Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

DISC++: A C++ BASED LIBRARY FOR OBJECT ORIENTED SIMULATION

Eric L. Blair
Sathyakumar Selvaraj

Department

of Industrial

Texas Tech

Lubbock, Texas

0. ABSTRACT

The Object Oriented Programming (OOP)
paradigm is generating considerable interest and

excitement among systems analysts and
programmers concerned with a wide range of
applications. This paper presents DISC++

(DIscrete event Simulation in C++), a library of
routines written in C and C++ which supports the
design and programming of simulation models under
both the event scheduling and process interaction
DISC++ allows the simulator to
construct simpler models from "standard" library

world-views.

objects or design more complex models by deriving
specialized and sophisticated objects from the library
The OOP philosophy encourages
evolutionary model building process in which code

objects. an

(object classes) is reused and continuously upgraded.
A
application of the process interaction modeling

simple example is given to illustrate an

capabilities.

1. INTRODUCTION

The driving force behind the development
of DISC++ is the belief that to be truly successful, a
simulation language should support more than one
world-view and accommodate a full range of user
sophistication and needs. A testament to this logic
is provided by the success of such simulation
languages as SIMSCRIPT II.5 (Russell 1983)
SLAM (Pritsker 1986), and SIMAN (Pecgden
1982). Each of these languages supports both the
event scheduling and process interaction world-
views. SLAM and SIMAN are FORTRAN based
and permit the user to code event routines, special
functions and subprograms in FORTRAN.
SIMSCRIPT 1II.5 is itself a powerful language
which can be used for developing programs other
than simulations.

301

Engineering
University
79409

DISC++ supports both the event
scheduling and process interaction world-views for
simulation modeling. DISC++ is a library of C and
C++ functions which provide a framework for
constructing and running simulation models using
Since C++ is a superset of C, it
This 1s fully
sufficient to implement an “event scheduling" world-
view for model development as illustrated by its
predecessor DISC 1988) which
consists entirely of C functions. The object

oriented programming (OOP) features of C++ and

the C++ language.
supports procedural programming.

(Selvaraj et al.

DISC++ make it a natural environment in which to
build process interaction based simulation models.

This paper presents a brief discussion of
OOP and its potential use in simulation. It also
describes the implementation of OOP concepts in
DISC++ and presents arguments for the serious
consideration of DISC++ as the language of choice
for the development of simulation models.

2. OBJECT ORIENTED PROGRAMMING:

OOP is a paradigm (conceptual framework)
for program development which supports abstract
data types, encapsulation, operator and function
overloading, and inheritance. It is not our intention
here to provide a definitive statement of the more
subtle aspects of OOP, but rather to provide insight
as to why OOP and C++ are powerful developments
in the art and science of computer programming with
major significance for the future of simulation
A more thorough discussion of OOP and
C++ can be found in Cox 1986 and Stroustrup
1986, 1988. Its use in simulation
Roberts and Heim 1988.

modeling.

i1s discussed in

Abstract Data Types

Data abstraction allows the programmer to
create data structures which can then be manipulated
in the same way and with the same level of efficiency
as language-defined types (such as int and float). The
key construct to implementing abstract data types in
C++

realization or instance of a class.

An object is a particular
A class is defined

is the class.

to have both a private and a public part. The private
part is essentially a data structure in the tradition of
Pascal and C. The elements of this data structure are
referred to as "member variables." Class member
variables are hidden from the outside world except for
functions which are explicitly given permission by
the programmer of the class with the designation (in
the class declaration) of "friend.” The public part of a
class is a declaration of friend and "member"
functions and operators. A member function (or
operator) is defined with the class while a friend is
defined external to the class (possibly with another
class). The important thing to note is that only
those functions which are explicitly declared as
members or friends may access class member
variables. Functions and operators may be
"overloaded"”, that is, having multiple definitions
each distinguished by the set of operands or
arguments types; the compiler selects the correct

interpretation at run time based on these types.

