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ABSTRACT

This paper deals with methods for constructing and
solving large Markov chain models of computer system
availability and reliability. A set of powerful high level
modeling constructs is discussed that can be used to
represent the failure and repair behavior of the compo-
nents that comprise a system, including important com-
ponent interactions. If time independent failure and
repair rates are assumed then a time homogeneous
continuous time Markov chain can be constructed au-
tomatically from the modeling constructs used to de-
scribe the system. Since, the size of Markov chains
grows exponentially with the number of components
modeled, simulation appears to be a practical way for
solving models of large systems. However, the standard
simulation takes very long simulation runs to estimate
availability and reliability measures because the system
failure event is a rare event. Therefore, variance re-
duction techniques which can aid in computing rare-
event probabilities quickly are of interest. Specifically,
the Importance Sampling technique has been found to
be most useful. The modeling language and the simu-
lation methods discussed in this paper have been imple-
mented in a program package called the System
Availability Estimator (SAVE).

1. INTRODUCTION

Fault-tolerant computing has been applied to two
fundamentally different classes of applications. One
deals with mission oriented systems with high reliability
requirements such as space computers, avionics systems
and ballistic missile defense computers [5,8]. For the
mission to succeed the system must not fail during the
mission time. Hence the probability that the system
does not fail during the mission time, i.e. the system re-
liability, is a measure of interest. The other class of ap-
plications deals with continuously operating systems
with high availability requirements such as telephone
switching systems, general purpose computer systems,
transaction processing systems (e.g. airline reservation
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systems) and communication network computers. For
such systems, system failures can be tolerated if they
occur infrequently and they result in short system down
times. For such systems, the expected fraction of time
the system is operational, i.e. the system availability, is
As in [17], we use the term
dependability to refer to both reliability and availability,
in general.

a measure of interest.

In this paper we will focus on continuous time
Markov chain models of fault-tolerant computers, which
are perhaps the most commonly used. From the mod-
eling point of view a system consists of a collection of
hardware and software components, each of which may
be subject to failure, recovery and repair. Software
components in operation can be modeled with constant
failure rates, as described in [17]. Component inter-
actions often have a substantial effect on system avail-
ability and must therefore be considered in addition to
the individual component behaviors.
size of such models grows (often exponentially) with the
number of components being modeled. Therefore, we
provide a high level modeling language containing con-
structs which aid in representing the failure, recovery

The state space

and repair behavior of components in the system as well
as important component interactions. The challenge in
developing such a language lies in making it compre-
hensive enough so that important system details can be
modeled, but simple enough so that the Markov chain
can be automatically constructed from the modeling
language description. In Section 2 we describe such a
modeling language. Appendix 1 contains a list of all the
constructs. The language has been incorporated in a
system dependability modeling program package, called
the System Availability Estimator (SAVE) [9,11].
SAVE automatically generates the Markov chain from
the modeling language description.

Typically, numerical methods are used to solve these
Markov chains. Although, many modeling packages
have been built, e.g., [5] and [11], which incorporate
numerical methods capable of computing steady-state
as well as transient state probabilities of Markov chains



with thousands of states, the size of system modeled is
typically small because the number of states in the sys-
tem increases exponentially with the number of compo-
nents. Techniques like state lumping and unlumping
[10,23] and state aggregation and bounding [1, 22] can
reduce the size of the state space substantially. However,
large systems with a large number of redundant com-
ponents are still out of the range of the solution capa-
bilities of current numerical methods, primarily due to
storage or computational limitations. On the other
hand, simulation algorithms tend to be relatively insen-
sitive to the size of the state space of the simulated
Markovian model, both in terms of storage and com-
putational requirements. However, standard simulation
is inefficient in our setting because the principle focus
of interest; namely, system failures, occur so infrequently
in highly dependable systems.
system failures, if any, would be observed if standard

As a consequence, few

simulation methods were to be used in our problem
context. In Section 3, we focus on the variance re-
duction techniques used to improve the efficiency of the
simulation methods implemented in SAVE. In Section
4, we illustrate the effectiveness of the variance reduction

techniques using a simple example.

