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ABSTRACT

This tutorial describes many of GPSS/H's powerful
additions to, and extensions of, traditional GPSS, and shows how
modelers can take advantage of them to build simulations that are
more sophisticated in their gathering of statistics, more modeler- and
user-friendly, and significantly easier to build, modify, and debug.

1. INTRODUCTION

Since the first version of GPSS/H was introduced over ten
years ago, the language has been the subject of ongoing development
and enhancement by Wolverine Software. Many features have been
added or extended in order to provide greater functionality and ease
of use, while retaining the intrinsic strengths of the transaction-flow
approach. Unfortunately, modelers often do not have the time to
keep up with the latest developments in simulation languages. This
tutorial will provide simulationists with an update on GPSS/H
capabilities and how they may be used to solve modeling problems
with less effort.

We will focus on five major areas of concern to the modeler:
designing and executing simulation experiments, building models,
debugging models, building interactive models, and animating
models. Within each of these areas, the use of advanced features and
techniques will be covered.

All of the advanced features discussed are described in detail
in the third edition of the GPSS/H Reference Manual, released this
year (and previously called the GPSS/H User’s Manual). Similarly,
GPSS/H Release 2.0 makes the features discussed available on all
hardware on which GPSS/H is supported. The features are also
available in the newly released student/demonstration version of
GPSS/H; many, but not all of them are also discussed in its
accompanying tutorial text, Getting Started with GPSS/H.

During the conference presentation, numerous examples will
be presented and discussed, but they are not included here because of
space limitations. Copies of the examples and other material will be
provided to attendees, and will be available upon request to those
unable to attend. We hope that this paper provides a useful overview
of the topics of interest.

2. DESIGNING AND EXECUTING SIMULATION

EXPERIMENTS

Simulationists often would like to separate their models from
the use of those models in controlled experiments. Unfortunately,
such a task can be difficult, if not impossible, if model execution is
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governed by a run-control mechanism that is limited in both
functionality and flexibility.

The Control Statements of GPSS/H comprise a complete run-
control programming language, in which execution of the model
proper is akin to calling a rather large subroutine. The run-control
language can be used to initialize or modify data values, to read or
write to files, to perform calculations, to conduct a dialogue with the
modeler or user, to conditionally execute the model zero or more
times, and to provide customized output. But perhaps most
importantly, all this power and flexibility can be used incrementally.
A model can be run with a very simple set of control statements
when it is first being developed. Then, as development proceeds, a
more powerful run-control environment can be added if and as
needed.

Another problem important to modelers, particularly after a
model is largely complete and the modeler is concentrating on
validation and the running of experiments, is the need to provide
multiple independent streams of random numbers for use in different
parts of the model (or in the same parts for different runs.).
Simulation languages ordinarily allow their users to alter the output
of random number generators, but typically have no convenient way
to ensure that the specified changes produce independent, non-
overlapping streams of numbers. A modeler seeking to ensure
independence is often required to gain a detailed understanding of
both the algorithm and implementation used in a particular generator.
Few users have the time or inclination to gain such an understanding,
and rightfully so. The end result too often has been that modelers
were unable to exercise intelligent control over a critical part of their
experiments.

The indexed Lehmer random number generator currently
provided with GPSS/H was designed and implemented with special
attention to the problem just discussed. Modelers can simply and
straightforwardly control any number of random number streams in a
model and easily guarantee that they will be independent (that they
will not be autocorrelated due to overlap). GPSS/H also provides
automatic detection of any overlap that might accidentally occur
during a run, providing an extra measure of protection to users.

A third problem that modelers often confront is the need to
record a custom-tailored measurement or statistic during model
execution. In GPSS/H, the modeler can code expressions of
arbitrary complexity directly for most Block and Control Statement
operands. A notable special case of real power and convenience
arises from the ability to code such expressions as the A-operand of
the TABLE definition Control Statement. This operand defines the
statistic to be calculated and recorded whenever a TABULATE Block
naming that TABLE is executed during the course of a run, or at
specified intervals during a run. The modeler is thus able to quickly
collect and tabulate almost anything of interest during a run.



In the subsections below, we examine some of the features of
GPSS/H that can be used to control execution of a model. We also
discuss the indexed Lehmer generator, and how it can improve the
quality of statistics gathered during a run.

