Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

SIMPLE_1: THE LANGUAGE & MODELING ENVIRONMENT

Philip Cobbin
Sierra Simulations & Software
RR#2 Box 918B
Canaan, New Hampshire 03741
(603) 523-9645

Abstract

SIMPLE_1: (SIMulation Program for Logistics
Engineering) is a simulation language and
integrated environment for IBM PC and
compatible computers which blends visual and
interactive modeling features with C, Pascal, and
object oriented programming concepts. SIMPLE 1
is a discrete and a continuous simulation language
implemented as a modeling environment with
integrated editor, documentation, diagnostics, and
tutorials. The language has undergone continued
refinement from introduction in 1985 and features
user defined variables, procedures, and an object
oriented procedure concept called a process. A key
element in the language is a rule based construct
called a CONDITIONS block which defines rules
for releasing entities from queues.

Introduction

SIMPLE 1 supports modeling discrete and
continuous systems world views using a network
modeling orientation. Features of the language
include the ability of the user to declare variables
and statistics requirements, perform I/O
operations on files and to animate simulation
results in real time. Both text and bit-mapped
images can be imported by models in the latest
version of the language for animation and graphic
display purposes. The language is reported to
have a more natural syntax than other simulation
languages [Van Houten 1988], due in part to a
more close resemblance to high-level programming
languages and the free-format syntax of the
language. The current version 4.0 release is more
than two and half times faster than the previous
release. With language constructs principally
developed the performance aspects of SIMPLE 1
have been refined.

Discrete system models are defined via networks
used to define the flow of events for entities. A key
concept in SIMPLE 1 is the ability to organize
entities into groups which travel together and

retain their unique characteristics. In addition,
groups of entities can be assembled as a collection
of different types. The entity grouping feature of
the language is particularly suited for modeling
complex resource management situations typically
encountered in logistics, health care and industrial
systems.

Integrated Modeling Environment

The implementation of SIMPLE 1 is organized
into a set of modules accessed by a pull down menu
system. The editor is an integral part of the
software. The user’s perspective of the software
environment is that of working from the editor so
that while editing a file the compiler can be called
to compile and run a simulation. Multiple files can
be edited with file size limited to the amount of
DOS RAM available on the system. When a
compiler or run time error is detected the software
returns the modeler to the editor and points out
the source of the problem. This system is linked to
a hot-key syntax look up routine to aid in
debugging. The text editor is also the principle
means for reviewing model reports and editing data
files.

To facilitate learning the system, extensive
language documentation is accessible quickly using
the keyboard function keys. On-line syntax and
theory of operation information for language
concepts further support the debugging of models
and learning the system.

Animation of simulations uses SIMPLE 1
language elements to direct updating of the
monitor to reflect the changing state of the
simulation model. A debugging facility is included
in the run time system to interrupt the model and
review or change program variables. The character
and bit-mapped animation schemes combined with
the run time debugger have been found
particularly useful for model verification and
problem isolation.

281

Run Time Debugger

The run time debugging facility like the editor is an
integral part of the environment. The event
scheduling aspect of discrete event model execution
makes simulation models particularly difficult to
debug using traditional debugging approaches.

The SIMPLE 1 debug facility is a menu driven
system to interactively investigate the status of a
model while it is running. The menu system is
popped up when a key is depressed during the
execution of a simulation. The debugging
subsystem allows the user to:

o Halt/Continue the simulation.

o Lookup and change global variables in the
model.

o View and Change block contents

o View and change the value of individual
entity attributes.

o Obtain a report on current simulation
results.

o Temporarily exit to a DOS shell.
Language Concepts

The language was developed to provide a concise
set of basic building block constructions for
modeling discrete and continuous systems. A
network approach to modeling has been found to
be a highly effective vehicle for describing and
documenting models. An activity on node
orientation is used in the language documentation.
SIMPLE 1 provides basic modeling primitives that
are employed using a block diagramming concept
coupled to general purpose programming language
elements for manipulation of data structures. A
repetitive approach to run control, based on
Continuous System Simulation Languages was
merged with discrete system modeling concepts to
provide a unified structure for modeling.
Declaration of variables is required in SIMPLE 1
to avoid the casual declaration problems inherent
in languages like FORTRAN and to provide a
means of flagging statistics collection, integration,
and event triggering conditions.

