Proceedings of the 1989 Winter Simulation Conference
E.A. MacMair, K.J. Musselman, P. Heidelberger (eds.)

KNOWLEDGE-BASED MODELING AND SIMULATION COMPONENTS

Jeff Kaminski
Cindy Cosic

Gary Strohm

Joyce Kepner

Jim Bycura

Carnegie Group, Inc.
Five PPG Place
Pittsburgh, PA 15222

ABSTRACT

Carnegie Group, Inc. has developed a series of
programming modules that can be used separately or en
masse in the areas of modeling and simulation. This paper
briefly describes the modules and the domains in which they
can potentially be applied. The paper also includes a
description of an actual application involving four of the six

software packages.

1. INTRODUCTION

This paper discusses six knowledge-based modeling and
simulation components developed and refined by Carnegie
Group, Inc. over the past two years. Built in two phases,

these components are:
1. Phase One:
¢ Object-Oriented Programming
e Simpak ™
k™

e Statpa

e Graphpak™

2. Phase Two:
o Timepak ™
e Modelpak™
These six tools extend the existing power of the object-

oriented paradigm found in Carnegic Group's Knowledge

Craft"™ 100l 1o the arcas of modeling and discrete simulation.

The systems lend themselves to both static and dynamic
modeling techniques, addressing physical resources and
materials, intangible operations and processes, and always-
present temporal constraints. The components also satisfy
the user’s need for the generation, collection, and display of
data and statistics to analyze the systems they are modeling,
thus allowing them to develop and confirm the optimum

configuration of the various aspects of their systems.

From the physical inception of the first four components in
1987 to the recent completion of the final two packages,
these separate yet related tools have undergone a number of
enhancements to attain their current level of utility and
versatility. This paper will address each component in turn,
describing first the initial four components created in phase
one of product development, and then the two most-recent
installments to the family of tools implemented in phase two.
Each component will be described with respect to its
prominent features and some of its more useful and

interesting characteristics.

Potential applications of the products developed in the two
phases will also be cited. In addition, this paper will describe
a 1988 deployment of the first four components in a system
developed 10 model and simulate a printed circuit board
manufacturing plant. Finally, the paper will conclude with a
description of the possible uses and benefits of the tools when

considered and deployed both independently and collectively.

2

2. PHASE ONE

Phase one of development began in the third quarter of
1987. Its conclusion came in the second quarter of 1988 with
the release of the Object-Oriented Programming, Simpak,
and Graphpak components. Simpak has since been further
decomposed into its natural subdivisions, Simpak and

Statpak. The next sections describe these four components.

2.1. Object-Oriented Programming

The object-oriented programming (OOP) paradigm serves
as the foundation for the subsequent components. Designed
Knowledge Craft’s
Representation Language (CRL), OOP embodies the basic

as an interface o Camnegie
precepts upon which all object-oriented systems are based.
Namely, all system components are represented as objects.
The user defines the basic components with which they wish
to work in terms of classes and subclasses of objects. Each
subclass further refines or specializes its parent class as
necessary lo achieve the proper representation. The user
creates instances, or specific occurrences, of their classes and
subclasses to realize unique concepts or parts of a real-world

system.

Objects communicate by sending and receiving messages.
allow
understanding each other’s internal workings. They achieve

Messages objects to communicate without
this "black-box" functionality by referencing methods within
the objects to which they are sent. It is these methods that

manifest the behavior of their respective objects.

One important aspect of OOP is the concept of inheritance.

Inheritance allows that, unless indicated by the user,
subclasses inherit the inherent qualities of their parent
classes. The user specializes or adds only those aspects of a

subclass that differ from the parent class.

For example, a class of object defined as car might contain
all of the basic characteristics of a generic automobile, such
as a chassis, an engine, four wheels, and so on. Two possible
subclasses of the car class might be domestic and foreign.
These subclasses would for the most part inherit the traits of
their common parent class, car. However, they would differ
in certain key respects; for instance, the subclass domestic
would represent specd in terms of miles per hour (MPH),
while its foreign counterpart would represent the same
quality with respect to kilometers per hour (KPH). Figure
2-1 presents the class/subclass hierarchy defined in this

example.

