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ABSTRACT

Petri nets are a formal modelling tool very well suited
to the description of distributed and concurrent systems
which exhibit synchronization and contention for shared
resources.  Adding rundom temporal specifications to Petri
ncls, stochastic Petri nets are obtained from which cvent
driven simulators can be automaticully constructed.  This
paper discusses the double role that stochastic Petri net
simulation plays as an aid in the debugging of the correct-
ness of the model and as a vcehicle for the evaluation of the
cfficiency of the system. A modelling tool that has been
developed for these purposes is illustrated with an emphasis
on the modelling environment it provides and on its internal
software architecture.

1. INTRODUCTION

Petri nets (Pet81,Rei85] are gaining a widespread
acceptance as a formalism that is well suited for the
description and the qualitative analysis of complex systems.
Distributed and concurrent systems which exhibit synchron-
izulion and contention for shared resources are conveniently
studied with the help of Petri net models (sce [Ajm87] for
extensive relerences).

High level Petri nets [Gen81,Jen81], that are generali-
zations ol ordinary Petri nets, have both the power and the
flexibility for representing real complex systems.  Timed
Petri nets derive from adding temporal specifications (o
(some of) the clements of Petri net based models. Timed
Petri nets are uscful for the quantitative (performance)
analysis ol real systems.

Stochustic Petri Nets (SPN) [Mol82, Flo85] and their
generalizations (GSPN) [Ajm84, Ajm87a] are timed Petri
ncls in which the time specifications are introduced by
associating exponentially distributed firing times with timed
transitions.  Mcthods exist for the automatic translations of
SPN (as we will call in this paper both stochastic and gen-
crulized stochastic Petri nets) into their underlying stochas-
SPN cun thus be analyzed with classical
techniques for studying the performance characteristics of
systems.  SPN have the representation power that allows
the precise description of the phenomena that are importunt
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during the design stage, but the complexity of many distri-
buted systems often yiclds the construction of models that
are very difficult to analyze. In these cases simulation
represents the method of choice for deriving the desired
performance measures.

The simulation of complex SPN models plays the dou-
ble role of an aid in assessing their correctness, and of a
vehicle for the evaluation of their efficiency.  Stepping
through the state space of a model complements the resulls
of a structural analysis of the net to verily ils correctness.
The animation of the evolution of the state of a model dur-
ing the carly part of a simulation experiment helps in dis-
covering specific functioning aspects and patterns that may
outline desired or undesired [eatures of the model, and that
are difficult to capture with usual performance indexes that
aggregate results of measurements performed during the
simulation experiment. Finally, estimates obtained (rom the
simulation of an ecxtensively tested and well understood
model provide reliuble indications about the performance of
the system under study.

In this paper, a software tol, called GreatSPN is
described thal has been developed for the analysis of SPN,
and thal is chuaracterized by a graphical editor for the con-
struction and the manipulation of SPN models, a structural
analyzer for the compulation of basic (structural) propertics
of these models, a builder for the aulomalic construction of
an clficient evenl-driven Montecarlo simulalion program
(called simulation engine) and a controller that monitors the
execution of simulation experiments providing the possibil-
ity of an on-line displaying of the modcl state evolution
directly on the SPN graphical representution. GreatSPN
integrates  visual and interaction features in a gencral
environment where the sume model can be used in different
studies concerning its validation and its numerical evalua-
tion. In GreatSPN the computation of the structural proper-
ties of the net are exploited to construct an optimized event
driven simulator.

1.1. Related Work

Simulation is often used in the Petri net field as a
method for vaulidating models whose complexity is such that
their  correctness  cannot be  established  using  formal
methods  based on the computation of their structural



properties [Mar81]. 1In this context the word simulation
however means a walk through the state space of the nct
without taking into account any timing specification. The
cvolution of the net is thus driven by the precedence con-
straints among transitions dictated by the structurc of the
net and no scheduling of cvents occurs.  For this type of
analysis, distributed simulation is becoming prevalent.
Processes are associated with  the nodes of the net, and
assigned o dedicated processors. Processes are then let Lo
compete to determine the movement of tokens and conllicts
arc solved by the scheduler of the underlying distributed
operating system (c.g., [Tau87,But89]). None of the prob-
lems that are crucial in distributed discrete event simulation
(Cha81, Jel87] are thus considered in these works.

