Proceedings of the 1989 Winter Simulation Conference
E.A. MacMair, K.J. Musselman, P. Heidelberger (eds.)

THE GPSS/PC'™ STUDENT VERSION

Springer W. Cox

Minuteman Software
Box 171
Stow MA, 01775
(508) 897-5662

Abstract

From its inception, GPSS/PC, itself, has always
had features designed specifically to facilitate the mastery
of the simulation environment by new users. Its basic
design goals of visibility, control, and protection from
unseen danger fit very nicely into the classroom.

The GPSS/PC Student Version has been available to
educational institutions at nominal cost, ever since
Version 2 of GPSS/PC was released. It was designed to
provide the visual interactive environment of GPSS/PC,
including the error prevention and detection features, to
students learning the GPSS language and/or simulation
methodologies in general. Although the Student Version
does not include the FORTRAN interface or the built-in
spatial animation, it does include the animated graphics
windows and is completely functional with respect to the
simulation primitives of its big brother, the commercial
version of GPSS/PC. In addition, its use of character mode
graphics results in minimal hardware requirements in the
laboratory yet retains the graphical user interface.

Several recent improvements to the Student Version
have improved its speed and power. Although the Student
Version was never designed as a vehicle for advanced
projects, users have occasionally requested that its
capabilities be expanded. For this reason, in mid 1989,
both speed and size limitations were somewhat relaxed.

This paper presents the features and limitations of
the current GPSS/PC Student Version, and discusses the
advantages of the interactive and protective GPSS/PC
simulation environment in the classroom.

Keywords: GPSS, discrete event simulation.

185

1. Introduction

The main discussion in this paper will center on the
advantages of the Student Version of GPSS/PC in an
educational role. Several major design improvements
distinguish GPSS/PC in this regard. First, the older
multiphasic design of the overall simulation process has
been replaced by a single, integrated simulation
environment combining the functions of editing,
compiling, loading, simulation, and debugging. This has a
variety of advantages, as discussed below. Second, the user
interface makes possible a high level of interaction of the
student with his/her simulation. It is possible to modify
named values, and even to make structural changes to the
model without even having to restart. In addition to
considerably reducing model development and debugging
time, this provides the power to investigate hunches and
to examine the effects of transients in the the simulation.
In addition, a mode of operation called "manual
simulation” permits the keyboard entry of GPSS block
statements as if they were commands. In addition to aiding
the learning/teaching of GPSS, manual simulation
provides a high level of control over running simulations.
Third, a hierarchy of error detection and prevention
mechanisms arc implemented. The most apparent of these
is "Keystroke Error Prevention” which makes it
impossible for the student to incorporate syntax errors
into the simulation environment. Fourth, a variety of
additional usability fcatures are part of the user interface.
Fifth, an casily accessible visual interface allows the user
to view the dynamics of running simulations. Finally,

built-in statistical commands automatically calculate



confidence intervals and perform a first level analysis of

variance on the simulation results.

2. The Session

In GPSS/PC, all phases, including compiling,
linking, running, and debugging, are combined into a
single phase called a session. Once a program is read from
a DOS file, in effect, the compilation and link steps are
done. From this point it is possible to modify the GPSS
model, to save the model, to begin a simulation, or to
enter GPSS block statements in manual simulation mode.
A set of debugging commands, including STEP, STOP,
SHOW, and PLOT are available, as well.

The development of GPSS models is expedited by
the combined design of the single phase environment, and
the error handling features. As described below, syntax
errors cannot enter the environment. Therefore, those
problems which must be corrected as a model is under
development are logical or semantic in nature. For those
problems which remain to be corrected, the student neced
not leave the session in order to modify the model. As each
problem is corrected, the student can proceed immediately
to the next. The improvement in model development time
resulting from this integrated simulation environment can
be dramatic. No longer is it necessary to spend time
passing through several debug-cdit-compile-link-run
phases in order to correct run time problems. Perhaps even
more important, the interval between the commission and
detection of an error is shortened. This saves time in itself,
but it also allows the student to retain a more complete
mental context for the problem correction task.