223

| domestic' | foreign I

Figure 2-1: Car Hierarchy

When sent a message regarding its present speed, an
instance of either subclass would initially access car’s
method for interpreting speed. However, each would then
perform a specialized operation on the preliminary speed
returned by car to obtain the value in the proper units. Once
the proper methods had been defined within the two
subclasses, the user could simply send a speed message to an
instance of either subclass to obtain the correct interpretation
of the value of speed, either MPH or KPH.

The use of an object-oriented paradigm offers the
advantages of uniformity among sets of objects, abstraction
with respect to objects’ responses to the messages they
receive, incremental definition in a class hierarchy, and
explicit interfaces in the form of messages and the responses

they elicit.

In
functionality they have come to expect from CRL (e.g.,
OOP also provides
specialized functions, such as define-method, -> (send), and

addition to providing the user with all of the

schemata and related functions),
--> (send-super). Additionally, OOP provides many useful
functions for the manipulation of methods (e.g., find-

methods, get-messages, and describe-method).

Again, OOP serves as the premise upon which the ensuing
tools are based. Defining the modeling and simulation tools
with respect to this refined object-oriented paradigm provides
the user with a consistent and powerful means of model

development and simulation execution.

2.2. Simpak

Simpak allows the user to simulate a process via the
construction and c¢xecution of a discrete cvent simulation. In
discrete event simulation, system behavior is represented as a
sequence of events: events are the actions that occur during
simulation execution, such as loading a part onto a machine,

tooling the part, and removing it from the machine.

The user schedules the events of the process being
simulated onto the simulation cvent calendar in a distinct
temporal order. The events on the calendar are then
sequentially executed one at a time, again in temporal order,
until the simulation terminates. The simulation is event-
driven, meaning the simulation calendar only progresses with
the occurrence of an cvent. Hence, the state of the model

being simulated is stable between events.

To conduct a simulation, the user first creates an instance
This instance, referred to as the
the

management of the simulation calendar. Once the user has

of the simulation object.
simulation executive, controls simulation via
created the instance, they can then initialize it and create and
schedule its events. Each event has an associated action, a
time at which its action is to occur, a priority to be used in the
event of conflicting event scheduling, and a status reflecting
whether the event is active or has been deleted from the

simulation calendar.

Simpak provides the user with a complete set of methods
for manipulating a simulation and its events. The simulation
object contains the instantiate and initialize methods
necessary to prepare the simulation calendar, as well as
The

methods available for simulation calendar manipulation

methods to create, schedule, and reschedule events.

include methods for locating or deleting a specific event or
any events that satisfy a predicate or contain a certain slot

value.

Temporal progress is maintained during simulation by the
simulation clock. The simulation clock progresses with the
exccution of events, maintaining the current simulation time
in user-specified units. The simulation object includes
methods that allow the user to execute a simulation in a

variety of ways. The user can

e execute all of the events on the calendar without

interruption,

e "step” through the simulation a specified number

of events at a time,

e "tick” through the simulation a specified number
of ticks of the simulation clock at a time, or

e run the simulation until a specified simulation

time.

Finally, Simpak also includes instruments that enable the

user to collect information from cvents executed during a

224

simulation. Simpak offers two types of instruments, periodic
and event. Periodic instruments perform their function at a
specified interval of time, while event instruments monitor
simulation aclivity associated with objects or messages.
Coupled with their available methods, instruments allow the

user lo monitor and record a wide variety of data.

The next section, Statpak, includes information on
generating random values to model non-linear system
behavior. The section also includes a description of the data

collection functionality available with the package.

2.3. Statpak

Statpak provides a number of tools for representing system
behavior and collecting data during a simulation, and
generating statistics as a result of the gathered data.
Statpak’s functionality comes in the form of random
numbers, random variables, and data collectors. The use of
these objects, especially as they relate to simulation, is
described below.

Random numbers and random variables are used to
the behavior of
components during simulation. For instance, a sequence of

represent unpredictable a model’s
random numbers might represent the number of parts a
machine processes in a given period of time. Likewise, the
value of a random variable might be used as the time at

which an order should be queued.