Encapsulation

Encapsulation and overloading are the key
elements of OOP which distinguish it from other
programming paradigms. The encapsulation
principle refers to the design of classes as self-
With conventional
programming methods, the data structures and the

functions which use or change the data are developed

contained program units.

with knowledge of each other but separately. Under
this paradigm, a programmer is free to use the data
but the
responsibility of assuring that the access is correctly

structures developed elsewhere,
performed is left to the user, not the original
developer of the structure. This, of course, facilitates
the creation of new uses for old data structures. It also
requires that the user have a detailed knowledge of the
data structure and other accessing functions so as (o
cffectively implement the new functions. Clearly,
there is a significant risk of data corruption as new
functions are added to the access base.

302

Encapsulation requires that present and
future uses for a data structure be explicitly
recognized by the developer of the data (a class) and
that the the data (member
variables) and the outside world be declared (as
member or [riend functions). As such, the class is a
black box which offers a selection of services but
hides the details of how these services are actually
performed within the member functions. The
responsibility for designing the interface between
the class and the outside world is transferred to the
developer of the class. This leads to the design of a

interface between

class as a self-contained encapsulated programming
entity, which in turn leads to rcusable code. Reusable
code is the motivation for OOP!

Overloading

The overloading construct of C++ is a very
cleaver approach to the generalization of functions
and operators. The key concept here is that the same
operator symbol (e.g., +, -, *, etc.) or function name
can refer to different procedures; the specific
procedure chosen will depend upon the object type(s)
supplied as operands or arguments. In conventional
programming languages, this property exists for
operators and language-defined types; e.g., in C, the
"+" operator is defined for both int and float types.
Overloading allows for the extension of this
property to operators and functions concerned with
the manipulation of user-defined types (i.e., objects).

Inheritance

Inheritance allows for the construction of a
class to include all the members (data and functions)
of another class. The class whose members are
included is called the base class; the class being
constructed from the base class is called the derived
class. Inheritance encourages the design of classes
with the object of creating "building block" and a
hierarchical set of classes. This also promotes
reusable code since a new class is more easily
constructed from an old class which already has some

(but not all) of the desired members.

3. C++ AND SIMULATION

C++ presents an excellent language base
from which to build simulation models. This is true
regardless of the world-view being employed. There

is a natural analogy which may be made between the
physical objects of the system to be simulated and
C++ classes. This is clearly true for entities such as
"customer”, "machines”, "bank clerks" and is also
appropriate for more abstract system elements such
as "files", "sets", "statistics", etc.

4. DISC++

DISC++ consists of two libraries of C
functions and C++ classes which support the
development of simulation models using the
ZORTECH C++ compiler. The first library
consists of basic tools which are used to perform the
"mechanics” of discrete event simulation. These are
objects which enable the creation and manipulation
of records and files, the passage of simulated time,
the generation of random variables and the collection
and reporting of statistics. There are also objects
which are used to create a user environment such as
windows, plots and interrupts. This library contains
all the elements necessary to support the use of the
event scheduling world-view for simulation. The user
writes the event logic as C routines or C++ objects
and defines access to library objects through function
calls which have been declared as "virtual friend" in
the class declaration (a virtual function is one which
has been declared but not defined in the class
declaration).

The second library consists of a set of C++
the
development of object classes to support a process

classes which serve as base classes for
interaction world-view of simulation modeling. This
functionality includes both the processes/resources
implementation (as exemplified by SIMSCRIPT
I1.5) and the network implementation (prominent
in SLAM and SIMAN). The following discussion

will illustrate the use of network constructs.

Consider a simple network model of a
single server queueing system as shown in figure 1.
The network consists of five elements (or objects).
There are three types of nodes: a g_node
(generator), a q_node (queue) and a t_node
(terminator). The first arc (ARC_1) serves to direct
the path of flow. The second arc (ARC_2) directs
flow and represents the service activity. The
customers are represented by an object class called
"record.”

303

g_node t_node

ARCA1 ARC2

Figure 1. Network diagram for
a single server queue.

Class declarations of these elements are
given in listings 1 and 2. The record class consists
of four member variables: last_rec, id_no, i_array
and f_array. The last_rec member is declared as
"static,” indicating that a single location in memory
is shared jointly by all existing instances of the
class record. The last_rec member is initialized to
zero and incremented each time a new record is
created. The new record’s id_no member is set equal
to last_rec before it is incremented, thus providing a
unique and sequential serial number for each instance
of the class record. The i_array and f_array members
point to arrays of integer and float attributes
respectively. Customer related attributes such as
"time of entry to the system", etc. can be stored in
the integer and float attributes. For this simulation,
there is no need for entity attributes and these
pointers could be set to NULL with the constructor
Other
member functions are included to set and return the

function call (the first member function).
current value of the attributes.