The GPSS/PC session is made much more powerful
by the inclusion of features which allow immediate
modification to the data structures of the simulation.
Without them it would be necessary to leave the single-
phase scssion in order to develop or debug a simulation
model. New block statements, originating from the
keyboard or from other program files are incorporated
incrementally into the existing data structures. Each
insertion of a block statement is directed by the line
number, which may be a decimal fraction. Any statement is
inserted into the ASCII "savable program” in line number

sequence, and any GPSS block entity so described is

186

inserted in a corresponding position in the "current
model”.

Corrections can be made to existing statements by
replacing complete lines, or by using the integrated line
editor. An EDIT command is available o make minor
modifications to existing lines without retyping the whole
line. A small set of special editing keys is available for use
within the EDIT mode.

The single phase design greatly improves the
immediacy of the simulation system. When, and if, the
student reaches the point where the simulation
environment feels like an extension of self, it becomes
relatively casy to refine his/her intuition by interacting
with the simulation environment. It then becomes
possible to develop a “fecl” for those changes which will
be effective in modifying the behavior of the target system
under study. The rcason that this is of importance is that
the quality of a simulation study is ofien determined by the
range of alternate designs under consideration. That design
sel is best specified when the simulation analyst possesses
an accurate intuition with respect to the behavior of the

system under study.

3. The Interactive User Interface

GPSS/PC is distinguished by its interactive user
interface. It allows the student to make online
modifications to a simulation that run deep into the
structure of the model. In addition, GPSS block statements
assume a new interactive function, called "manual
simulation”, where they are treated as keyboard commands.
A temporary GPSS block entity is created by this action,
and the active transaction at that instant attempts to enter
it. The results of the interaction can be observed
immediately. This gives the student a powerful level of
control over running simulations.

Any named value may be changed at any time in the
simulation and the results may be observed immediately,
without restarting the simulation. Such observations can
be visualized dynamically in one of the graphics windows,
or in one of up to four ad hoc Microwindows. Alternately,
they can be made by plotting the value of onc or two
SNAs. The plots can be observed as the simulation runs or

the simulation can be interrupted at any point and valucs of



various SNAs displayed. By changing named values, it is
easy to explore a variety of alternatives in a single
simulation.

GPSS blocks may be inserted, replaced, or deleted
in the middle of a simulation. Transactions destined for a
deleted block are rescheduled for the "next sequential
block” following the deleted one. Transactions destined
for a replaced block are rescheduled for the replacement.
The placement of the GPSS block is made according to line
number sequence. If a block statement is entered with a line
number identical to that of an existing block statement,
the original statement is replaced with the new one, and
the original GPSS block entity is replaced by the newly
defined one. Similarly, if a block statement is entered with
a line number that does not yet exist, the statement is
inserted in line number sequence and the newly defined
GPSS block statement is inserted in a corresponding place
among the existing ones.

Finally, the manual simulation feature places all the
simulation primitives on the user interface. This means
that any GPSS block statement can be entered through the
keyboard in the middle of the simulation. If a block
statement has no line number, it is a manual simulation
statement. This causes a temporary GPSS block entity to
be created which the active transaction attempts to enter.
In this manner, any action of any existing block in the
model can be initiated by an EXECUTE statement, or a new
block statement can be typed. ASSIGN blocks can alter
transaction parameters; TRANSFER blocks can move
transactions; GENERATE and SPLIT blocks can create new
transactions. In fact, the whole simulation could be done
manually. In essence, it allows actions occurring deep
within the simulation to be controlled from the keyboard.
In addition, manual simulation allows one (o initiatc a
block action and then to explore the results immediately.

Manual simulation is complimented by the
windows and the debugging commands: STOP, STEP,
SHOW, and PLOT. These commands allow one to find an
specific condition in a simulation so that the environment
may be explored and manipulated. The PLOT and SHOW
commands are available for observing stale variables
during a simulation. The PLOT command allows one to
plot any SNA, and to observe its value as the simulation
progresses. If exceptional conditions arc delected, it is

easy 1o interrupt the simulation, explore with the

187

debugging commands, and even introduce transients or
make corrections. All of this is possible without leaving
the session.