The use of Petri net based models for performance
cvaluation is relatively new, and thus little experience has
been accumulated on the topic of timed Petri net simula-
tion. Pioneering work was done by Noe and Nutt
[Noc73], who identified the possibility of deriving simula-
tion models directly from the description of systems made
using the E-nct formalism. No indications were however
provided by these authors on how to implement such a
trunslation. The advent of powerful graphical workslations
has made the development of software packages for the
construction and the analysis of timed Petri net models a
feasible task. It is thus increasingly important devising
cfficient techniques for the simulation of timed Petri nets
that tend to be extremely complex as it becomes relatively
casy 1o construct large models. Indeed, testing in a naive
munner which transition 1s cnabled in a given marking to
perform a step in the evolution of the net can be extremely
expensive in such large models. Some work on the choice
of a proper dala structure for the representation of the net
hus been reported in [Col86] where the simulation approach
1s still an interpretation of the net.

1.2. Visuul and Interactive Simulation

The specification of a model using a nct based formal-
ism has the advuntage of an explicit representation of the
relations among the different nodes of the net (interconnec-
tions) and of the activitics that are currently tuking pluce
(tokens or markers). Morcover the dynamics of the model
is completely represented by the movement of such tokens.
Advanced graphics allows to exploit these advantages
rceognizing their importance in the description of a model
and in the understanding of its behaviour.

Visuul simulation is a method that exploits the graphi-
cul description of the model 1o show the dynamic cvolulion
that takes place during its simulation dircctly on the gruphi-
cal representation.  Static graphical facilities are used to
describe the topology of the model, while dynamic  graphi-
cul facilitics are used 1o visualize the movement of the
Llokens, to provide snapshols on the stale of the modcl, and
to represent the cvolution of computed (or measured) statis-
tics. Visual simulation is very useful during the carly stage
ol the construction of a modcl since it represents & power-
ful tool for its debugging. Morcover, the animation of a
correct simulation model may provide important insights on
the behaviour of the actual system, especially because of
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the possibility of highligthing particular evolution patterns
that may be crucial for the good (or bad) behaviour of the
system, but difficult to deduce from average performance
indexes obtained with standard simulation methods.

Interactive simulation is a natural complement of visual
simulation as it allows the user to inspect the slate of the
model when certain conditions are met. This feature can be
obtained by defining the conditions directly on the graphical
representation of the model (c.g. defining a target distribu-
tion of tokens on the nct), and then stopping the animation
when such conditions are met. When the simulation stops,
the performance measures collected up to that moment, can
be inspected to understand the behaviour of the model.
Modification of certain parts of the model can also be intro-
duced to correct errors.

Several software packages exist that provide both visual
and interaclive simulation. Most of these modeclling tools
assume a queueing network formalism for the specification
of the model. PAW [Mel85] is among the first packages
that provided these simulation features.

Few arc instead the software packages that provide
visual and interactive simulation for Petri net based models.
The most interesting one is OLYMPUS [Nut89] which is a
distributed modelling system where several users can simul-
tancously construct and simulate timed Petri net models. A
client-server approach is uscd to allow a concurrent con-
struction, cditing, and simulation of the same model. This
fcature is included to allow a cooperuative effort to take
place for the modelling of large systems.

2. MODELLING

GreatSPN [Chi87] provides a very powerful and versa-
tile interface based on the capabilitics of high-power
graphical workstations. GreatSPN is a window-based,
object-oriented system, in which elements typical of Petri
nct models (places, transitions, and arcs) are manipulated
under the assistance of basic syntactical rules that prevent
the construction of (syntactically) incorrect models. The
model drawn using this interface is internally translated
into scveral files that arc however completely transparent to
the user. The graphical representation is thus the object to
which all the commands provided by the interface apply.
Having specified the model, it can be saved into a data-base
from which it can be retricved for any subsequent use.