2. DEPENDABILITY MODELING LANGUAGE

The uses of system dependability models include
comparing various fault tolerant design alternatives and
for a particular design identifying any dependability
bottlenecks that may require subsequent design im-
provements. A system model is an abstraction of the
system where we ignore certain design details to reduce
the size of the model, but we include other details to be
able to study the various design tradeoffs. For example,
when modeling a computer system each processor could
be considered a component or at a lower level each of
the logic modules that comprise a processor could be
considered a component. In the latter case there will be
many more components and the model will have a
much larger state space. The level of detail chosen
should depend on the questions to be addressed using
the model and/or on the obtainable failure and repair
data as well as on the resulting model size. Thus, if one
wanted to determine the effect of a standby processor
on system availability it might be better to consider
processors to be components rather than the logic
modules that comprise them.

In the remainder of this section we summarize the
main constructs of the dependability modeling language
which has been implemented in SAVE. (For complete-
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ness the entire syntax of the language is given in Ap-
pendix 1.) The most important construct in the
modeling language is the COMPONENT construct
which is used to model the failure and repair behavior
of a component including its interactions with other
components. In the modeling language we will use the
term “failure” to refer to either an error or a failure and
we will use the term “repair” to refer to any action that
renders a “failed” component operational. Many types
of repair are possible including automatic recovery, op-
erator restart of a subsystem or the entire system and
physical repair or replacement. In the modeling lan-
guage a component is assumed to fail in possibly multi-
ple modes and a different type of repair can be
associated with each mode. The overall state of a single
component is shown in Figure 1. Each type of repair
can be performed by a different class of “repairman”
The repair strategies
followed by a repairman in a class are discussed later in
The transition rates from operational to
failed and failed to operational states are affected by
component interactions and the repair strategies fol-
lowed by the repairmen. In general, the COMPONENT
construct describes not just a single component instance

and have a different repair rate.

this section.

but a single component type, where components of the
same type are identical as far as their failure and repair
behaviors are concerned.
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Figure 1. States of a single component type.

In real systems the failure behavior of a component
can be more complicated than we have described so far.
Operational and repair dependencies, failure/error
propagation, and differences between dormant, spare
and operational states of a component affect the failure



process. To capture such complex failure behavior of
a component, we add two more states, namely spare and
dormant, in our component model as shown in Figure
1. Now, a component can be in one of four states: op-
erational, failed (could be in one of many modes), spare
and dormant. In the latter three states the component is
considered unoperational. A component is said to be
dormant when it is not operating because its operation
depends upon some other components which are unop-
erational or the whole system is unoperational. For
example a processor is dormant when its power supply
has failed. The component may fail when it is either
operational, spare, or dormant and its failure rate may
be different in the three states. A component may also
fail if it is affected by the failure of other components in
the system (failure propagation).

We next discuss the REPAIRMAN CLASS con-
struct that is used to provide information about the
actions taken by the repairmen in each repairman class.
As was mentioned earlier in this section different types
of repair, e.g. automatic recovery, operator restart and
physical repair or replacement, can be associated with
the different failure modes of a component. Each type
of repair can be performed by a different repairman
class. A repairman class could represent operators who
do restart, field engineers who do physical repair or re-
placement of the parts of the system, and either hard-
ware or software, that does automatic recovery. A
repairman class is specified by assigning it a name, giv-
ing the number of repairmen in the class, the repair
strategy used and, if the repair strategy is based on pri-
orities, assigning a priority to each component type that
can be repaired by the repairman class. We use only a
preemptive resume type repair strategy so that together
with the assumption of time independent failure and re-
pair rates, the state of the Markov chain can be repres-
ented by a concatenation of the states (operational,
failed, spare or dormant) of each component.

Next we discuss EVALUATION CRITERIA con-
struct which is used to specify the conditions under
which a system is considered operational or available to
perform service. A system is considered to be available
if specified subsets of its components are operational.
This can be expressed using a reliability block diagram
or equivalently a Boolean expression over the compo-
nent names involving “and” and “or”. Alternatively it
may be easier to specify conditions under which the
system is unavailable by specifying subsets of its com-
ponents that are unoperational. This can be done using
a fault tree or equivalent Boolean expression. Clearly
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connectivity or lack of connectivity between components
can affect the above Boolean specification and hence the
system dependability measures.

3. SIMULATION OF DEPENDABILITY MODELS

Different measures are used to evaluate the modeled
systems depending upon whether they are mission ori-
ented systems or continuously operating systems. Some
of the dependability measures of interest are steady-state
availability, reliability, mean time to failure, expected
interval availability and the complementary distribution
of interval availability (i.e., the probability that a system
would achieve a higher interval availability than a spec-
ified value between 0 and 1.) Similar measures have
also been constructed for degradable systems, e.g.,
steady-state performance and distribution of perform-
ance over a time interval [21]. Detailed surveys of these
modeling techniques and the dependability measures
calculated appear in [8, 20].