Code organization is designed to segregate variable
declaration, model definition, and run control code
elements of a simulation program. SIMPLE 1’s
code is organized into five sections associated with
key the words: DECLARE, PRERUN, DISCRETE,
CONTINUOUS, and POSTRUN. The DECLARE
section is used to define data structures such as
entities and global variables. SIMPLE_1 uses
repetitive run control with a PRERUN and
POSTRUN phase of model processing. A program
initially executes with the PRERUN being called to
set model variables and bind run control
parameters. When the PRERUN code completes
execution, the processing of entity movements
through SIMPLE 1 blocks to model discrete
processes is performed. Discrete event aspects of
the model are defined using an activity on node
network structure. The discrete segment of the
model is processed by an event scheduling
mechanism to sequence the flow of entities through
blocks in the network model. Simulation of the
CONTINUOUS elements of the system is executed
by numerical integration of continuous variables
using INTEGRATE blocks to define variable
relationships. Using SIMPLE 1's repetitive
approach to run control one can look at the results
of a simulation to establish parameter values for
the next run. The Continuous aspects of the
system model are described using algebraic state
equations which define variables via first order
differential equations. The Continuous aspects of
the model are simulated using either a Runge
Kutta fourth order fixed step, or a Fehlberg
integration procedure with the step size assignable
by the modeler.

The language is similar to Pascal in that one syntax
error tends to cascade into a large number of ghost
errors. Accordingly, the detection of syntax errors
during compilation halts after the first error and

calls the editor after displaying a diagnostic
message.

SIMPLE 1 variable identifiers can have up to 20
significant characters including the underscore
character to facilitate self documentation of the
model. The language supports the declaration of
the following classes of code and data structures:

Global variables

Scalars and arrays with single or
double subscripts.

282

Entities Discrete objects, having their own

unique number of attributes.

Screens Windows with associated text for
model animation and menus.

Files File variables to control reading from
and writing to files and logical devices.

Strings String variables for handling text

information.
Procedures User written subroutine procedures.
Process Packaged sub-models called like a

procedure, but involves the simulation
of time in the body of the routine.

Statistics on variables of an Observation or Time
Persistent nature are collected automatically by
appending key words to the variable declaration.
When statistics are declared for arrays; the
statistics are collected for each element in the
array; accordingly SIMPLE 1 models can collect
extensive statistics on model variables.

Block Constructs

SIMPLE 1 employs eight (8) basic block types to
define discrete and continuous models. The brevity
of language concepts for discrete system modeling
is due to the flexibility of the CONDITIONS block.
The CONDITIONS block is a fundamental concept
of the language. The eight fundamental blocks
types are:

ACTIVITY Place entities in an activity for a
specified amount of time.

BRANCH Select between alternative pathways
in the model.

CONDITIONS
Define rules for releasing entities from
queues.

CREATE Create entities in the model.

INTEGRATE
Define state equations for continuous
variables.

KILL Disposal of entities when they are no
longer needed.

QUEUE Queue entities wuntil specified
CONDITIONS are met.

SET Assign variable values to describe

changes in system state.

There are a total of 37 block constructs in the
language including the specialized PROCESS and
PROCEDURE block types. The block types are
summarized in Table One below. One third of the
block types are Input-Output type blocks for
operations on files and interaction with the video
display.

BASIC
ACTIVITY
BRANCH
CONDITIONS
CREATE
INTEGRATE
KILL
QUEUE
SET

FLOW CONTROL
IF-THEN-ELSE
WHILE-END_WHILE
PROCEDURE
PROCESS
RETURN

REPORT WRITIEG
REPORT

RUN CONTROL
CLEAR

RESET

SHELL

STOP

INITIALIZATION
INIT_GROUP

EVENT MONITORING
MONITOR

FILE I/0
CLOSE
OPEN
READ
WRITE

VIDEO I/0: CHARACTER
ACCEPT

CHART

SCREEN

SHOW

VIDEO I/0: BIT-MAP
ACCEPT

LINE

PLOT

SHOW_OBJECT

ENTITY GROUP
CLONE
ENTITY_MSG
PREEMPT
REGROUP
RERANK

SPLIT

Table 1: Summary of SIMPLE_1 Block Types

Entities

Entities are conceptual objects that travel alone or
in groups through SIMPLE _1 blocks. Entities are
created by name and have their own unique
attributes. If one were modeling the assembly of
computer mother boards for example, entities with
identifiers like: CPU_BOARD and CHIP_SET