The simulation of a SPN model is performed in
GreatSPN by first constructing the model on the screen of a
graphical workstation using the facilitics provided by the
graphical interface. Once that the simulation model has
been specified, a debugging phase must luke place to insure
that it is first syntactically, and then scmantically correct.
Finally, the actual simulation is performed in which meas-
urcments on the behaviour of the model are collected and
statistically analyzed to obtain estimates for the perfor-
mance indexcs that are relevant for the study.  All these
three phases are cxtensively supported by GreatSPN that
provides an integrated environment for performing complex
simulation experiments.



2.1. Graphical facilitics

Constructing SPN models consists of drawing places
and transitions connected by arcs. This is made possible by
GreatSPN thal provides a drawing board where graph
nodes selected from a menu of basic objects can be depo-
sited. To [lacililate the drawing of (graphically) well organ-
ized models, a grid can be superimposed on the drawing
board so that new elements are positioned on its corners
(sce Figure 1). Arcs that can be of input, output, and inhi-
bition type conncct nodes. They are drawn selecting first
the origin node, and subsequently the destination node.
Arcs behave as rubber-bands and can look like segmented
lines through the use of intermediate points. Objects depo-
sited on the drawing board can be repositioned by dragging
them around with usual point-and-select methods. Arcs
stick to the origin and destination nodes so that moving
nodes affects connecting arcs as well. To make the model
look nicer, segmented arcs can be turned into continuous
(curved) lines by means of a spline option that smooths
their angles (see Figure 2).

Groups of elements (subnets) can be graphically mani-
pulated as a single object using a multiple selection option
which then allows to move, rotate, and duplicate all the ele-
ments of a group. These operations on global objects
preserve the relalive positions of the component elements.
Sclected groups of elements can also be removed from the
drawing with a single operation. To protect from destruc-
tive actions, a clipboard facility is provided, and a relatively
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Figure 1: Drawing board with grid.

short history of commands (and of their effects) is main-
tained so that a recovery can occur during the manipulation
of a drawing.

When the models are too complex, a possibility exists
for their specification using layers that partition the nets
into separate parts. Layers are well suited when the nets
can be decomposed in portions that weakly interacts with
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Figure 2: GreatSPN graphical interface.
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each other especially from a graphical point of view. This
means that portions of the nets exists that share only few
places and/or transitions. Each individual layer is relatively
simple to understand. The whole net is obtained by super-
imposing the layers onto each-other.

An important aspect of SPN models is the specification
of the initial marking of the net that is relevant both as the
starting point for the future simulation experiment, and as
the specification that provides additional meaning to certain
elements of the net and thus identifies the set of possible
states of the model. The initial marking is obtained editing
a place element parameter to specify the number of tokens
that is initially contained in each place. A default value of
zero tokens is introduced to make the specification of the
initial marking quicker. Places that are defined with a
non-zero number of tokens, are filled with as many black
dots as the number of tokens dictates.

The specification of the model is completed with the
definition of the parameters and of the performance indexes
relevant for the study. All the transitions of the net possess
default parameter values that can be modified with simple
editing actions. When indications exist that the model will
be used for several studies in which the effect of the varia-
tion of certain parameters will be investigated, these param-
eters can be specified as variables, using a simple context-
free language. The same language is also used to define
performance indexes that are functions of basic quantities
such as probability distributions of tokens in places.

When the drawing of the model is completed, the
model can be saved into a data-base that is actually a dircc-
tory (that can be organized in subdirectories) containing all
the files concerning a given model. Figure 3 shows the
menus uscd to manage these directories.

2.2. Model Validation

SPN models of real systems tend to become extremely
complex so that little can be said about their correctness by
just looking at their picture. The theoretical foundation of
the Petri net formalism assumes a crucial role during this
phase as some structural properties of the model can be
computed using algorithms whose complexity depends on
the "size" of the model and does not depend on the size of
its state space. The basic results that can be computed with
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these algorithms arc the invariants of the net. Place and
transition invariants are defined as the integer non-negative
respectively left and right eigenvectors associated with the
null eigenvalue of the incidence matrix of the Petri net
[Mar81]. They can be used to decide whether the places of
the net are bounded (e.g., the number of tokens in the net
cannot grow unlimited) and whether the net has the possi-
bility of retumning to its initial state. Figure 4 shows a
place invariant for the nct that describes thei communica-
tion protocol used by GreatSPN to access shared files (see
Section 3.3). Algorithms exist for testing whether a mutual
exclusion relation exists among transitions, that is to decide
whether it is possible or not for these transitions to be
simultaneously enabled. A more elaborate use of these
same results can provide information on the existence of
deadlocks in the net. No algorithm is yct known for the
automatic derivation of this last type of results, except for
restricted subclasses of nets such as bounded, free-choice
Petri nets.