As mentioned in Section 1, Monte Carlo simulation
the technique for solving
dependability models of large systems. Simulation is
especially useful for those models for which the transi-
tion rate matrices exceed the available storage. By na-
ture, this approach has the immediate advantage of
On the
other hand, since the failure events are rare events, it is

is most appropriate

having relatively small storage requirements.

apparent that the analysis by simulation of large models
with a high degree of redundancy will require many re-
generative cycles or many long independent replications
to attain reasonable confidence intervals
[8,19]. Our goal is to obtain variance reduction meth-
ods that are applicable to a broad class of models. Spe-
cifically, we are interested in models defined by the
reliability and availability modeling language described
in Section 2, so that the techniques can be implemented
in a software package and made available to designers
in an automatic and transparent fashion. For highly
reliable and highly available systems, it is usual for the
repair/recovery rates of components to be orders of
magnitude larger than the failure rates, and in these
circumstances the use of importance sampling variance
reduction techniques [14, 16] can be very effective in

reducing the simulation run length significantly.

in order

Importance sampling for rare event simulation has
been used successfully in [3], [18], [24], [27] and
[26]. Proper selection of the importance sampling dis-
tribution makes the rare events more likely to occur; this

results in a variance reduction. The key, of course, is



to choose a good importance sampling distribution. The
theory of large deviations was used in [3], [26] and
[24, 27] to select an effective distribution for problems
arising in Markov chains with “small increments”, ran-
dom walks, and queueing networks, respectively. Ef-
fective heuristics were used in [18] to select importance
sampling distributions for reliability estimation in large
models of machine repairman type. In the SAVE
package, we have used the importance sampling tech-
niques described in [2], [12], [13] and [25]. These
techniques are capable of estimating both steady-state
and transient measures simultaneously from the simu-
lation, orders of magnitude faster than ordinary simu-
lation. These techniques are very robust in the sense
that they are applicable to a broad class of dependability
models.

For measures such as the steady-state availability
and the mean time to failure (MTTF), the estimators are
based on combining regenerative simulation [4] with
importance sampling. As recommended in [15], we first

transform the continuous time chain into an appropriate.

discrete time Markov chain. Simple “failure biasing”
techniques are then used to select importance sampling
distributions as described in [2] and [18]. For regen-
erative systems, steady state performance measures can
be expressed as a ratio. In [2], a single importance
sampling distribution was used to estimate both the nu-
merator and the denominator of this ratio. The distrib-
ution used in [2] is dynamic in the sense that it does not
correspond directly to a time homogeneous Markov
chain. This technique was called Dynamic Importance
Sampling (DIS). In [12], different dynamic importance
sampling distributions were used to estimate the numer-
ator and denominator independently which resulted in
additional importance
sampling was not used at all to estimate the denomina-
tor). This technique was called Measure Specific DIS

(MSDIS).

variance reduction (actually,

Direct application of these techniques does not yield
a significant variance reductions for estimating the
MTTF. An intuitive reason for this is as follows. When
we make failure events occur more often by choosing
an appropriate importance sampling distribution, the
value of the estimator ends up smaller than the actual
value and, in addition, the likelihood ratio is less than
This actually ends up producing variance rather
than reducing it. However, when the MTTF is formu-
lated as a ratio of two expectations (both are estimated
using a regenerative simulation), then significant vari-

one.

ance reductions can be achieved using the importance
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sampling techniques. Further details of this method are
given in [13, 25]. The theoretical basis for selecting
specific importance sampling distributions, bias expan-
sions, run-length allocations for MSDIS and the imple-
mentation details are discussed in [13].

For transient measures, such as reliability, interval
availability and distribution of interval availability, the
estimators are obtained by independently replicating
observations based on combining “conditioning” (e.g.,
[6, 7]) or “forcing” (e.g., [18]) methods with importance
sampling. While no analytic result exists for comparing
conditioning with forcing, the conditioning approach has
several advantages over the forcing approach. First,
with forcing, different holding times must be generated
for each value of f, the observation period, for which the
transient measure is to be estimated. Because of sam-
pling errors, the estimates of the transient measure may
not be monotonic in ¢. Using the conditional approach,
monotonic estimates of the transient
measures are obtained. Second, with forcing, different
conditional holding time distributions are used and dif-
ferent likelihood ratios must be maintained for each
value of ¢ for which the transient measure is to be esti-
mated. This is not necessary in the conditional ap-
proach. Thus, it has computational time advantage
when the transient measure is computed for multiple

simultaneous,

values of ¢ simultaneously. Once again, the estimators,
the stopping rules and the implementation details for the
transient measures are given in [13].