2.1 Using the Control Statement Language to Automate
Experiments

Getting good results from simulations requires multiple runs
and careful statistical housekeeping. For example, consider
simulating a hypothetical assembly line. One statistic of interest will
be the average number of widgets produced per hour, and since the
simulation results will probably be used to make management
decisions, it is highly desirable to specify confidence limits on the
statistics where possible.

A simulationist might approach this problem by first
developing a model of the assembly line that records the widgets-per-
hour produced for each hour of a 40-hour work week, then
calculates the average widgets-per-hour value for each week. With
only this basic model, but using GPSS/H Control Statements such as
DO and ENDDO, the simulationist could straightforwardly apply the
technique of batch means, running the model automatically for a
multiple-week period, and collecting data on the average value of
widgets-per-hour for each week. The weekly means of widgets-per-
hour will be normally distributed (thanks to the Central Limit
Theorem), even though the hour-by-hour production figures are not.
Having a normally distributed statistic greatly eases the construction
of the needed confidence intervals.

The principal statements that support general purpose
programmability in the GPSS/H Control Statement language are:

DO DO-loop iteration
ENDDO

IF IF-THEN-ELSE conditional branching
ELSEIF

ELSE

ENDIF

GOTO Unconditional branching

HERE Dummy branch target ("CONTINUE")
INITIAL Assignment of values to data items
LET

GETLIST Input (list-directed read)

GETSTRING Input (unformatted string read)

PUTPIC Output (picture-directed formatted write)
PUTSTRING Output (unformatted string write)

CALL Call an external (user-supplied) routine

2.2 The Indexed-Lehmer Random Number Generator

GPSS/H now uses an indexed implementation of Lehmer's
multiplicative congruential algorithm, with parameters selected on the
basis of work by Fishman and Moore. This generator behaves as
follows:

The "next" random sample is produced by applying the
algorithm to the most recent sample. In other words, the nth

sample is produced purely as a function of the n-Ist sample.
The 32-bit value from which the very first sample is
produced is known as the seed value.

The stream of samples produced repeats after a fixed
number of samples. This number is called the period of the
generator. In the case of the Lehmer algorithm, the period is
2*%*31-2, so a supply of over two billion unique random
numbers is available.

Values supplied by the user (as operands of the RMULT
statement or BRMULT Block) are interpreted as offsets from
the starting point of the generator. Thus, an RMULT
operand value of 50000 means "start with the 50,000th
number in the period of the generator." A different starting
offset can be supplied for each independent stream used in a
model, so that the streams "tap in" at different points in the
period of the generator.

Because the generator's true seed value is known, the nth
sample can be calculated from n itself. GPSS/H takes
advantage of this very special property so that a modeler can
specify that a stream start with the one-millionth value in its
period without GPSS/H having to generate and discard the
first 999,999 values.

GPSS/H's indexed Lehmer implementation thus lets the
modeler provide independent streams simply by knowing
approximately how many samples will be needed for each stream in
the model. To get two streams, with approximately 300,000
samples to be drawn from each, the simulationist might specify
RMULT operands of "100000,500000". The second stream would
start 400,000 samples downstream from the first, leaving a
comfortable margin before overlap would occur. To aid in the
determination of appropriate offset values, GPSS/H provides
standard output for each stream used in a model, showing its starting
offset, ending position, and number of samples drawn during a run.

Note that the RMULT statement is part of the GPSS/H
Control Statement language, and allows random number streams to
be controlled very flexibly outside of the model proper, as part of the
run controls defining an experiment. GPSS/H also provides the
ability to save the state of random number streams in a model, so that
they can be restarted from the same point in a subsequent run.

3. BUILDING MODELS

Building models takes time, and time is expensive. GPSS/H
contains numerous features that make the simulationist's job easier,
even (perhaps especially) when dealing with large models.

3.1 Math and Random Variate SNAs

Until recently, doing complicated mathematics and calling
mathematically defined random variate (probability distribution)
generators in GPSS/H required the use of external routines. In 1988
the following capabilities were built into the language itself:

Math Functions Distributions

ACOS RVEXPO (Exponential)
ASIN RVNORM (Normal)
ATAN RVTRI (Triangular)
COS

250



EXP
LOG
SIN
SQRT
TAN

Other closed-form distributions can be built from the ones provided.
Although these features are classified and implemented as Standard
Numerical Attributes, each one behaves syntactically like a built-in
function that returns a value.