283

might be declared, each with differing attribute
requirements. CPU_BOARD can be declared to
have one attribute and CHIP_SET entities can
have, say, five attributes associated with them.
Entities are created by name in SIMPLE 1 models
and can be brought together into groups. Entities
formed into groups do not lose any of their
attributes in SIMPLE 1. Manipulation of entity
attributes by name simplifies the reference of
entity attributes for entities traveling in groups and
tends to improve the documentation aspects of
SIMPLE _1 models.

Groups of Entities:

The CONDITIONS block is used to release entities
from queues. Entities are a dynamic type with
each entity type defined by a unique identifier i.e.
TV, ForkTruck. The CONDITIONS block can
release multiple QUEUES as a set and organize
the released entities into a group of entities. Entity
groups in turn are viewed as traveling together and
can share attributes. Constructs in the language
allow further processing on groups of entities to
SPLIT them wup, CLONE the groups, or
REGROUP their relative ordering.

Manipulation of entity attributes by their unique
name simplifies referencing attributes and
improves the self documentation of models. When
entities are organized into groups the ~ operator is
used in referencing individual entities. For
example, If televisions go by the name TV and each
has four attributes then

V@)~ 5

would reference the third attribute of the fifth TV
in a group of TVs.

The entity grouping feature of the language is
particularly suited for modeling assembly
operations in manufacturing and complex resource
management situations.

Key Language Elements

The two key block types of SIMPLE 1 are the
CONDITIONS block and the INTEGRATE block.
The INTEGRATE block is used to define
differential equation relationships and the
CONDITIONS block controls releasing entities
from QUEUE blocks in the DISCRETE section of

the model. The CONDITIONS block was
developed to provide a highly generalized rule
based queue release mechanism. The syntax of the
CONDITIONS block specifies a logical condition, or
conditions, required to leave a list of queues bound
to the CONDITIONS block. When all the queues
listed for release by the CONDITIONS block have
at least one entity, and all logical relationships are
detected to be true, the CONDITIONS block
executes a series of releases from the queue(s) to
the specified blocks in the model The
CONDITIONS block forms a concise definition of
constraints affecting entity flow and assembly of
entity groups. In a basic queue/server
relationship, a CONDITIONS block is used to
associate a specific QUEUE with an ACTIVITY
block.

In most situations you start modeling the main
processes and add embellishments to capture
additional constraints on system operation. In a
model of a CPU assembly process for example, one
would typically start by modeling the basic
production process and add additional detail in
stages as required for such complexities as
subassembly part logistics and so forth. The
assembly aspects of system operation can have a
dramatic bearing on the performance of the system
and SIMPLE_1 has features especially useful for
modeling assembly constraints in models of
manufacturing processes. To add in an assembly
constraint to a model of the CPU’s basic process
flow , one would add queue(s) to store the required
key part/subassembly entities and augment the
conditions block.

Discrete Modeling

Discrete event aspects of a model are defined using
an activity on node network structure. The
Continuous aspects of the system model are
described using algebraic state equations which
define variables overtime via first order differential
equations. The continuous aspects of the model
are simulated using a Runge Kutta or other
supported integration method with the step size
assignable by the modeler.

The Discrete aspects of the model are processed
via an event scheduling mechanism to sequence the
flow of entities through blocks in the network
model. The Discrete event processing algorithm

284

evaluates and resolves interdependence conditions
in the model prior to advancing to the next event.