4. AN ILLUSTRATIVE EXAMPLE

The dependability modeling language of Section 2
and the variance reduction techniques discussed in Sec-
tion 3 have been implemented in the SAVE package
[9, 11] so that large availability models can be simu-
lated. We use a simple example to illustrate the effec-
tiveness of the variance reduction techniques. The block
diagram for the example is shown in Figure 2 and the
SAVE language description in Appendix 2. The fol-
lowing heuristics were used to select the importance
sampling distributions for the embedded Markov chain
as suggested in [2, 12, 18]. We assigned a higher com-
bined probability biasl to the failure transitions in all the
states where both failure and repair transitions are fea-
sible, and once a system failure state was entered, we
returned to the original probability distributions. This
method was called the Bias!//Ratio method, or simply
the Bias! method. We also used another method called
the Bias!/Bias2, where besides biasl, we assigned a
higher combined probability bias2 to those failure tran-



disk
controllers
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disk cluster 1

Figure 2. A block diagram of the computing system
modeled.

sitions which correspond to component types which
have at least one component of their type already failed.
This exhausts the redundancy quickly and has much
better chance of selecting the most likely path to system
failure. Based on empirical results obtained in [2],
[12] and [25], the values for biasl and bias2 were se-
lected as follows: for DIS, .5 and .5, and for MSDIS, .9
and .9. Also for MSDIS, we assigned 10% of the total
events to estimate the denominator for unavailability as
suggested in [13].

The example of Figure 2 (Appendix 2) was simu-
lated using the SAVE package. We performed the fol-
lowing 4 experiments for estimating unavailability. Each
experiment was run for approximately 100,000 events.
The percentage relative half-width of confidence inter-
vals, defined to be 100% times the confidence interval
half-width divided by the point estimate, for the direct
simulation, the Bias/ method with DIS, the Biasl/Bias2
method with DIS and the Bias//Bias?2 method with
MSDIS were 27.1%, 7.6%, 2.7% and 1%, respectively.
Coverage experiments done in [13] show that these or-
ders of magnitude variance reductions are realizable
with very short runs - as small as a few thousand events.
Similar results have been obtained for MTTF and all the
other transient measures described in Section 3. These
results are summarized in [13].

5. SUMMARY

System dependability is becoming an increasingly
important factor in evaluating the behavior of commer-
cial computer systems. This is due Lo the increased de-
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pendence of enterprises on continuously operating
computer systems and to the emphasis on fault tolerant
designs. Models of such system will continue to get
more complex as the size and the complexity of these
systems increase and as more system details are included
in the model. Although, the theoreticians will continue
to create state-of-the-art modeling techniques, the prac-
titioners will stay away from using them unless a method
is discovered to bridge the gap between the two. The
SAVE modeling package is an attempt to do so.

SAVE incorporates a high level modeling language
with simple and powerful modeling constructs. These
constructs are able to describe the failure and repair
behavior of components as well as their interdependen-
cies very easily. We have built very large models (hun-
dreds of components) reasonably quickly using the
SAVE language.

Since, SAVE is specifically designed for practition-
ers, it is important to incorporate most general and ro-
bust solution methods which apply to a broad class of
models that can be generated using the language. Special
cases are rare, and therefore, the simulation methods
which work for a restricted class of models are of a
lesser interest from the point of view of a package like
SAVE. The importance sampling distributions we have
selected are very simple and are applicable to all
dependability measures mentioned in Section 3. This
results in efficient computation of all the measures si-
multaneously from a single simulation run. SAVE
methods have been used to construct and solve thou-
sands of models of computer and communication sys-
tems.
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-of-comps)>

*
PARAMETERS: <parameter-name>, <parameter-name>,..
*
CONSTANTS: <constant-name>, <constant-name>,
CONSTANT-NAME: <constant-value|expression>
CONSTANT-NAME: <constant-value|expression>
LISTS: <list-name>, <list-name>,
LIST-NAME: <comp-name><(no.-of-comps)>,
LIST-NAME: <comp-name><(no.-of-comps)>,