3.2 Using the Double Precision Floating-Point Clock
The use of a double precision floating-point simulator Clock
distinguishes GPSS/H from most if not all general-purpose

simulation languages. In general, the GPSS/H clock offers the
following advantages:

"Natural" time units can be used. For example, if a
model needs simulated time to be measured with millisecond
resolution, the use of an integer clock would require a time
unit of one millisecond (or smaller) per "tick”. If the time
unit is milliseconds, a time value of 3000 represents 3
seconds. Such scaled values are hard to read. With the
GPSS/H clock, a time unit of seconds can be used, so that a
time value of 3 means 3 seconds and a time value of .001
means 1 millisecond. Readability is vastly improved.

Much larger times can be represented with the GPSS/H
clock than with a 32-bit integer clock. If the time unit is
microseconds, the maximum representable value with a 32-
bit integer clock is only approximately 0.6 hours.

Much higher resolution is provided: approximately 16
decimal digits, as opposed to 9 digits for a 32-bit integer
clock and only approximately 7 decimal digits for a single
precision floating-point clock. With a time unit of
microseconds, the GPSS/H clock would not suffer loss of
precision until after more than 30 years of simulated time, as
opposed to approximately 10 seconds of simulated time for a
single precision floating-point clock. For unusually high-
resolution models, the GPSS/H clock is capable of
simulating 11 days with a time unit of nanoseconds!

Uniform distributions of the form A%B, computed at
ADVANCE and GENERATE Blocks, yield an effectively
infinite number of sample values under the GPSS/H clock..
Contrast this with an integer clock, where only 2B+1 sample
values are obtainable, and the A- and B-operands must be
specified as integer values. This granularity can cause
modeling problems, such as being unable to represent a time
advance distributed uniformly over the interval from 10 to 15
(inclusive), because the mean value of 12.5 is non-integral.
Such problems are completely avoided with the GPSS/H
clock.

One caveat associated with a floating point clock is worth
noting, however. The use of fractional time units can produce
roundoff discrepancies, depending on whether or not the fraction has
an exact representation in binary floating-point. For example, a
sequence of 10000 executions of an "ADVANCE 0.1" Block will not
produce a time advance of exactly 1000. This is because the fraction
1/10 does not have an exact representation in binary floating point,
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just as 1/3 does not have an exact representation in decimal floating-
point.
3.3 Using Symbolically Named Transaction Parameters
The attributes of moving or transient objects in a model are
stored in a Transaction's Parameters. In traditional GPSS, these
Parameters can only be referred to by number. This can be an

especially maddening restriction because of the high frequency with
which Parameters are referenced in a model.

GPSS/H lets the modeler use symbolic names to refer to
individual Parameters, producing tremendous gains in model
readability and understandability (and thus in modeler productivity).
These names appear on all Transaction output, and different names
can be applied to the same Parameter to allow for different contexts.
Moreover, the modeler can let GPSS/H automatically assign
numeric values to the names used, or can use EQU statements to
custom-tailor the assignments.

3.4 Creating Data-Driven Models

Input data that are used for run control, or as part of the experiment
specification for a run, can be read in from files via the GETLIST
Statement before or after the model proper executes each time. Data
that are a standard part of the model itself can be read in during
model execution via the BGETLIST Block. GETLIST and
BGETLIST read files in which data values are separated by blanks,
and can handle integer, double precision floating point, and character
data. Both also allow user-specified actions to be taken for error and
end-of-file conditions.

3.5 Generating Custom Output

Customized output can be produced while Blocks are being
executed by means of the BPUTPIC or BPUTSTRING Blocks.
Custom output is also available within the Control Statement
language, for use before or after execution of the model, via the
PUTPIC and PUTSTRING Statements. Both PUTPIC and
BPUTPIC use a "picture” type of format specification, which works
in such a manner that "what you see is what you get".

