistics Collection Periods

Under several circumstances, the statistics collection period
may be a subset of the entire simulation (composed of one or
more runs). To obtain steady-state statistics, the statistics from a
transient or warm-up period of the simulation may need to be
deleted. In other simulations, certain time intervals such as
lunch hours or shift breaks, should not contribute to the
statistics.

System-Defined Functions instigate either the clearing
(deleting) of already collected statistics or the starting/stopping
of statistics collection. Either can be implemented within the
actions of the simulation model through a specification or at an
independent point in time through a monitor event. To clear all
statistics (namely nodes, resources, and tables) at time 100, the
following statement could be included:

MONITOR, CLEAR (ALL STATISTICS), 100

Similarly, statistics collection may be started or stopped.
Furthermore, clearing and/or stopping can be constrained to
particular statistics (e.g. resource statistics, one table, or even to
statistics in the current run). These facilities allow individual
statistics to be collected and monitored until some stability
threshold is reached, then cleared to re-initialize statistics
collection. While clearing erases all statistical memory of the
past (while not affecting the simulation entities), stopping is like
closing your eyes, i.e., no statistics are observed while statistics
are stopped but previous information is not forgotten.
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With clearing, the time of observation for time-wplghted
statistics is the time since the last clear. With stopping, it Is the
total time statistics are not stopped. In either case, an
observation of an unweighted statistic corresponds to the
occurrence of an event when statistics collection is on. For
instance, time in queue is collected if a transaction leaves a
queue after statistics have been started, even if it entered while
statistics were stopped. Departures while statistics are stopped
would not result in statistics collection.

6.2 Adaptive Run Length Control

Simulation lengths are generally prespecified, ie., the
number of runs when statistics collection uses replications or the
minimum number of batches when using batches.  Such
specifications have the advantage of avoiding lengthy
simulations, but often stop prior to satisfactory statistical
precision. An alternative to specifying the length of the
simulation in advance is to specify the precision of the final
statistics. ~ All statistics, including the standard deviation and
standard error, are maintained internally and automatically by
INSIGHT and they are accessible through System-Defined
Functions.

The entire simulation or the current run in the simulation
may be terminated by executing other System-Defined
Functions.  Therefore, a stopping rule can be directly
implemented in INSIGHT by first specifying some arbitrarily
large number of runs or batches to fulfill these requirements.
Conditions for terminating the simulation based on sequential
estimation procedures can be inserted after a run or batch.
When these conditions are satisfied (perhaps based on some
computed confidence interval or half width), the simulation can
be terminated and results interpreted accordingly. The writing
of these conditions is facilitated by a built-in t distribution which
can be referenced directly. For instance,

POSTRUN, .if. CUR(RUN) .gt. 1
.then. .if. (STD(NET,14) / MEA(NET, 14) ** 2 .lt.
CUR(RUN) * ((DEL / TDIS(.05,CUR(RUN-1))**2
.then. TER(SIMULATION,CUR(RUN))
.else. 0
.else. 0

this POSTRUN statement implements a procedure cited by Law
(1980) where time in the network at node 14 is the important
statistic. Here DEL is the attribute defining relative half-width
and the TDIS returns a value of Student’s t distribution with a
specified alpha and n degrees of freedom.

The implementation of any such rules can involve
considerable risk (particularly in a batch processing
environment), for if values for the stopping rule are musspecified
or conditions are “tight," the simulation may be excessively long
and expensive. Pilot (interactive) runs are strongly
recommended before using these approaches.

7. VARIATE GENERATION AND VARIANCE REDUCTION

Several key decisions in variate generation within INSIGHT
were influenced by the decision to incorporate variance
reduction techniques into the language. Specifically, because
common_and antithetic variates require only modest prior
information (i.e., the monotonicity condition) and can be
automated directly, we wanted to make them readily available
and routinely useful. Arguments for the centrality of variance
reduction in simulation are given in Bratley, Fox, and
Schrage(1987). A number of design decisions, affecting both the
random number and random variate generators, resulted.

A prime modulus random number generator was chosen to
provide uniform random numbers between zero and one (Marse
and Roberts 1983). The generator has been widely tested and
has excellent global statistical properties.  We were able to
implement it in a portable fashion using standard FORTRAN
(for machines having a 32 bit or larger word size). Furthermore,
we developed a simple means to generate well spaced seeds and
tested their local statistical behavior. Such an approach permits

INSIGHT to assign a different (and well spaced) seed to each
source of variation in a simulation model. Thus, there is no
practical limit to the number of random number streams in an
INSIGHT model and each source of variation is automaticall
assigned its own stream (the user can of course interfere witK
this assignment and specify seeds directly). The primary
consequence of these decisions is that no two sources of
variation need to share the same random number stream.