*

COMPONENT: <comp-name><(no.
SPARES: <no.-of-spares>

SPARES FAILURE RATE:
OPERATION DEPENDS UPON:
REPAIR DEPENDS UPON:
DORMANT WHEN SYSTEM DOWN:
DORMANT FAILURE RATE:
FAILURE RATE:

<expression>
<comp-name><(no.)>,
<comp-name><(no. )>,
<YES |NO>

<expression>
<expression>, <expression>,

FAILURE MODE PROBABILITIES:<prob-value>,

REPAIR RATE:

REPAIRMAN CLASS USED:

COMPONENTS AFFECTED:
<LIST-NAME | COMP-NAME>:
<LIST-NAME | COMP-NAME>:

COMPONENT:

*

<expression>,
<class-name>,
<NONE | list-name|comp-name(<no.>)>,
<affect-prob-val>,
<affect-prob-val>,

EVALUATION CRITERIA: <ASSERTIONS|BLOCKDIAGRAM|FAULTTREE |PERFORMANCE>

wle
™

REPAIRMAN CLASS:

REPAIR STRATEGY: <PRIORITY|ROS>

<class-name>(<number>|UNLIMITED)



COMPONENT-NAME: <priority-level>
COMPONENT-NAME: <priority-level>

REPAIRMAN CLASS:

*
END

APPENDIX 2: EXAMPLE SYSTEM

MODEL: Example
METHOD: simulation
CONSTANTS: procfr, cfr, dfr, rrl,
procfr: 1/2000

cfr : 1/2000
dfr : 1/6000
rrl 1
rr2 0 1/2
c : 0.99
%
COMPONENT

DORMANT WHEN SYSTEM DOWN
FAILURE RATE :
FAILURE MODE PROBABILITIES:
REPAIR RATE :
COMPONENTS AFFECTED

ProcB: 1-c

ProcB: 1-c

COMPONENT

DORMANT WHEN SYSTEM DOWN
FAILURE RATE :
FAILURE MODE PROBABILITIES:
REPAIR RATE :
COMPONENTS AFFECTED

ProcA: 1-c

ProcA: 1-c

COMPONENT
DORMANT WHEN SYSTEM DOWN
FAILURE RATE :
FAILURE MODE PROBABILITIES:
REPAIR RATE :

COMPONENT
DORMANT WHEN SYSTEM DOWN
FAILURE RATE :
FAILURE MODE PROBABILITIES:
REPAIR RATE :

COMPONENT
DORMANT WHEN SYSTEM DOWN
FATILURE RATE

rr2, c

ProcA(2)

NO

procfr

0.5, 0.5
rrl, rr2
ProcB, ProcB

ProcB(2)

NO

procfr

0.5, 0.5
rrl, rr2
ProcA, ProcA

Contl1(2)
NO
cfr
0.5, 0.5
rrl, rr2
Cont2(2)
NO
cfr
0.5, 0.5
rrl, rr2
Diskcl1(4)
NO
dfr
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FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE :orrl, rr2
COMPONENT Diskc2(4)
DORMANT WHEN SYSTEM DOWN NO
FAILURE RATE : dfr
FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE :orrl, rr2
COMPONENT Diskc3(4)
DORMANT WHEN SYSTEM DOWN NO
FAILURE RATE : dfr
FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE : rrl, rr2
COMPONENT Diskcé4(4)
DORMANT WHEN SYSTEM DOWN NO
FAILURE RATE : dfr
FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE : rrl, rr2
COMPONENT Diskc5(4)
DORMANT WHEN SYSTEM DOWN NO
FAILURE RATE ¢ dfr
FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE :orrl, rr2
COMPONENT Diskc6(4)
DORMANT WHEN SYSTEM DOWN NO
FAILURE RATE . dfr
FAILURE MODE PROBABILITIES: 0.5, 0.5
REPAIR RATE :orrl, rr2

EVALUATION CRITERIA: blockdiagram

Clusterl: Diskcl(3) and Diskc2(3) and Diskc3(3)
Cluster2: Diskc&4(3) and Diskc5(3) and Diskc6(3)
ProcA and ProcB and Contl and Cont2 and Clusterl and Cluster?2

REPAIRMEN: 1
REPAIR STRTATEGY: ROS

* (Random Order Service)

END
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