Random numbers are drawn from random streams, which
generate numbers between zero and one that do not follow a
pattern. A random stream begins with a seed, which is a
randomly chosen number within the acceptable range, and
then continues to generate numbers within that range.
Statpak provides eleven random streams to allow the user to
maintain the integrity of their random numbers in simulations
requiring multiple occurrences of such values.

To generate a random number, the user initializes one of
the available random streams and sends it a generate
message. Subsequent generate messages can be sent without
re-initialization.

Random variables are taken from probability distribution
functions. Probability distributions produce values designed
lo satisfy certain statistical parameters. Statpak provides
eleven probability distributions, such as constant, uniform,

and normal. Each produces numbers to satisfy unique

statistical requirements. For example, a uniform distribution
produces numbers evenly distributed between its minimum
and maximum values, while a normal distribution generates
the majority of its numbers closer to its mean, with values
further the
diminished proportions.

from mean encountered in increasingly

The user generates a random variable by instantiating a
distribution and taking a sample from it. The user indicates
the parameters within which the generated values are to fall

at the time of a distribution’s creation.

Data collectors are used to store or reduce the data
gathered during a simulation. Statpak offers ten separate data
collectors, each unique with respect to the combination of
data it collects and the statistics it generates. For instance,
one type of data collector is the 2-var-dc (two-variable-data-
collector), which collects pairs of data and maps the
approximate relationship between the values on a best-fitting
line. The user can then access the slope and y-intercept of
the line generated from the data, as well as the correlation,
mean, maximum, minimum, standard deviation, and variance
of the data.

To use a data collector, the user first creates and initializes
an instance of one of the ten available classes. They then use
the proper method to add data to the data collector, typically
during simulation. The user can then generate statistics based
on the collected data. Again, each of the ten data collector

classes produces unique statistical data.

Graphpak can be used to display the collected data and
generated statistics both during and after a simulation.
Certain of its components can also be used to input data into
a simulation. The next section describes Graphpak and how
it relates to the simulation and statistical functionality already
described.

2.4. Graphpak

Graphpak is an intcractive graphics package that enables
the user to create gauges and business charts to visually
display data during or after a simulation run. Certain
interactive gauges also allow the user to enter data during
program execution. This section describes first the gauges
and then the charts available with Graphpak.

Gauges. Gauges provide graphic input and output of
numeric quantities during a simulation. Each basic gauge is

225

composed of two primary components: a body and an

indicator. The body of a gauge represents a fixed area
containing graded tick marks and labels along the gauge's
axis; the indicator, which moves along the axis of the gauge,

represents the value being displayed.

Graphpak offers three types of basic gauges, two of which

consist of a number of subclasses, as follows:

1. Rectangular:
e line
® bar
e vertical
e thermometer

e vertical-thermometer

2. Polar (circular):
e dial
e meter

® meter2

3. LCD (liquid crystal display)

A single basic gauge can display one or more values. A
basic gauge with more than one value is called a multiple
indicator gauge. There are two types of multiple indicator
gauges: single value and multiple value. A single value
multiple indicator gauge uses more than one indicator to
display a single value. For example, a single bar-gauge
might display a three-digit value, employing a separate

indicator for the hundreds, tens, and ones of the value.

Conversely, a multiple value multiple indicator gauge
displays more than one value, with a separate indicator for
each value. For instance, a different bar-gauge might display
two distinct numbers, using a separate indicator for each

value.

Finally, multiple gauges can be grouped into a single
As with
multiple indicator basic gauges, composite gauges can be of

macro gauge referred o as a composite gauge.
the single value or multiple value type. A single value
composite gauge displays the same value in more than one
gauge. A good cxample of a single value composite gauge
might be one that uses two basic gauges to display the

temperature in both degrees Fahrenheit and degrees

Centigrade.