The link class is provided to place record
objects into files without adding members to the
record for

storage of predecessor/successor

information. Although this scheme takes more
memory, it allows the same record object to be in
multiple files at the same time. The constructor for
the link class has two arguments which pass pointers
to predecessor and successor links when the link is
created. The two classes file and file_iterator are
declared as “friend" permitting objects of these
classes access to link private members. The code for
member functions and the class declaration for

file_iterator are omitted in the interests of brevity.

The file class has five member varnables: a
unique I.D. number, pointers to the first and last
links in the file, the file capacity and the current
number of links in the file. The constructor has two
arguments which determine the id_no and capacity
the file

functions are declared to insert links into a file.

Two member
The

values when is created.

first, with void as the argument, will place the link at
the end of the list (as in a FIFO queue). The second
insert function has an integer argument k; the link is
placed in the kth position from the top of the file.
This is a good example of function overloading in
C++. The task of removing a record from the file can
be performed in two flavors also, analogous Lo the
insert functions.

Listing 2 displays the class declarations of
The g_node class is
created by calling its constructor, specifying the 1.D.

the network components.

number, the total number of record objects to be
generated and a vector of indices for arcs which may
be selected to receive the record. The function to
determine the (random)
creations, schedule_next(), is declared to be "virtual”

time between record

and must be defined by the programmer. The control
class is declared as a friend. It contains the functions
to manage the simulation calendar and execute
events. As each record is created, its path is selected
by
supplied by the programmer. The variable member
count is incremented and compared to the member

the virtual function select() which is also

total_count. If the count is equal to the total_count,
the process is terminated.

The q_node class is derived from the file
class. It inherits all the member variables and
In addition to the
members provided by file, it has members of its own
to identify the possible sources and dispositions of
records (input_arcs and output_arcs, respectively). It

also has member variables

functions of the file class.

which are used as
accumulators to collect simulation data necessary to
compute the mean and standard deviation of the the
number of records in the queue. The destination of
records leaving the q_node must be selected with a
user provided function select().

The t_node class is also derived from the
file class. It collects records in its file and destroys
them. Each record terminated causes the count
member variable to be incremented by one. When
the count is equal to (or greater than) the total_count
member variable, the simulation is halted and run
statistics are gencrated and reported.

The arc class is derived from the file class to
provide the capability to simulate multi-channel
service systems. The (random) service time is
determined by the virtual function schedule_next()

which must be supplied by the programmer.

304

Note that the example code is incomplete in
that only the class declaration is provided; the
function definitions are excluded to keep the
presentation of reasonable length. It should also be
noted that the class structures are "stripped down"
versions of the node structures which would be
required for more complex networks (included in the
DISC++ library). The objective of this paper is to
illustrate the ease with which process interaction
models may be constructed using DISC++ library
classes. This simplicity is illustrated in listing 3
which details the main() program implementing the
The first two
as]

simple network model of figure 1.
declarations of main() declare the two vectors
and as2. The first vector asl is used to prescribe the
set of arcs which emanate from node 1 (the g_node).
In this example, it is also the list of arcs terminating
in node 2 (the q_node). Vector as2 is the list of arcs
emanating from (terminating in) the q_node (the
t_node). In each vector, the first element is used to
store the number of arc indicies in the vector; i.e.,
the list defined by asl has one arc, indexed

number 1 (i.e., as1[1] = 1).

as

The next five lines of main() invoke the
constructors of the network elements. The arguments
for the g_node indicate the node 1.D., the generate
the of
respectively. The "-1" given as the argument for the

number and set emanating vectors
gencration count is interpreted by the constructor
function to indicate that the number of created records

1S not to be limited.

The net_sim function constructs a control
object (not included in the listings) which has the
functions which manipulate the calendar and control
the simulation. The single argument to this function
call is a float number indicating a termination time
value. If the simulation is not terminated by the
expiration of a t_node, the simulation will stop when
the simulated time reaches or exceeds 1000.0 units.