An example of a MM1 queuing system model in
SIMPLE _1 would look like:

DECLARE;
GLOBALS: TimeInSystem OBSERVE_STATS;
ENTITIES: CUSTOMER(1);
END;
PRERUN;
SET STOP_TIME :=
END;
DISCRETE;
CREATE, 1, CUSTOMER, EXPON(5.0,1);
SET CUSTOMER(1):=STIME;
WaitServer
QUEUE,FIFO;
CONDITIONS,NUM(Service)<l1,
WaitServer, ,Service;

1000;

Service
ACTIVITY EXPON(4.5,1);
SET TimeInSystem:=STIME-CUSTOMER(1);
KILL;
END;
CONTINUOUS; END;
POSTRUN;
REPORT;
STOP;
END;

Figure 1: SIMPLE_1 model of an MM1 Queueing system

Where the CREATE statement is generating the
arrival stream and the QUEUE-CONDITIONS-
ACTIVITY statement sequence is modeling the
servicing of entities waiting in the queue. The
CONDITIONS statement in this model is used to
specify the conditions necessary for a customer to
leave the queue and enter the service activity.
Cornerstone Concept: The CONDITIONS
block:

The CONDITIONS block is used to define the state
conditions required for entities to leave queues.
The block is the cornerstone of the language and
provides a unified queue release mechanism. The
block functions somewhat analogous to a
chameleon, in that a CONDITIONS block can be
configured for a diversity of queue release
constraints in much contrast to traditional discrete
simulation languages. In a basic queue-server
relationship a CONDITIONS block is used to
associate a specific QUEUE with an ACTIVITY
block. The CONDITIONS block is the principal
means for formation of groups of entities and is

285

readily applied to modeling assembly constraints in
manufacturing.

Notably absent in SIMPLE 1 is the concept of a
resource for modeling complicated queue-server
relationships. SIMPLE 1 does not employ
resources because the CONDITIONS block is used
to model simplistic and complex resource
situations. Key system resources in SIMPLE 1
models are typically modeled as entities that are
grouped with other entities while in use and SPLIT
from the customer and routed to a QUEUE when
the resource entity becomes idle. The advantage
inherent in modeling resources as a separate entity
type is the ability to model explicitly the decision
making processes of the resource inclusive of the
resources own attribute state. For example, the
entry of passengers onto a bus is typically a
function of the route assigned to a bus.
Accordingly, modeling such a situation in
SIMPLE 1 involves modeling decisions based on
passenger attributes and bus system state
variables.

The CONDITIONS block has proved to be a
flexible and powerful construct of the language.
The block ties together SIMPLE 1’s basic set of
discrete simulation primitives namely the QUEUE
and the ACTIVITY block. A MONITOR block
construct operates in a similar fashion as the
CONDITIONS block by monitoring specific aspects
of the simulation and is typically used to drive real
time animation of simulation results. As changes
occur in the model during an event the affected
MONITORSs are executed prior to advancing to the
next event. For example when an INSPECT
activity is started or completed a MONITOR is
used to detect the change in state of the activity.
As a side affect of the INSPECT activity changing
state a MONITOR block would be used to update
information on the screen to show the current
number of INSPECT activities in progress.
MONITOR statements in general are used for
driving model animation and in tandem with
CONDITIONS block for calculation of decision
making variables.

The CONDITIONS block concept also supports
building models in stages. In most situations you
start off modeling the main processes and add
embellishments to capture additional constraints
on system operation. When modeling assembly of a
product one can start by modeling the basic process

sequence and add part queues later to capture the
affects of assembly constraints on the overall
efficiency of the system. In addition, blocking, and
other constraints on system operation can typically

be added in stages without a major restructuring of
the model.

Continuous Modeling

The INTEGRATE block type is used to define
differential relationships among model variables.
The values of integrated variables are obtained
numerically using either a fixed or variable step
Runge Kutta integration procedure.

A model of a rocket fired vertically illustrates the
basics of CONTINUOUS SIMPLE 1 modeling. In
this example a rocket is fired vertically with a
thrust equivalent of 3500 Kg. The rocket burns
propellant at the rate of 20 Kg/second. While
burning propellant the rocket is thus losing mass at
the rate of 20 Kg/second. The rocket weighs 300
Kg empty. Factors that influence the height
attained by the rocket are the drag produced in
flight, the amount of fuel loaded into the rocket,
etc. The source code for this example model is
listed below.