A multiple value composite gauge depicts more than one
distinct value in different basic gauges. For example, a
multiple value composite gauge attached to a simulation
might use an LCD-gauge to display the current simulation
time, a vertical-thermometer-gauge to indicate the number of
orders completed, and a simple linc-gauge to show the
Figure 2-2
provides an example of this particular multiple value

average cycle time of the completed orders.

composite gauge.

100.0 =— —_—

JE— 125.0
80.0 — — Time
60.0 __ __

0.0

5.0

10.0 15.0
Average Cycle Time

20.0 25.0

Orders
Completed

Multiple Value Composite Gauge

Figure 2-2: Multiple Value Composite Gauge

To create a gauge, the user first creates the canvas,
window, and viewport in which the gauge is to reside. They
then create an instance of the gauge, customizing its
dimensions, labels, and other characteristics, and display it in
the viewport. The user can then specify that the gauge be
consistently updated to display the appropriate information,
or use the gauge to provide input to the program to which it is
attached.

Charts. Charts cnable the user to display numeric values.
Each chart is composed of two parts: a body and a curve.
The body of a chart, like that of a gauge, represents the fixed
portion of the device bearing its tick marks and labels. The
curve portrays the data points associated with the value being
displayed.

Graphpak provides three basic types of charts, the third of

which can be represented in one of two ways, as listed below:
1. Graphs

2. Pie-charts

226

3. Histograms:
¢ x-histograms
e y-histograms
An example of a pie-chart depicting fictitious market

statistics for workslations during the past year appears in
Figure 2-3.

Design Automation

Software Development

Other
Publishing

1988 Workstation Market

Figure 2-3: Pic-Chart of Workstation Statistics

The process used to create a chart is very similar to that
used to create a gauge. The user begins by creating the
canvas, window, and viewport. They then create an instance
of the chart and display it in the proper viewport. The user is
given a good deal of flexibility regarding the appearance of a
chart. In most instances, the user can customize a chart's
dimensions, its labels, the interpolation algorithm used to

calculate its curve, and many other general characteristics.

2.5. Potential Applications

Simpak, Statpak, and Graphpak address the

requirements found in any solid simulation tool.

key

® Planning. The user can usc Simpak to create and
modify a simulation template, thus enabling
them to easily test a number of different
configurations. Using Statpak, they can collect
data from and generate statistics about the
various simulation runs. Graphpak then allows
them to examine easily-understood visual
displays of the statistical information they have
obtained, graphically comparing the results of
the simulations to make an informed, intelligent
decision on their ultimate system configuration.
This "what-if" functionality aids the user's

ability to plan cffectively.

As alluded
simulation allows the user to pinpoint the steps

e Decision making. to above,

required to implement a procedure.

Subsequently, necessary changes can be
anticipated and verified before they are actually
required. The user can foresec a change in
demand, simulate one or more strategies o
address the upcoming variation, and analyzc the
results of the simulation to effectively adjust the
current procedures and schedules. Hence, the
user can circumvent unnccessary disruption of
their existing system, avoiding costly last-minute

changes and saving valuable time and money.

Forecasting. The available tools allow the user
to test configuration hypotheses in a safe, risk-
free environment. A change may prove to be
beneficial, but there is also the possibility that it
may be detrimental. The user can simulate the
effect of varying certain conditions, analyze the
results, and test their predictions without fear of
eroded production.

information is a

Communication. Visual

convincing medium. Graphpak allows the user
These

statistics can then be presented to management to

to prepare visually effective statistics.

illustrate the advantages and disadvantages of

possible process alternatives.

The above four points, while individually impressive,
collectively offer a valuable array of inter-related advantages.
When used in conjunction with one another, Simpak, Statpak,
and Graphpak can help the user realize four important

simulation applications.

which determines

of

1. Process planning, an

effective sequence operations for

manufacturing a product.

. Facilities planning, which uses throughput and
cost constraints to assess the effectiveness of

manufacturing facilities organization.

3. Operations analysis, which determines how
effectively the current production process and
facilitics organization meet the end-product
demand. Operations analysis addresses load

balancing, lot sizing, and cost-analysis.

. Scheduling, which generates a manufacturing

sequence for the end-product based on the

227

production process, facilities organization,

operational decisions, and demand.