4. DEBUGGING MODELS

The GPSS/H Interactive Debugger is central to rapid model
development, verification, and modification. Several simple
commands are provided by the debugger for controlling a model's
execution and examining its status. Among the more frequently used
commands are:

STEP Execute 1 Block
STEP n Execute n Blocks
DISPLAY xxx Display statistics on one or more

entities or SNAs
Set a Block Breakpoint (stop when
any Transaction reaches Block yyy)

BREAKPOINT yyy

AT yyy Set a Block Breakpoint with an
attached Debugger procedure
CONTINUE Execute to completion, or to the next

Breakpoint
Execute until Block yyy is about to be
executed by any Transaction

CONTINUE yyy



TRAP XACT n Stop when Transaction n tries to move

TRAP CLOCK n Stop when the Clock reaches or
exceeds n

CHECKPOINT Save the complete state of the model

RESTORE Return to the CHECKPOINTed state

Q Quit quickly (exit immediately to the

operating system)

The Debugger can be invoked at the beginning of a run, or
(except for runs in batch) by interrupting a long-running model to be
sure all is OK before continuing. Usually the Debugger is invoked at
the beginning of a run. In fact, its execution-speed penalty is s0
small (less than 5 percent) that many modelers use it exclusively as
their runtime environment for GPSS/H.

The GPSS/H Debugger also supports a "windowing" mode
on many of the machines and operating systems on which it runs.
The windowing mode, known as TV (test video), displays source
code and model status information as the model is run.

5. BUILDING INTERACTIVE MODELS

The GETLIST and PUTPIC Control Statements, and their
Block counterparts BGETLIST and BPUTPIC, can be used to read
from and write to devices such as terminals (or PC screens) as well
as files. Character-type Ampervariables make it easy to manipulate
text. Consequently, it is not difficult to have a model or its
experimental control program (or both) run with interactive control.
No programming in an outside language is necessary.

When properly designed, such interactively defined and/or
controlled models can be used by someone who knows nothing
about simulation or programming. The interactive definition and
control are usually implemented via a data-driven model, as
described earlier in section 3.4, in conjunction with custom-tailored
output and the appropriate amount of user dialogue to define and
control the run. Note that a user dialogue does not need to prompt a
user for voluminous input data, but rather uses just enough
interaction to define unique aspects of the run.

6. BUILDING ANIMATED MODELS

Animation has become a powerful tool in simulation. It is
frequently used not only to present simulation results to non-
simulationists, but also to aid in model development and debugging.

The built-in 1/O features of GPSS/H are well-suited to
providing the kind of model trace information that is needed to
produce animated output. Figure 1 shows a segment from a
GPSS/H model of a Kanban system . The model was developed as
part of a comparative simulation modeling exercise conducted by
WATMIMS for presentation at the 1989 Winter Simulation
Conference, and the segment shown is used to model the movement
of AGVs throughout the model. An examination of the model
segment will show that only 6 Blocks (annotated with "*ZAP*" in
their comment fields) are needed to provide the trace output
necessary to allow animation of the AGVs. Obviously, the type of
information required by specific animation software will determine
the quantity and format of the data to be written out, but the example
illustrates how unobtrusively animation capabilities can be added to
even sophisticated, data-driven, generic model segments.
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The model segment presented in Figure 1 is intended to be
substantially self-documenting. Although the segment is included to
illustrate the use of GPSS/H features to support animation, it also
illustrates a number of the features discussed elsewhere in this paper,
and should be read carefully.

7. SUMMARY

GPSS/H has emerged as a leading tool for people who
regularly model complex systems. This acceptance comes despite
the fact that many of the advanced features of GPSS/H are not well
known or (in some cases) well understood. Tutorials such as this
one provide GPSS/H users (as well as other observers) with the
opportunity to keep up with the latest developments in the language,
and to see how easily they can be brought to bear on everyday
modeling tasks.
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* A A

MUCH SETUP CODE, INCLUDING INITIALIZATIONS AND FUNCTION DEFINITIONS, HAS BEEN OMITTED FROM THIS LISTING
THE KANBAN CODE, WHICH CONTAINS A FEW ANIMATION TRACE FILE WRITES (AGV COLOR CHANGES), IS ALSO OMITTED

WHEN AN AGV XACT TRANSFERS TO AGVBEGIN, IT HAS ALREADY BEEN (1) IDENTIFIED BY NUMBER AND
(2) COLOR-CODED BY MISSION BY THE ORIGINATING KANBAN