S§. CONCLUSIONS

First and foremost, the conclusion reached
is that C++ and DISC++ offer a simulation
language/methodology of
consideration for the future of computer simulation.
The main advantage of DISC++ is that the user can
choose the level of programming sophistication and
world-view which best fit his/her own abilities and
the particular system to be modeled. DISC++
supports both the event scheduling and process

worthy serious

interaction world-views or a combination of the two.
DISC++ is totally compatible with one of the most
popular microcomputer-implemented languages
available today, C, and the language with the fastest
popularity growth rate, C++.

The simplicity with which process
interaction models can be developed is illustrated by
the example presented in section 4. Although the
total number of lines of code in listings 1-3 seem
excessive for such a simple simulation (and of course
they are!!), it should be noted that listings 1 and 2
contain class definitions which could become
"standard" modules self contained (encapsulated) and
used again and again to construct simulation models.
For such "standard" network classes, a considerable
amount of additional design work would be required
(and warranted). More complex and specialized node
classes could easily be derived by sophisticated users
from simpler node classes exploiting the
fundamental concept of OOP. Once designed, these
classes could be incorporated into new and more
powerful libraries extending the modeling
capabilities for all levels of users.

Although we have chosen to focus here on
the development of network classes, it should be
clear that a wide range of classes could be designed to
facilitate the development of simulation models for
specific system types. For example, it would be
relatively easy to design classes of objects to
represent elements of a material handling system
(e.g., classes of conveyers, AGVs, carousels, trucks,
etc.). Similar applications can be made to
communications, health care, and flexible
manufacturing systems. Again, DISC++, with the
help of C++, allows the user to choose model
components from an expanding library of already
defined classes or to construct his/her own model
components, possibly derived from the library
classes.

REFERENCES:

Cox, Brad J., Object Oriented Programming,
Addison-Wesley, 1989

Pegden, C. Dennis, /ntroduction to SIMAN,
Systems Modeling Corp., 1982.

Pritsker, A. Allan B., Introduction to Simulation
and SLAM 11, 3rd edition, John Wiley &
Sons, 1986.

Roberts, Stephen D. and Joe Heim, "A Perspective on
Object-oriented Simulation,"”
Proceedings of the 1988 Winter
Simulation Conference, Dec. 1988.

Russell, Edward C., Building Simulation Models with
SIMSCRIPT 11.5, CACI, 1983.

"C Based Discrete Event
Simulation Support System,”
Proceedings of the 1988 Winter
Simulation Conference, Dec. 1988.

Selvaraj, S. et al

Stroustrup, Bjame, The C++ Programming Language,
Addison-Wesley, 1986.

Stroustrup, Bjarne, "What is Object-Oriented
Programming?", IEEE Software

Magazine, May 1988.

305

/f----- CLASS RECORD -----
class record
{
static int last_rec; // A global counter
int id_no; /! A unique 1.D. number
/] Array of int attributes
// Array of float attributes

int* i_array;
float* f_array;
public:
record(int* i, float* f); // Constructor
get_id(); // Returns the 1.D.
get_ia(int k); // Returns the kth int attrib.
get_if(int k); // Returns the kth float attrib.
set_ia(int k, int j); // Set int attrib. k to
set_if(int k, float f); // Set float attrib. k to f
)

/----- CLASS LINK -----
class link
{
link* predecessor; // Pointer to predecessor link
link* successor; // Pointer to successor link
record* rec;
public:
link(link* p, link* s); // Constructor, place at
// end of file
// File objects need
// access
friend class file_iterator; // Member functions of
// this class facilitate file
/[search

// Pointer to a record object

friend class file;

/|-—--- CLASS FILE -

class file

{
intid_no; // A unique I.D. number
link* head; // Pointer to the first link

link* tail; // Pointer to the last link
int capacity; // The maximum allowable no. of
// links
int count; /] The number of links in the file
public:
file(int k, int ¢); // Constructor
friend class file_iterator; // File scarch methods
int insert();
int insert(int k);
record* remove();

// Insert record at end
// Insert at position k
// Remove first record

record* remove(int K); // Remove kth record

Listing 1. record, link and file class

declarations.