Applications constructed with Simpak, Statpak, and
Graphpak can be used in a variety of domains, such as
discrete machine job shops, flexible manufacturing, flow
shop/transfer lines, and assembly shops. The following
section describes an actual application that used these

components to great advantage.

2.6. An Actual Application

Shortly after their release in 1987, Simpak, Statpak, and
Graphpak were used to augment existing Knowledge Craft
functionality in a knowledge-based simulation of a printed
circuit boara (PCB) manufacturing plant. The project was a
collaboration of Italtel, a communications company located
in Italy, and Camegic (U.K.) Limited. The goal of the
project was to simulate the production of PCBs for electronic
switching equipment. The following two sections describe
the system’s initial requirements and the results of the

deployed simulation system.

Requirements. Printed circuit boards begin in the Italtel
plant as bare boards. Throughout a series of operations,
hundreds of components chosen from a set of fifty thousand
possible types are inserted in a board. Once assembled,
PCBs endure a series of electrical tests and, if they pass, are

sent to a storeroom to await shipping.

The plant at which this operation occurs consists of 85
distinct operations involving 120 employees. Eighty distinct
boards are produced as the result of 165 possible plant
routings. The operation produces approximately 2200 boards
weekly. (The actual number and types of boards produced in
a given week can vary considerably according to customer
demand.) In addition to accurately modeling the above
the to handle

dynamic part routing, worker scheduling, part aggregation

charactenistics, final simulation also had
and de-aggregation, machine downtime, engineering changes,

and missing components.

The requircments of the simulation were typical of such
projects. Italtel belicved that a simulation system would
assist production in the short term by enabling configuration
without

experimentation interfering with daily plant

operation. Additionally, they believed that foreseeing
possible bottlenecks would aid their operators in scheduling

and dynamic planning. In the long term, management hoped

that the simulation would assist in the modification of plant
sct-up, as well as in the design of future plants.

Results. Based entirely on the Simpak, Statpak, and
Graphpak technologies, the resulting system was a very
encouraging preliminary tool for operations planning and
scheduling, both static and dynamic. The final system
cffectively handled all of the initial constraints, proved to be
easily understood and modified, and worked with better than
anticipated speed. (The system was able to efficiently
simulate two months of plant activity in less than an hour,

better than twice the speed originally hoped for.)

The final system included an impressive interface that
guided the user through each step of the simulation process.
This interface included numerous gauges that allowed the
to conveniently alter predefined parameters for
Each of the
modifiable parameters was represented by a separate,
modifiable LCD-gauge.

distinct parts were displayed in a vast array of x-histograms

user
experimentation purposes. operation’s
in addition, the system’s many

that enabled the user to alter a simulation during run time and
immediately view the results of their changes. A single
simulation could be executed with different boards, various
lot sizes, the addition, deletion, or reassignment of workers,

machines, and shifts, and routing and capacity alterations.

Furthermore, the system enabled the user to interrupt a
simulation at any time to display graphs, histograms, and
pie-charts reflecting its current state. The user could then
continue the simulation from the point at which it was

stopped or invoke a new simulation run.

More impressive possibly than the results themselves is
the fact that this entire system was implemented by five
full-time and two part-time individuals in a period of just
fourteen months. Obviously, without the benefit of flexible
underlying simulation and graphics packages, the span of the

project would have been much greater.

3. PHASE TWO

Phase two of development began with the third quarter of
1987 and continued until the end of the second quarter of
1988, culminating in the completion of Timepak and
Modelpak. These components are described in the following

LWO sections.

228

3.1. Timepak

Timepak provides a foundation upon which users can
represent and reason about temporal occurrences. Timepak
consists of two primary subsystems: absolute time and

relative time. The following sections describe these systems.

Absolute Time. Absolute time allows the user to create a
temporal representation associated with fixed or definite
The of four basic

consists

occurrences. system

subcomponents:

1. time units, which are the terms by which all
other absolute time objects are defined;

. time points, which represent specific moments
in time;

3. fixed intervals, which are intervals of time

defined by definite starting and ending points;

.durations, which are spans of time not

associated with any particular points in time.