The structural properties of a SPN represent a means
for the static validation of the model. No initial marking is
explicitly considered in their derivation. Obviously, not all
the nets have a dynamic behaviour that is completely deter-
mined by their structure. When these more general models
are under study, a dynamic validation can be obtained by
playing the so-called token game that corresponds to an
interpretation of the net starting from its initial marking.
Enabled transitions can be made to fire moving the tokens
to new positions that represent the new state reached by the
net. When several transitions are simultaneously enabled,
an arbitrary (non-deterministic) choice can be made to
define which transition to fire next.

During a first qualitative analysis, the decision on
which transition to fire next is made without considering
any timing specifications. What is obtained is the untimed
token game in which all the possible evolutions of the net
can be explored. This type of study is supported by the

Figure 4: Display of a placc invariant.
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graphical interface that, given a certain marking, highlights
all the cnabled transitions among which the user chooses
that to be fired next. Figure 5 shows the state that enables
transitions "generateC" and "simulate”. The actual selection
is performed with a simple mouse action. The effect of
firing the selected transition is shown by the interface that
updates the distribution of tokens on the net (the net
reaches a ncw marking) and highlights all the transitions
that are cnabled in the new marking. The updating of a
marking as consequence of the firing of a transition can be
made more evident by displaying the movement of tokens
along the input and output arcs of the transition. Errors
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that may appear in the behaviour of the net while stepping
through the state space in this manner, can immediately be
corrected by properly modifying the net.

2.3. Model Simulation

A more precise validation of the model takes into
account the actual firing times to decide which transition to
fire next when scverals are simultancously enabled. When
the firing time distributions have infinite support [Ajm89],
the non-deterministic choice of the untimed token game is
replaced by a probabilistic choice that derives from the
computation of the distribution of the minimum firing time
among simultancously cnabled timed transitions. When
instead the firing time distributions have limited support,
the behaviour of the timed net may be quite different from
that of the untimed one, as certain firing sequences may
become impossible.

To perform this validation task the construction of the
net simulator is needed and the animation of the net
becomes extremely important. The simulator is generated
according to the standard lechniques that arc used in Mon-
tecarlo event driven simulators [Nay66]. Once that the
simulator is obtained, the user has the possibility of playing
a timed token game rtunning the simulalor in interactive-
mode and interrupling its execution after the handling of
each event. Also in this case the interface highlights the
transitions that are enabled in a given marking, but the
choice of the transition to fire next is determined by the
event list of the simulator. Again the tokens can be shown
to move along the arcs of the nct and, after having reached
the new marking the uscr has the possibility of inspecting
the values of the statistics collected up to that point (see
Figure 6 for an example). To investigate the effect of
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Figure 6: Interactive simulation.
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particular choices, the user has the possibility of forcing the
simulator to fire a transition different from that prescribed
by the cvent list. This action is reflected on the data struc-
ture of the simulator to avoid entering into an inconsistent
state of the simulalor. An option offered to the user is also
that of backtracking the last portion of the execution to
obtain a representation of the state evolution in reverse-lime
(undoing) exploiting the information contained in buffers.
This feature helps in better understanding the behaviour of
the net through a careful inspection of the path followed by
the simulator to enter a specific state. The nccessity of
modifying the net to recover from possible behaviour errors
is in this case more difficult to handle as changes in the
structure of the net require to reconstruct the simulator
(recompiling the nct).

Stepping through the entire state space of a SPN with
this approach can be extremely time consuming. A more
elficient manner of controlling the (carly) execution of the
simulator is that of performing a batch of steps before stop-
ping the simulation and allowing the interaction of the user.
These batches of steps can be of constant or of variable
length. In both cases, we can consider the simulation as
controlled by breakpoints set by the user. Interesting
breakpoints are those defined in terms of the markings
visited by the net. In this way the timed token game enters
the environment of the automatic interactive simulation.