There are two major objectives for manual
simulation: first, in program development for the
correction of errors and the exploration of the simulation;

second, for learning and teaching.

4. Error Detection and Prevention

It is highly desirable to dispose of user errors as
soon as possible. Each additional delay increases the
chance that the student will be distracted. This would be
inefficient because much of the student's effort of modeling
is in creating a mental context where the implications of
statements in the modelling language are obvious. Since
this context must be recreated in order for problems to be
fixed, it is desirable for the simulation development
environment to detect errors as close as possible to the
time when they are committed.

GPSS/PC possesses a feature called "Keystroke
Error Prevention" to provide for immediacy of error
detection. The GPSS/PC statement parser is directed by the
grammar of GPSS and at any instant will refuse keystrokes
which cannot possibly lead to correct syntax. It is
impossible for syntax errors to enter the simulation
environment. Further, the mental context of the student is
still established for choosing the correct alternative. The
net result of the error prevention is significantly decreased
model development times.

The mutability of the GPSS/PC simulation
environment is intended to serve the same function for
semantic and functional errors. Although these errors are
not prevented, they may be corrected and retried without
leaving the session. As described above, the single phase
design coupled with the the ability to make drastic changes
to the model, keeps the correction of errors as close as
possible to the time of commission. When one error is
corrected, the student may then proceed to the next without
leaving the session.

Minor modifications have been made to the GPSS
language itself in order to make the syntax more uniform
and therefore more predictable. Uniformity is very

desirable because it reduces the "knowledge load" which



must be carried by the student. The result is that the system
is easier to learn and less error prone.

Another approach to reducing the special
knowledge necessary to the student is to remove
exceptional conditions and unnecessary data types from
the simulation environment. GPSS/PC uses unlimited
precision integers for internal values. As numbers grow in
size, additional memory is allocated for them
automatically. Unlimited numerical precision relicves the
student of concern about overflows and underflows in the
clock, and of overflows in the statistics accumulators.
These exceptional events do not occur.

To reduce the level of system knowledge needed to
access sophisticated mathematical algorithms, GPSS/PC
has integrated a mathematical library into the GPSS
language. This alleviates the need to link modules written
in other languages, such as FORTRAN, in order to perform
complex calculations. In GPSS/PC, expressions can
include SNAs (System Numerical Attributes),
exponentials, logarithms, trigonometric functions,
logical operators, and others. This allows probability
functions in closed form to be included as GPSS variable
entities. Similarly, GPSS/PC can be used to simulate
continuous state systems using any of the commonly used

integration techniques.

5. Ease of Use

Several GPSS/PC features are designed to save time
in the overall simulation project. Fewer housekeeping
tasks required of the student leave more energy to be
devoted to mastery of the simulation environment. Not
only that, but since tedium tends to increase user error
rates, features which remove it are of considerable value to
the student. Several features of GPSS/PC are noteworthy in
this regard.

The integrated online help feature allows the
student to press the ? (question mark) key at any time a
statement is being entered. This causes a help message to
appear with operand specific syntax information.

The command recognition feature eliminates some
of the typing load. If the space bar is pressed when a
command is partially, but uniquely determined, GPSS/PC

finishes the command word automatically.

188

All statements and commands can be saved by a
single keystroke and thereafter be re-entered with a single
keystroke. This is accomplished by use of the assignable
function keys found on the keyboard of the PC. By
pressing the control key and the selected function key, the
previous statement or command will be stored and can be
recalled by pressing the same function key, by itself.

Automatic spacing aligns statement fields with
column numbers. This occurs when a valid delimiter key is
pressed. It is not necessary for the student to know, or
even be concerned with, the alignment of statement fields.
GPSS/PC will not, however, permit the student to skip a
required field.