The development of an absolute time representation is
dictated by two basic facts: (1) each time point and duration
must be defined in terms of some time unit, and (2) each
fixed interval must have both a start point and an end point to
define its limits. Consequently the user typically performs a
consistent sequence of steps when initially using absolute

time to prepare a temporal representation.

1. The user begins by defining any time units they
wish to use. The user can build hierarchies of
time units by relating one unit to another and
then defining methods for translating between
the units. All time units must be based in some
way on Timepak’s special Universal Time
Representation (*UTR*) variable, a time-line
whose increments and limits are undefined until
associated with a user-defined time unit.

. The user then defines time points to be used in
their representation. Time points denote
Each

point is defined in terms of a value/unit pair

precise, indivisible instances in time.

indicating the instance at which it occurs.
Although they can stand alone, the primary use
of time points is to delineate fixed intervals.

3. The user continues by creating fixed-intervals,
which are references to specific intervals in

time. The user creates a fixed interval by

defining its start and end points in terms of
Once defined, a fixed
interval can be thought of as a bounded

existing time points.

sequence of time points in which each
successive point occurs immediately after the
preceding point.

. Finally, the user can define durations, which are
fixed quantities of time points not delimited by
Unlike

durations have no end points; they are instead

specific points. fixed intervals,
defined similarly to time points, with a specific
value/unit pair. However, where the value
associated with a time point refers to a specific
point in time, the value associated with a
duration actually indicates a successive series

of time points referred to as a span.

The creation of durations after time points and

fixed intervals 1is completely arbitrary;
durations can actually be created any time after

the creation of time units.

Timepak includes myriad methods for comparing and
performing mathematical operations on time points, fixed
intervals, and durations. Hence, once the user has defined a
thorough representation, they can easily compare and
manipulate the various objects in their temporal model,
that to evaluate the

generating reports can be used

effectiveness of the current representation.

Relative Time. Relative time is a time reference that
relates events, or occurrences, without necessarily associating
them to any specific period in time. Events in relative time
are related to each other, rather than to time units or points;
they need neither occupy any fixed intervals nor span any set
durations. This freedom from the constraints of absolute time
allows the user to define a network of events solely with

respect to their temporal relations to each other.

The process of creating a relative time network involves

four steps.

1. The user first creates the events being used in

their representation.

2. The user then gathers their events into groups,
or clusters, of events by asserting reference
events. Reference events serve as parent evenls
to any number of children. Additionally, each
reference event can have a reference event of its

229

own. Thus, the user can create an intricate
hierarchy of events organized by cluster.

. The user continues the process by relating each
event to first its reference event and then the
In Timepak,
relations consist of statements such as “event

other events in its cluster.
one occurs before event two." A full range of

such relations is available to the user.

.The user completes the representation by
relating the various reference events to each
other. The user can also assert relations

between events from different clusters,
providing such assertions do not violate any

existing relations.

When the network has been completely defined, grouped,
and related, Timepak provides the user with methods
allowing them to determine the relationships that exist
between any of the events in the network. This information
can be used to draw conclusions and to reason about the

process represented by the network.

3.2. Modelpak

Modelpak provides the user with the tools to model a
real-world process. Although to date it has primarily been
used to represent systems in the manufacturing domain, the
tool can be used to model processes from any number of

applications.

Modelpak allows the user to define a process as a series of
discrete events referred to as activities. Activities correspond
to the actual actions represented by the system, such as
loading an object onto a tool or operating a piece of

machinery.

Additionally, Modelpak supports activity aggregation in
the form of complex activity groups. A complex activity is
an activity that consists of a number of other events. The
user can compose a number of activities in a single complex
activity hierarchy, or they can decompose a single activity
into the activities of which it is composed. Either way, the
resulting activity structure allows the user to model a process
at the desired depth. For example, starting a car could be
modeled with a single activity, or it could easily be
represented by a group of more precise events (e.g., opening
the car door, placing the key in the ignition, turning the key,

and so on).