When the breakpoint is set in terms of precision of the
measured results the effect is the implementation of a
sequential stopping rule [Lav77]. In particular, for what
concerns the statistical analysis of the simulation output, the
independent replication and the regenerative methods are
implemented. The choice of which of the two methods to
adopt is left to the user only if the conditions for the
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regencrative method are met, and if a preliminary pilot run
shows that the regenerative points appears in the simulation
with sufficient frequency.

This last mode of automatic simulation is actually a
batch-mode in which, given the specification of the perfor-
mance indexes that are relevant for the study and the accu-
racy that is desired, the simulation is run to completion and
only final results arc made available to the user in the form
of interval estimates and histograms. In batch-mode
periodical checkpoints are performed that are useful to
allow the continuation of previously interrupted simulation
experiments as well as to recover from unexpected termina-
tions. When a performance index is of the single value
type (e.g., resource utilization), a time diagram is con-
structed and periodically updated to obtain the index
representation as a function of time. When a performance
index is of the probability distribution type (e.g. distribution
of the number of clients waiting for service), such a distri-
bution is represented with a histogram that is periodically
updated. Figure 7 provides an example of the performance
indexes that are periodically displayed by the interface.

3. IMPLEMENTATION ASPECTS

The architecture of the simulator comprises several
separate modules that are responsible for the construction
and the animation of the SPN model, for its validation, for
its simulation, and for the processing of measured data as
well as for the control of the simulation experiment. All

these modules can run independently of each other (possi-
bly on different machines connected by a local area net-
work) and interact by sharing files.
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Figurc 7: Batch-mode simulation results.
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3.1. The Software Architectures

The simulation procedure is logically divided in threc
phases: the definition of a simulation model, its validation,
and the actual simulation experiment. In order to support
these three phases in a flexible manner, the simulation
environment offers (wo main operating modes, both fully
supported by the same graphical interface: a model manage-
ment phase, and a model simulation phase. Two software
architectures that connect different modules to the same
graphical interface support these operation modes.

Graphical
Interface

User Inputs
net description

Net  description
flle

Structural
Analyzer

Net structural
properties

Simulation
Bullder

Net dependent
Routines

Simulator Kernel
Routines

Simulator Engine
Executable File

Figurc 8 : Modelling Environment Software Architecture
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Figure v : Simulation Environment Software Architecture
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The construction and formal validation of a SPN model
is performed within a modelling environment that is charac-
terized by an architecture based on the interaction of two
modules: the graphical interface and the structure analyser
(see Figure 8). The graphical interface is used during this
phase as the tool for drawing and specifying the SPN
model (possibly exploiting a data base of previously defined
models), as well as o display in graphical form invariant
and other structural properties of the net that can be used
for a formal validation of the model. When the user is
satisfied with the SPN description, he can run a third
module, the simulator builder, that reads the description of
the model and its structural characteristics, and produces a
set of optimized nct dependent procedures that, linked
together with a standard simulation kernel, generate the
actual simulation program.

Once the specification of the SPN model to be simu-
lated is completed, the functional validation and the actual
simulation experiment are performed within a simulation
environment characterized by an architecture based on the
interaction of the graphical interface, the simulator con-
troller, and the simulalion engine (see Figure 9). During
this phase, the graphical interface plays a new role charac-
terized by two aspects. An input aspect is represented by
the use of the interface to drive the simulation experiment
through the specification of the simulation mode, of its
parameters, of its termination conditions, and possibly of
the definition of breakpoints. An output aspect is
represented by the use of the graphical interface as a media
for displaying the results of the simulation as soon as they
are collected. The output of results can be performed both
in terms of information that evolves during the simulation
and in terms of performance indexes that can be interac-
tively represented on the interface by showing at the end of
the simulation the results of measurements performed dur-
ing the simulation. The second module that belongs to the
simulation architecture is obviously the simulation engine
that manages the event list according to a combination of
net-dependent and net-independent rules specified during
the construction of the simulation model. The third module
is the simulator controller that oversees the execution of the
simulation engine providing a communication link between
the graphical interface and the simulation engine itself.
During the execution of a simulation experiment the possi-
bility exists for running these different modules on different
machines. To make the software tool simple and portable,
communication among modules has been implemented
through shared files.