*  ORIGINATING KANBAN ALSO SETS PH(STNNOW), THE STATION THE AGV IS AT NOW, AND PH(STNDEST), THE DESTINATION
*  THERE ARE 33 CONTROL POINTS AND 10 STATIONS
ALL AGVs AT ALL POINTS IN THE SYSTEM SHARE THIS PIECE OF CODE FOR ALL THEIR MOVEMENT
*
* PH(CPNOW) IS FUNCTION OF PH (STNNOW)
* PH(CPNEXT) IS FUNCTION OF PH(CPNOW) AND PH(STNDEST)
* SIMULATED DISTANCE AND XING NUMBER ARE FUNCTIONS OF PH(CPNOW) AND PH(CPNEXT)
* ANIMATED PATH NUMBER IS FUNCTION OF PH(CPNOW) AND PH (CPNEXT)
*
AGVBEGIN ASSIGN CPNOW, FN (CPCALC) , PH CPNOW IS FUNCTION OF STNNOW (CURRENT STATION)
NEXTCP  SEIZE PH (CPNOW) +AGVOFFST DUMMY END-OF-SEGMENT FACILITY PREVENTS LEAPFROG
ASSIGN CPNEXT, MH (ROUTING, PH (CPNOW) , PH (STNDEST) ) ,PH ~ NEXT CP = FUNCTION OF CURRENT CP § NEXT STOP
CHKINT  GATE LR  MH(XING,PH(CPNOW),PH (CPNEXT))+AGVOFFST WAIT FOR CLEAR INTERSECTION
GATE SNF  PH(CPNEXT) +AGVOFFST WAIT FOR NEXT SEGMENT TO CLEAR
TRANSFER  SIM,, CHKINT BE SURE INTERSECTION IS STILL CLEAR!
ENTER PH (CPNEXT) +AGVOFFST GRAB NEXT SEGMENT
*
TEST G AC1, &ATIME, SAMETYM *ZAP* TO SHRINK TRACE FILE, ONLY IF CLOCK CHANGED
BPUTPIC  FILE=TRACE, (AC1) *ZAP* ...DO WE TELL ANIMATOR CURRENT (NEW) TIME
TIME *.**
BLET SATIME=AC1 *ZAP* TRACK THE TIME ONLY FOR TEST ABOVE
SAMETYM BPUTPIC  FILE=TRACE, (PH(AGVNUM),MH (PATH, PH (CPNOW) , PH (CPNEXT)))  *2AP* PLACE ANIMATED AGV ON NEW PATH
PLACE * ON CP*
"
RELEASE  PH(CPNOW) +AGVOFFST RELINQUISH DUMMY
LEAVE PH (CPNOW) +AGVOFFST RELINQUISH PREVIOUS SEGMENT
TEST L MH (XING, PH (CPNOW) , PH (CPNEXT) ) , LASTXING, NOINT ~ IF THERE'S AN INTERSECTION...
LOGIC S  MH(XING,PH(CPNOW),PH (CPNEXT) ) +AGVOFFST ...SIGNAL THAT THE INTERSECTION IS BUSY
NOINT ADVANCE ML (DISTANCE, PH(CPNOW) , PH (CPNEXT) ) *AGVSPEED TRAVEL TIME ELAPSES
LOGIC R MH(XING, PH(CPNOW),PH (CPNEXT))+AGVOFFST SIGNAL THAT INTERSECTION IS NOW CLEAR
ASSIGN CPNOW, PH (CPNEXT) , PH MADE IT TO MY NEXT CP!
*
TEST E PH (CPNOW) , 21, NOTBACK *ZAP* IF AT CP21 ('WAITING SPUR'), CHANGE AGV COLOR
BPUTPIC  FILE=TRACE,LINES=2, (AC1, PH(AGVNUM)) *ZAP* CHANGE COLOR TO SHOW COMPLETION OF AGV MISSION
TIME *.**

*

SET * COLOR WHITE

NOTBACK TEST E FN(CPDEST) , PH (CPNOW) , NEXTCP IF AT DEST, THEN DONE, ELSE LOOP TO NEXT CP

TRANSFER . PH (RETURN) AGV HAS REACHED DESTINATION; RETURN TO KANBAN CODE

Figure 1. AGV Subroutine Code Called by the Kanban Code
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