306

----- CLASS G_NODE -----
class g_node
{
int id_no; // Unique 1.D. number
int* output_arcs; // Vector of output arc no.s
int total_count; // Maximum no. of records to
// create

int count; // Count of records generated
public:
friend class control; // Simulation control

// pgm.
g_node(int k, int t, int* as); // Constructor
virtual schedule_next(); // Schedule the next
// gencration
virtual int select(); // Select output arc

----- CLASS Q_NODE -----

class q_node: public file

{ // q_node is a class derived from the class file
int* input_arcs; // Vector of input arc no.s

Int* output_arcs;

float t_last;

/I Vector of output arc no.s
// Time of last change in que,
// delta_t = t_now - t_last
// The following are used to calculate mean and
/] variance for line length (file count)
float sum_count; // Sum of count*delta_t
float sum_count_sqrd; // Sum of
// (count*delta_t)A2
public:
friend class control; // Simulation control pgm.
// Arcs need access
g_node(int k, int* p, int* q); // Constructor
virtual int select(); // Select output arc

friend class arc;

I1----- CLASS T_NODE -----
class t_node: public file
{ //t_nodc is a class derived from the class file
int id_no; // Unique 1.D. number
int* input_arcs; // Vector of input arc no.s
int count; // Cumulative terminations
int total_count; // Maximum terminations
public:
friend class control; // Simulation control pgm.
t_node(int k, int t); // Constructor

IR

Listing 2. Network component classes
(continued on next page).

f----- CLASS ARC -----
class arc: public file
{
int arc_id; // Unique 1.D. number
int input_node; // Input node
int output_node; // Output node
public:

friend class control; // Simulation control Pgm.

friend class q_node; // nodes need access
friend class g_node;
arc(int i, int j, int k); // Constructor
virtual schedule_next(); // Schedule the next
/[release
virtual scan_node(); // Scan next node for
// permission to enter
b
Listing 2. Network component classes
(continued from previous page).

/----- NETWORK SIMULATION PROGRAM -----
#include "network.hpp"
main()
{
static int as1[2] = {1, 1}; // Define an arc set
// with 1 element equal
/[0 1.
static int as2[2] = (1, 2}; // Define another arc
// set with 1 element
/] equal to 2.
// Invoke the g_node
// (node no. 1)
// Invoke arc no. 1
/[(path only)
// Invoke the q_node
// (node no. 2)
// Invoke arc no. 2
// (activity)
// Invoke the t_node
// (node no. 3)
// Invoke the simulation

g_node(1, -1, asl),
arc(1, 1, 2);
q_node(2, asl, as2);
arc(2, 2, 3);
t_node(3, 1000);
net_sim(1000.0);

/[control program.

}

//--- SELECTION AND TASK TIME ROUTINES ---

/1

// The following virtual functions must be

// provided by the user or chosen from those

// available in the DISC++ library.

/1

g_node::schedule_next()

{ // code to determine random time to next record

// creation

307

}

g_node::select_node() { return output_arcs[1];}

q_node::select() { return output_arcs(1]:}

arc::schedule_next()

{ // code to determine random time to release of
/] record

)

arc::scan_node()
{ // code to determine if output_node can accept
// record

)

Listing 3. Network simulation program.

AUTHORS' BIOGRAPHIES

Eric L. Blair is an associate professor in the
Department of Industrial Engineering at Texas Tech
University. His current research interests range from
combinatorial programming to the development of
simulation modeling languages. He received a B.S.
in management engineering and a Ph.D. in
operations research and statistics from Renssclaer
Polytechnic Institute and the M.B.A. degree from
Rochester Institute of Technology. Prior to joining
Texas Tech, he was a member of the faculty at North
Carolina State University and Rensselaer. He has
been employed as an industrial/manufacturing
engineer by Xerox and Raytheon.

Sathyakumar Selvaraj is a graduate student
in the Department of Industrial Engineering at Texas
Tech University pursuing his Ph.D. degree. He
received his B.E. degree in mechanical engineering
from Anna University (Madras, India) and the
M.S.1.E. degree from Texas Tech. His research
interests include computer simulation and factory
automation.