3.2. The Graphical Interface

The advantage of using a net based formalism for the
study of complex distributed systems is the descriptive
power of these methods and their capability of capturing in
an cfficient manner the important features of the organiza-
ton of these systems. In order to take the maximum possi-
ble advuntage from the use of such techniques, it is impor-
ant lo use a graphical interface built for the construction,
ediling and management of net models. GreatSPN s
implemented on top of the SunView graphical system



running on SUN workstations. The implementation of this
software component consists of more than 18,000 lines of
C code (about 500 Kbytes of source), organized in 65
source files, each one ranging from 50 to 800 lines.

The construction of this graphical interface started in
1986, as a graphical editor for a package for the numerical
solution of GSPN performance models based on Markov
chain techniques [Chi85). Subsequently, structural analysis
[Chi87a], optimization [Chi88], and interactive simulation
facilities [Bal89] have becn added to the initial design. The
good modularity of the programs and the object-oriented
approach in the definition of the data structures allowed a
smooth evolution of the tool and the inclusion of the new
features with reasonable programming effort. Now the
availability of these different modelling and evaluation
techniques in a uniform, user-friendly environment probably
constitutes the most interesting characteristics of GreatSPN.

Besides providing all the graphical primitives that are
usually present in user-friendly graphical interfaces (resiz-
ing, moving, and replicating of individual as well as collec-
tive objects, selection of groups of objects for model con-
struction, composition of elementary submodules, ...),
GreatSPN provides also a way of representing the state of a
SPN model by drawing black marks in the places of the
net. The explicit representation of the state of the model is
exploited by the interface to show the state evolution, by
updating the token distribution as the result of the
occurrence of an event. A graphical feature that makes this
state updating to take place using a certain amount of time
is the key element for obtaining the animation of a model
following the state sequence dictated either by a
prerecorded trace or by a real-time interpretation of the net.
The traces corresponding to the state evolution of a model
are read by the graphical interface from files produced by
the simulator modules. The interactive simulation facility
is implemented by running the simulator modules under the
control of the graphical interface. In the latter operation
mode, the interface is responsible for running the simulator
and for providing it with the proper commands and parame-
ters; a bidirectional communication is established always by
mecans of shared files. The synchronization among the
different processes (that can run on different machines) is
achieved by a simple access protocol to the shared files.

3.3. The File Sharing Protocol

The communication between the graphical interface and
the controller of the simulator is implementcd by sharing
two files, according to the simple synchronization protocol
depicted by the Pctri net in Figure 10. The model
represents both the graphical interface and the simulator
controller activities as shown by the areas surrounded by
dotted lines. The two shared files are modelled by the two
places "command” and "result" in the middle of the picture.

The interface starts the communication running the
simulator processes with dummy parameters (arc from tran-
sition "syncl” to the input place of transition "simulatc"),
and preparing the corresponding dummy command file (arc
from "syncl" to place "command"). Then the simulator
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Figure 10 : Shared file synchronization protocol

executes the dummy command (firing of transition "simu-
late"), produces a result file (firing of "writeR"), and signals
the availability of the results by deleting the command file
(firing of "eraseC", which removes the token from place
"command"). At this point transition "sync2" becomes
enabled, and after its firing the protocol reaches its normal
(synchronized) operation condition.

In steady-state, the graphical interface writes a simula-
tion request in the command file (by firing "writeC"), and
then deletes the previous result {ile (by firing "eraseR") to
signal the availability of the new command file to the simu-
lator. At this point the interface can use the previous
results to implement the animation, and construct the next
simulation command (which can actually correspond to a
sequence of simulation steps) based on the interaction with
the user. Concurrently with the user and interface activi-
ties, the simulator realizes the presence of the new request
(firing of "waitC") and reads it (firing of "readC"). Then
the proper simulation step is implemented, and at the end
(firing of "simulate") the results are written in the shared
file (transition "writeR"). The availability of the result file
is signalled by deleting the command file (transition
"erascC"). When place "command” becomes empty, transi-
tion "waitR" can fire and then the interface reads the result
file by firing "readR". When both "readR" and “"generateC"
have been fired, the next command is ready to be issued by
the interface, and this is modelled by transition "newC".