The height versus time attained by the rocket is
calculated by integrator number one (Fehlberg
procedure). The Runge Kutta Fehlberg method
uses the CONTINUOUS segment of the model to
sample derivative values for the WT FUEL,
VELOCITY, and HEIGHT state variables. There
are four blocks which define the CONTINUOUS
segment. The SET block is used to update a
variable for tracking the maximum height attained
by the rocket. The SET block also defines the drag
force for the rocket which is a constant (K) function
of the VELOCITY squared. Notice that the square
of the velocity is calculated with a call to the
SIMPLE 1 absolute value function to sign the drag
force by direction of action. The Thrust is set to 0
or 3500 depending upon whether there is still fuel
on board the rocket. The function of the maximum
function for setting the WT FUEL variable is to
avoid negative intermediate integration step values
for fuel quantity.

286

DECLARE;
GLOBALS:
VELOCITY INTEGRATED:
HEIGHT INTEGRATED:
WT_FUEL INTEGRATED:

BURNING: K: G: MAX HEIGHT: THRUST: WT_ROCKET:
DRAG;
STRINGS: temp;
END;
PRERUN;
SET
STOP_TIME = 150: STEP_SIZE = 0.25:
WT_RECKET = 300: max_step :=0.5:
integrator = 1: K := 0.05: G := 9.81:
absolute error :=0.01: relative_error := 0.00001:
BURNING = 20: HEIGHT := O0: VELOCITY :=
0:
MAX_ HEIGHT := 0: THRUST :=3500;

{ Initial setting of derivatives}
INTEGRATE WT_ FUEL:-BURNING;
INTEGRATE
VELOCITY :G* (THRUST-DRAG) / (WT_ROCKET+WT_FUEL)-G;
INTEGRATE HEIGHT : VELOCITY;
{ Show message and get initial WT_FUEL value}
SHOW,
5,4,’INPUT FUEL IN RANGE 500..1600:’,0,0,15,0;
ACCEPT, 38,4 ,WT_FUEL,500,1600;
END;
DISCRETE;
END;
CONTINUOUS;
SET DRAG:=K*VELOCITY*ABS(VELOCITY);
INTEGRATE
WT_FUEL
INTEGRATE
VELOCITY :G* (THRUST-DRAG)/ (WT_ROCKET+WT_FUEL)-G;
INTEGRATE
HEIGHT :
SET
MAX HEIGHT:=MAX(MAX HEIGHT,HEIGHT):
WT_FUEL:=WT_FUEL* (WT_Fuel>0):
THRUST:=3500* (WT_FUEL>0);
END;
POSTRUN;
{Show results....}
SHOW, 5,5, ‘Maximum height :’,0,0,13,0;
SHOW,22,5,MAX_HEIGHT,8,2,12,0;
SHOW, 5,6, ‘Press enter key when finished’,0,0;
ACCEPT, 5,7, temp;
STOP;
END;

:~-BURNING* (THRUST>O0);

VELOCITY;

Figure 2:

SIMPLE_1 Continuous model of a simple
rocket

After the set block executes, three INTEGRATE
blocks are used to define rate of change for the
VELOCITY of the rocket, its HEIGHT and the
amount of fuel (WT FUEL) on board the rocket.
The rate of change in VELOCITY for the rocket is
a function of the THRUST, DRAG, and mass of the
rocket. The mass of the rocket being defined as
the sum of the WI' ROCKET and the WT_FUEL.
The rate of change for the fuel amount is a function
of the burn rate of the rocket motor. When the
fuel is exhausted the burn rate, by definition is
zero. The last INTEGRATE block establishes the
rate of change in height for the rocket which is
defined by the VELOCITY of travel.

I/ O and Animation:

The language has input and output concepts for
both file I/O and screen animation with the screen
being updated while the model is running. Block
constructs in the language control I/O to the
screen, keyboard and to DOS. Screen I/O
constructs include mechanisms for writing ASCII
characters and numbers coupled with template
images. The character and number based display
formats of SIMPLE 1 combined with screen
generation features of the language form a
character based animation capability.

Bit map graphics are supported for CGA, EGA, and
VGA equipped systems. A TSR frame grabber is
supplied to grab bitmap images created with one of
the popular PC graphics programs (Dr. Halo (tm),
or DeluxePaint II (tm) etc.). The frame grabber is
used to capture the image into the proper format.
Graphic icons are "lifted" off of the grabbed artwork
image using a menu driven icon grabbing tool.
Language constructs allow the modeler to load bit
mapped image backgrounds, and load/display
graphic icons for animation. Plotting is supported
with a LINE drawing and a point DRAW block type
in addition to the animation of icons.