Most importantly, every random variate generator in
INSIGHT uses an exact or approximate inverse transform to
generate exactly one variate from exactly one random number.
This decision has many ramifications. Experiments using
INSIGHT models tend to have automatically synchronized
random variates because each source of randomness has its own
stream and each random variate is generated from exactly one
random number. Such synchronization was deemed necessary
for the use of either common or antithetic variates.

The use of inverse generators has two additional benefits.
First, antithetic variates with the greatest negative correlation
can be easily generated using inverse generators by replacing the
original random number before transformation witg its com-
plement. This feature maximizes the variance reduction pro-
duced by correlation induction variance reduction techniques,
such as common and antithetic variates. Second, inverse genera-
tors tend to yield very portable results and portability (i.e., get-
ting the same results at different installations) was a primary de-
sign goal.

The decision to use a portable random number generator
and inverse variate generators has been substantiated by
profiling a wide variety of simulation models. The results
showed that random number and random variate generation
rarely exceeded three percent of the execution time of an
INSIGHT simulation. Therefore, faster generators offer little as
sources of computer time savings.

Different experiments with an INSIGHT simulation model
automatically use common sources of variation. The modeler
has the option of designating one or more sources of variation to
be common among the runs of the same experiment. Antithetic
variates can be specified for all the runs of one experiment.
However, it is most useful to specify thetic-antithetic pairs of
runs. Using stream control of the interactive Modeler,

:stream
system seed = 19732729127
system stream control = THE? ;help

Alphanumeric beginning with:

THE: generate the THEtic stream without
resetting the seed

ANT: generate the ANTithetic stream without
resetting the seed

COM: generate a COMmon stresm by resetting the
seed to the original seed every run

PAl: generate PAlrs of runs, one thetic and one
antithetic starting with a common seed;
reset to a new seed for the next pair of runs

system stream control = THE? pairs
distribution control = NO? yes

the interaction provides a paired simulation experiment. In this
case, one thetic run is made and then a second run replicates the
first but employs the antithetic streams to form a
thetic-antithetic pair. The second pair of runs has each seed set
to the longest use of each stream. In this way synchronization is
strictly maintained from pair to pair, further enhancing the
opportunity for variance reduction. All of these procedures are
instigated by a simple specification in the declaration of the
distributions.

A by-product of the method used to pair thetic and
antithetic runs is that streams for two variate generators may be
coupled. Thus on one run, one generator uses the first stream
and the second generator uses the second stream while on the
second run the streams are switched. In this way, the stream
that initially produced arrivals may be used to generate service
times. As with paired runs, couplm§ also uses the longest use of
each stream to seed the next pair of runs. The "help" illustrated
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above, describes other options available for managing streams.

These variance reduction techniques are believed to have
general utility (see Bratley, Fox, and Schrage (1987) for
extensive discussion). They were made an integral part of
INSIGHT to encourage their use (Chapter 7, Roberts 1983).

8. CONCLUSIONS

Because INSIGHT is targeted for an audience with minimal
statistical expertise, considerable attention has been given to
statistical issues within the language. A variety of input
distributions, including a time-varying Poisson and a flexible
family of univariate and multivariate distributions, are available
for model building. Great care has been taken to provide
automatic reporting on statistics which are meaningful and
complete. Special attention has been given to their accuracy
and possible interpretations. The summary report, whether for a
transient (runs) or steady-state (batches) simulation, provides
the modeler with relevant information not only about the means
of important values, but also their standard deviations and
ranges. These displays encourage the use of statistical
information to insure that judgments have a sound statistical
foundation.

The mechanisms to instigate these and other statistical
methods are non-procedural. Thus, the modeler describes only
what is desired rather than describing how it is obtained. The
table collection facility illustrates how a variety of statistics can
be collected and displayed within the language. Simple
mechanisms extend to afg:ct the statistical observation period
and run length controls.

Variance reduction is available employing common,
antithetic, and paired random variates. The random number
and random variate generators were explicitly designed to
accommodate the variance reduction techniques. Such
convenient facilities should make variance reduction more
routine and encourage greater attention to these important
components of the simulation.

Experience with the language has been very positive. Its use
has brought statistical issues from an incidental topic in a
simulation study to a place of prominence and use. In the
classroom, statistical concerns can be described jointly with the
modeling. Such interaction can result in better simulation
applications.
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