3.4. The Structural Analyser

This component of the package is implemented by a set
of independent programs that compute different characteris-
tics of a Petri net model starting from its topological
definition. The results of this step are used both by the
modeller to check for some formal propertics, and by the
simulator builder lo optimize the automatically generated
programs. The first slep is the computation of the place
invariants. A program is called that implements a very



elficient version of the algorithm proposed by Martinez and
Silva [Mar81], and stores the results on a file. This infor-
mation is used both to check conservation properties, and o
devise optimal encodings for the marking of the nct.

Using this partial results and the topology of the SPN,
some relations between transitions of the model are com-
puted, such as the mutual exclusion, the conflict and the
causal connection [Chi87a), that are useful both to verily
some expected properties of the model, and to optimize the
management of the event list of a simulation program.

The theoretical complexity of the algorithms for the
computation of the structural propertics depends only on the
number of places, transitions, and arcs of the SPN model,
and not on the size of the state space. In practice, the ¢xe-
cution time for these analysis programs is order of magni-
tudes lower than that of cither a simulation experiment or a
numerical analysis based on Markovian techniques. The
optimization step based on the knowledge of these struc-
tural properties can thus be very cost effective.

3.5. The Simulator Builder and Kernel

Simulation of Petri nets is one of the most natural ways
of exploiting their representation power. Discrete event
simulation of Petri nets is a topic that has reccived little
attention from Petri net researchers as it must translate the
dynamic bchaviour of a highly parallel model into a
sequential representation characterized by the scheduling of
the events that actually determine the cvolution of the net.
Discrete event simulation of Petri nets is howcver a very
important topic if these models have to be used for perfor-
mance cvaluation purposes. The main problem with the
simulation of stochastic Petri nets is the time-efficient
identification of the transitions that are either enabled or
disabled by the occurrence of an event (transition firing).

Managing event occurrences is indeed difficult because
of the generality of the structure (interconnection pattern) of
Petri net models. GreatSPN manages this intrinsic com-
plexity by constructing functions whose evaluation helps in
quickly identifying the updating that has to be performed
on the set of currently enabled transitions, due to the
occurrence of an event [Chi88]. Since these functions are
nct-dependent, the simulator builder starts from the descrip-
tion of the net produced by the graphical interface to con-
struct a sct of procedures, written in the C programming
language. The structural properties of the net computed by
the structural analyser are used to oplimize the coding of
these functions. Once this net-dependent code is produced,
it is compiled and linked together with the simulation ker-
nel to obluin the simulator engine that is the actual execut-
able module used to perform the simulation of the model.

The simulator kernel included in GreatSPN provides
the basic functions (a sort of run-time environment) for the
construction of a classical [Nay66] event driven simulator
of the net. The kernel of the GreatSPN simulator
comprises the procedures for the management of an event
list augmented with lists of affected transitions associated
with cach event-notice. The coding of some of these
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functions is net-dependent and is thus performed during the
first stage of the simulator construction when the graphical
structure of the net is actually compiled.

The basic feature characterizing the kernel is the capa-
bility of performing a step of an event driven simulation of
the net, and of writing on the standard output the event that
happened, the new value of the simulation clock, and the
new state that has been reached. Indeed, both interactive-
simulation and batch-simulation modes are obtained by
combining calls to the kernel to reach particular simulation
slates or to perform sequences of simulation steps. This
clementary action of managing an event involves the selec-
tion of a new event from the event-list, the updating of the
model state, the scheduling of new events, and the de-
scheduling of other events. The selection from the event
list of the next event to occur is performed in a standard
manner. The recording of the state modification induced by
the event that is being processed requires the use of net-
dependent functions that update the information concerning
the enabling conditions of the transitions. The scheduling
of new cvents is performed in an efficient manner exploit-
ing the net-dependent functions mentioned before. The de-
scheduling of events is an important aspect of event manag-
ing in Petri nets, as the completion of an activily associaled
with a transition that belongs to a sct of conflicting ones
causes the interruption of the other. This feature is peculiar
of Petri net models and requires a proper handling of the
interrupted activitics as specified by the model [Ajm89].