In summary, SIMPLE 1 supports file and screen
I/O Operations associated with:

1) Character display

o SCREEN activation to display a text
background.

o SHOW block to display numeric values on
a screen.

o CHART block to display characters on a
screen.

o ACCEPT block for reading variable
values from the keyboard.

2) Text File

o READ and WRITE blocks for file
input/output supporting reading form
text files and both writing to or appending
information to text files.

287

o OPEN and CLOSE blocks for managing
files during model execution.

3) Bit Mapped

o LOAD IMAGE to load and display a bit
mapped screen image file.

o SHOW_OBJECT to display a graphic
ICON.

o PLOT and LINE blocks for bit-mapped
plotting of variables.

SIMPLE 1 Object Oriented Programming
concepts

Object oriented programming languages ala
Smalltalk are based on the Simula simulation
language and emphasize message sending among
objects to accomplish programming tasks.
Fundamental properties of OOP languages are:
abstraction, encapsulation, inheritance, and
polymorphism. SIMPLE 1 was developed
independently from the OOP community.
SIMPLE 1 is not a pure OOP language but it does
possesses OOP like characteristics. The language
supports the application of OOP methods while
differing from OOP languages such as Smalltalk by
being more closely related to high level
programming languages. SIMPLE 1 differs from
the OOP constructs by requiring a less rigorous
adherence to polymorphism and encapsulation.
The implementation of SIMPLE 1 has evolved to
require less run time binding of variables to
improve execution speed with current development
efforts migrating to that of a compiled language.
The CONDITIONS block in particular maximizes
binding of event dependencies at compile time for
efficient evaluation of queue release conditions at
run time. SIMPLE 1 is in essence a blending of
Simulation concepts with block oriented procedural
languages such as C and Pascal. The four
fundamental concepts of OOP languages do
however form a good outline for surveying
SIMPLE _1 concepts.

Abstraction:

Simulation languages emphasize abstraction in
their constructs and SIMPLE 1 uses abstraction
for modeling the behavior of entities in a system
primarily with QUEUE and ACTIVITY blocks.

Message passing in models is accomplished by one
of two mechanisms. Organizing entities into
groups is used to share/transfer information and
the CONDITIONS block is used to both define
rules for releasing entities from queues and for
defining monitoring conditions (a kind of message)
between modeling elements.

A simple example illustrates abstraction. The
SIMPLE _1 code fragment:

CREATE, 1,customer,
WaitForTellerIn QUEUE,FIFO;
CONDITIONS,NUM(TellerService)<1l,
WaitForTellerIn,,TellerService;
ACTIVITY 40;

45;

TellerService

Describes a simple queuing situation. As a
representation of the system the model creates
customer entities and sends them to a queue to
wait for an available teller to conduct a banking
transaction. The CONDITIONS statement is used
here as a message manager to monitor the state of
both the WaitForTellerIn queue and the
TellerService activity. As the queue and/or activity
blocks change state the CONDITIONS block is
informed to trigger the next release from the
queue. Encapsulation is occurring here in that the
CONDITIONS block is an object performing a
queue release function without the modeler having
to operate on event list structures or other low
level simulation details.

Encapsulation:

In SIMPLE 1 the fundamental modeling unit in
discrete systems is the entity. Entities in
SIMPLE 1 have attributes and form a packet of
data. In an OOP sense a SIMPLE 1 entity by itself
is not an object. Rather an object is a combination
of entities and a network of discrete processes. A
current developments in SIMPLE 1 is the
encapsulation of discrete and continuous processes
in a procedure like structure. Unlike procedures
however a SIMPLE 1 process can have the return
from the process delayed by interactions with
QUEUE and ACTIVITY blocks. The process
construct allows extending model abstractions and
packaging the implementation. In a manufacturing
system context a process model of a manufacturing
process might be:

CREATE,BatchSize,Castings,24;

{setup} {run}
Turn,UNIFORM(3.0,5.0,1),NORMAL(21.5,3,1);
Mill,EXPON(15.2,1) ,NORMAL(45.0,60.0,1);
ExitSystem;