In Modelpak, a physical substance required to perform an
activity (such as the fuel required to start the car in the
example above) is represented as a resource. Activities can
Like the

physical quantities they symbolize, resources have capacities

be constrained by the lack of required resources.

that diminish with use. Somec are consumable, meaning they
do not replenish after use, while others resume their original
capacity once the user is finished with them. Furthermore,
like activities, resources can be aggregated into complex

resource groups (e.g., five workers can constitute a tcam).

The user creates a Modelpak representation by first
defining the activities and resources to be used in their
mode], and then creating any complex activity or resource
groups. Next, they link the activities to each other in the
sequence in which they occur, as well as to the resources that
they require. The result is a hierarchical model of activities

and resources representing a discrete process.

The user can access the resulting model to perform static
evaluation of the system being represented. They can also
employ a simulation package such as Simpak to execute the

model’s components.

3.3. Potential Applications

The potential applications for Timepak and Modelpak are
essentially very similar to those previously listed for the
phase one components.

e Planning. The user can utilize either Timepak or
Modelpak for planning. Both components allow
the user to model a system, either temporally or
physically, and draw conclusions about the

representation.

e Decision making. Again, both packages allow
the user to define the steps involved in a process
and then modify their definition as mandated by
real-world demands and constraints. As with the
phase one components, Timepak and Modelpak
both provide the user with the opportunity to
effectively ecvaluate and adjust their current
process without disrupting the actual system.

e Forecasting. Theories and hypotheses can be
The
benefits and drawbacks of any idea can be

tested and verified in a safe environment.

determined without the risk of harm from

unforeseen side effects.

230

Process planning, facilities planning, operations analysis,
and scheduling are all addressed. Timepak is especially
useful alone or with Modelpak for scheduling applications.
Additionally, when used together, relative and absolute time
allow the user to first develop the relationships between
events and then constrain the relationships by assigning them

specific temporal values.

4. CONCLUSION

The components described in this paper address a wide
array of applications. The primary advantage of this diverse
collection of tools is the modular approach they bring to the
arenas of planning and scheduling. Developed as separate
units, they can be used that way or combined to great
advantage.

e For small problems, the user need only purchase
the component they need. There is no cause for
them to purchase an immense system consisting
of tools they may never use. This reduces their
expenditure of both money to acquire the

package and time to learn how to use it.

e For large tasks, Simpak, Statpak, Timepak, and
Modelpak can be used in any number of
combinations or collectively to build domain
specific shells. Shells can be used to make the
burden of solving large, intimidating problems
that much lighter. And, once an effective shell
has been developed for one application, it can
easily be applied to other problems in that same

the primary shell

opportunities lie in the arcas of scheduling,

domain. Obviously,

process planning, simulation, and design.

ACKNOWLEDGMENTS

The authors and Carnegice Group, Inc. would like to extend
their appreciation for the support and input received from
Digital Equipment Corporation throughout the development
phases described in this paper. They would especially like to
thank Frank Lynch and Chuck Marshall of Digital Equipment
Corporation for their continuing contributions. Finally, they
would like to express their appreciation to the various other
employees of Carncgie Group, Inc. who contributed to the
development of the phase one components.

AUTHORS’ BIOGRAPHIES

JIM BYCURA is an Engineer in Modeling and Simulation
Systems at Carnegie Group, Inc. He has worked at Carnegie
Group since May, 1988.

CINDY COSIC is a Senior Engineer in Modeling and
Simulation Systems at Camegie Group, Inc. She has worked
at Carnegie Group since July, 1988.

JEFF KAMINSKI is a Technical Writer in Modeling and
Simulation Systems at Carnegie Group, Inc. He has been
with the company full-time since January, 1988.

JOYCE KEPNER is a Quality Assurance Engineer in
Modeling and Simulation Systems at Camegie Group, Inc.
She has worked at Carnegie Group full-time since February,
1988.

GARY STROHM is Manager of Modeling and Simulation
Systems at Carnegie Group, Inc., where he has been
employed since September, 1985.

All five authors can be reached at the same address and

phone number.

Carnegie Group, Inc.
Five PPG Place
Pittsburgh, PA 15222
(412) 642-6900

231