To make the interactive simulation cnvironment possi-
ble, the kernel supports also the possibility of sctting break-
points, forcing different choices (e.g., forcing the
occurrence of extremely unlikely events), saving the simu-
lation state on files, stopping and resuming simulation runs,
and undoing simulation steps.

In case of natural regenerative simulation, an initial
pilot simulation run is performed in which the states
rcached by the simulator are recorded with the aim of
automatically detecting recurrent memoryless states, among
which the regencration state is automaltically chosen. In
this case also the efficiency of the representation of the
markings of the net becomes critical, both in terms of space
occupied by the data structure and of time needed to insert
and scarch for an already encountered state. The encoding
of the marking of the SPN is thus also optimized by gen-
crating cfficient dala structures and management procedures
based on the knowledge of the place invariants of the net
(Chi88). These net-dependent data structures and pro-
cedures are used not only in the simulator modules, but
also in the numerical solution algorithms based on Markov
techniques that are available in GreatSPN.

3.6. The Simulator Controller

A simulation experiment consists of the measurement
of user defined performance indexes performed on the sam-
ple path derived from the execution of the model driven by
the occurrence of events. The simulator controller of
GreatSPN has been devised as a measurcment tool that, fed
by the output of the simulation engine, processes the data



and accumulates the desired performance index ecstimates.
Striving for generality, the simulator controller is composed
of a set of net-independent procedures that perform the sta-
tistical analysis of the output produced by the simulalion
engine. Point estimates and confidence intervals are com-
puted with standard techniques. A net-dependent decoding
function is also linked to the controller, to allow the com-
munication of the states stream to the graphical interface.
Using information provided by the graphical interface the
simulator controller knows the technique (regenerative or
independent replication method) that has to be used to
obtain a sample of (approximatively) independent and
identically distributed instances. A checkpoint is performed
by the simulator controller to provide the possibility of
resuming simulation experiments for obtaining better qual-
ity results as well as for recovering from possible system
crashes. Checkpoint data are stored in an appropriate file.

The communication between the simulation engine and
the controller is implemented with two Unix primitives, a
shell-level ‘‘pipe’’ from the engine to the controller, on
which the sequence of states and the events that produced
them flow, and a ‘“‘socket’’ that is used by the controller to
transmit commands to the engine. This choice has been
dictated both by efficiency and simplicity considerations,
since a large communication throughput is required between
these two models. The communication between the con-
troller and the graphical interface is obtained by sharing
two files, according to the simple synchronization protocol
described in Section 3.3.

4. CONCLUSIONS

In this paper we have discussed the possibility of using
SPN modecls to study the performance characteristics of
modern computer/communication systems. When dcaling
with real cases, it often happens that the SPN models tend
to become very complex. In these cases SPN models can be
used as formal specifications of systems and automatically
translated into detailed simulation programs in order to esti-
mate performance resulls.

The construction and the analysis of complex SPN
models can only be done with the help of powerful
automatic tools such as the user-friendly software package
GreatSPN whose modelling facilities and software architcc-
ture have been illustrated in this paper.

The intcgration within the same interface of the graphi-
cal fucilitics for the model construction, of the structural
analysis algorithms for model validation, and of the control
pancls for performing the visual and interactive simulation,
emphasizes the importance of including in a simulation
experiment both validation and evaluation aspects. More-
over, the availability of Markovian techniques within the
same modclling environment increases the opportunity of
(quantitatively) validating the simulation resulls on scaled
down models by dircct comparison with exact results.

The structural results are uscful for a preliminary
assessment of the correctness of the model and for optimiz-
ing the code of the event driven simulator. The animation
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of the model, performed only when desired by the user,
appears to be a very powerful tool that complements the
structural results for the debugging and tuning of the
models used for the performance analysis. The architecture
of the simulation environment, organized with several
cooperating modules turns out to be very efficient as it can
casily exploit the computation power available in local area
networks connecting several homogeneous workstations.
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