Where details of how the TURN operation are
implemented is defined by a SIMPLE_1 process. A
process for the Turn operation defines the

activities associated with the operation and can

include ACTIVITY, QUEUE, and CONDITIONS
statements to define a sub-model for the Turn
operation. An example process is:

PROCESS Turn,Setup,Run;

ENTRY_POINT LatheWip;

DECLARE;
GLOBALS: NumLth;
END;
PRERUN;
SET NumLth := 3;
END;
DISCRETE;
LatheWip QUEUE, FIFO;
CONDITIONS,
NUM(LSetup)+NUM(LRun) < NumLth,
LathewWip, ,LatheSetup;
LSetup ACTIVITY Setup;
LRun ACTIVITY Run;
RETURN;
END;
CONTINUOUS; END;
POSTRUN; END;

END_PROCESS;

Where the calling entity references Turn which
results in the entity beginning processing at the
entry point labeled LatheWip which is a QUEUE.
When the RETURN statement is executed the

entity group is returned to the calling statement in
the model.

The PROCESS construct is a current development
in the language which allows the ACTIVITY,
QUEUE, and CONDITIONS blocks to be used for
developing libraries of detailed low level sub-models
that are then used to construct other models at a
high level of abstraction.

Inheritance:

Identifiers are globally scoped in SIMPLE 1 thus
diverging markedly from the inheritance principle
of OOP. SIMPLE 1 as a simulation language
maximizes the communication among variables in
the model. Data hiding and inheritance are

288

concepts driven by the practical needs to control
large programming projects and to some extent the
‘need to know" constraints of military systems
applications. Data hiding in a simulation inhibits
Statistics collection on model behavior. When
variables are declared key words are used to
specify automatic collection of time persistent and
observational statistics. The language supports
statistics collection for scalars and matrices; Data
hiding would complicate the referencing and
reporting of these statistics.

Polymorphism:

The language supports Polymorphous message
passing by employing entities to pass messages via
their attributes. The mechanism in outline form
involves assigning the message information to an
entity which in turn is combined with the receiver
entity, or entity group. The transmission of the
message is accomplished by joining the messenger
entity with a target receiver group with a
CONDITIONS statement. Orders for example
might be transmitted to a "RED" field commander
by the code fragment:

SET ORDERS(Immediate) := Patrol:
ORDERS (Area) = Sector(5);
SendOrders
QUEUE,FIFO;

CONDITIONS, ,SendOrders, ,RedCommands:
NextRedMsg, ,RedCommands;

When the RedCommands block is processed the
receiver entity will have access to the ORDERS
entities information. The actions taken by a Red
commander to the Patrol command may be quite
different from those of a Blue commander. Note
that the Polymorphous property is supported here
in a fashion similar to implementations with C or
Pascal. The context specific actions on messages is
supported by SIMPLE 1 versus being a
requirement in the language.

Applications of SIMPLE 1:

SIMPLE 1 has been applied in manufacturing,
academia, and by the United States Military.
Applications to date have ranged from
manufacturing systems, robotics justification,
health care systems, emergency planning, and
analysis of logistic support systems. SIMPLE_1
has been used to plan for future manufacturing

systems, as well as a tool for scheduling current
systems. Factory scheduling applications have
been developed with the simulations in one case
interfacing with shop floor data collection systems
to trace drive the simulation via historical bar code
data. CIM applications include simulations of
automated circuit board assembly and automated
material handling systems for defense-aerospace
application in addition to cellular manufacturing
investigations [Dooley et al 1988]. The language
has not been limited solely to manufacturing with
health care applications reported by Smith. The
military logistics features of the language has led to
it’s usage in graduate studies at the Air Force
Institute of Technology School of Logistics as
reported by Cooper and Westfall. A number of
students throughout the United States have
employed the language in support of their graduate
work and the language is currently being used in
simulation courses at a number of universities.
The language has been employed by Starr et al
[1986] to investigate schedule recovery strategies
and currently the software is being used in applied
research for scheduling an electronic assembly
system in a Midwestern aerospace site. Inspection
issues relative to FMS systems was investigated
using SIMPLE 1 according to Hauck. SIMPLE 1
was developed to model complex logistics issues
and one of the first applications of the language
was an investigation of logistics support for avionics
equipment by Bottomley.

SIMPLE 1 References

Bottomley, Larry D. Capt. USAF, "Station Loading
on the DATSA (Depot Automated Test Station for
Avionics)", unpublished Masters Thesis, Air Force
Institute of Technology, Wright-Patterson AFB,
OH, 1986.

Cobbin, Philip, "SIMPLE 1: A simulation
environment for the IBM PC", Modeling and
Simulation on Microcomputers, Claude, C. Barnett,
Editor, Society for Computer Simulation, La Jolla,
1986, pp 243-248.

Cobbin, Philip, "Applying SIMPLE 1 to
manufacturing systems', Summer Computer
Simulation Conference, July 28-30 1986, Reno,
Nevada, Roy Crosbie and Paul Luker, Editors,
Society for Computer Simulation, La Jolla, pp
724-1730.

289

Cobbin, Philip, "A Tutorial on the SIMPLE_1
simulation environment", Winter Simulation
Conference proceedings, = December 1986,
Washington D.C. pp 168-177.

Cobbin, Philip, " Modeling tote stacker operation as
a WIP storage device', Winter Simulation
Conference proceedings, December 1986,
Washington D.C. pp 597-605.

Cobbin, Philip, "SIMPLE 1: Follow-on
developments in the life of a micro-based
simulation language", Modeling and Simulation on
Microcomputers, Paul F. Hogan Editor, Society for
Computer Simulation, La Jolla, 1987, pp 29-32.

Cooper, Martha C. and Westfall, Frederick W.,
"The impact of personal computing technology on
the education of logistics managers: A comparison
of a military and a civilian institutional approach”
Proceedings of The Society of Logistics Engineers
twenty third annual symposium-1988, Orlando
Florida, pp 408.

DiBiase, Debra, "The cash flow simulator: A
microcomputer based model', Modeling and
Simulation on Microcomputers, Paul F. Hogan
Editor, Society for Computer Simulation, La Jolla,
1987, pp 101-103.

DiBiase, Debra, "The inventory simulator: A
microcomputer based inventory model", Modeling
and Simulation on Microcomputers, Paul F. Hogan
Editor, Society for Computer Simulation, La Jolla,
1987, pp 104-106.

Dooley, Starr, Vig & Mahmoodi, "Cellular
Manufacturing Project Workshop", CIM
Consortium University of Minnesota, May 1988.

Hauck, Warren Stephen, "A study of heuristics for
inspection location in flexible manufacturing
systems", unpublished Masters Thesis, The
University of Iowa, Iowa City Iowa, 1987.

Sierra Simulations & Software: SIMPLE 1 User’s
guide and reference manual, 1989.

Smith, Philip E. "Simulation as a valuable tool: A
proposal to combine admitting and outpatient
registration” Midwest Regional Conference of the
Health-care Information Management Systems
Society, 1987.

Starr, Patrick J., Development of a Manufacturing
Simulation Model, Final report CDC project
85M106, Mechanical Engineering Department,
University of Minnesota, 1988.

Starr, Patrick, Skrien,Douglas, and Meyer,
Robert,"Simulating schedule recovery strategies in
manufacturing assembly operations” Winter
Simulation Conference proceedings, December
1986, Washington D.C. pp 694-699.

Thinnes, Karen, M., "Simulation of Printed Circuit
Board Manufacturing” unpublished Masters Thesis,
The University of ITowa, 1987.

"Introduction to SIMPLE_1", Video tape lecture
series developed at The University of Idaho,
Moscow, Idaho, 1988.

Van Houten, Karen, "Simulation Languages for
PCs take different approaches" IEEE Software,
January 1988 pp 91-94.

Authors’ Biography

Philip Cobbin is the owner of Sierra Simulations &
Software and is the developer of SIMPLE 1. In
addition to simulation software development Phil
has taught undergraduate and graduate level
simulation courses and consults on the application
of simulation. He holds a Master of Science in
Industrial Engineering from Purdue University and
a Bachelor of Science in Industrial Engineering and
Operations Research from the University of
Massachusetts at Amherst. Phil is a native of Los
Angeles and has been previously employed by the
General Products Division of the International
Business Machines corporation (IBM) performing
simulation modeling and material handling
engineering activities.

290