Each field is prompted by a distinct cursor which
serves as a reminder of ficld identity. When the student
ends one field by pressing a delimiter key, GPSS/PC
changes the form of the cursor to indicate which field is to
be entered next. For example, an inverse video D appears

as the cursor when the student may start operand D.

6. GPSS/PC Windows

All versions of GPSS/PC now include at least 5
interactive graphics windows, each of which allows the
student to view, and interact with, a specific GPSS entity
type. The student can use a pointing device to select
entities, positions, and menu items in the graphics
windows. Each window type is updated online and reflects
the state of the running simulation. The student can open a
window with a single keystroke, even while a simulation
is running, or he/she can use the WINDOW command for
more precise control. Optionally, the windows can be
saved or sent to a hardcopy device.

The Positions Window of the full version of
GPSS/PC is not part of the Student Version. However, the
other five online graphics windows (Blocks, Storages,
Facilities, Matrices, and Tables) provide alternate
viewpoints of simulation dynamics based on specific
GPSS entity types. They provide the student with a
dynamic visualization of the changing state of his/her
simulation.

The Data Window is not considered to be a graphics
window, and does not enjoy online update, even though 1t

is part of the integrated environment. This is an advantage



in that the Data Window is the fastest of all windows. If the
student wants to "skip ahead” or complete a simulation as

quickly as possible, he/she should open the Data Window.

6.1. Microwindows

A Microwindow is a small window which shows the
current value of any GPSS state variable , or user defincd
variable, and an optional title. Up to 4 Microwindows may
be opened within any major graphics window.

Microwindows are opened and closed by the
MICROWINDOW command. They are visible at the right
side of each of the graphics windows and are updated as the
simulation runs. Using Microwindows, the student can
view his/her choice of state variables, regardless of which
major graphics window is open.

Microwindows can be invaluable during the testing
and development of simulation models. By opening these
tiny windows, the student can follow the changes in the
simulation dynamically or one step at a time. When
unexpected conditions are detected, they may be trapped

and explored with the full set of interactive commands.

6.2. The Blocks Window

The most powerful control of the simulation is
available through the Blocks Window. This window
maintains a one to one correspondence with GPSS block
statements in the source code. As students develop the
program working with GPSS text, the corresponding block
diagram can be viewed in the Blocks Window. Alternately,
program modifications can be entered by manipulating the
block diagram through the Blocks Window. The
combination of breakpointing, stepping, and
continuation, allows much of the interaction during the
testing/verification phase to be done through the Blocks
Window without typing commands, i.e. using only the
pointing device.

Blocks are arranged in the window top-to-bottom,
left-to right. The Blocks Window shows the flow of
transactions from block to block, and it has indicators for
the occupancy counts of transactions in blocks. An
alternate view of the Blocks Window shows the

accumulated count of transaction entries for each block.

189

This represents a simple "history” of the simulation and
can be very useful in verification and problem
determination.

The color of a block is determined by the number of
transactions it contains. This draws attention to sources of
congestion in the simulation. If the Blocks Window is
open while the simulation runs, each transaction block
entry causes the block representation to flash a high
intensity version of its current color. The global flow of
transactions through the model is often obvious from a
glance at the Blocks Window.

The student can interact with the Blocks Window
using the pointing device. Several of the menu items in the
Blocks Window require that the student select a block
before selecting the menu item. For example, to EDIT a
block, the student first selects the block on the screen and
then select the menu item, EDIT.

The Blocks Window has, in addition, several
powerful menu functions which allow online manipulation
of animations with the pointing device. This is discussed

next.

The Blocks Window Menu

The Blocks Window menu has 7 items which can be

selected with the pointing device:

CONTINUE - Resume the simulation until a stop or

end condition is detected.
STEP - Attempt 1 block entry, then stop.

STOP - Set a stop condition on the last block

selected.
UNSTOP - Remove all stop conditions.

EDIT - Edit the GPSS statement associated with the

last block selected.

INSERT - Prepare to insert a block immediately
after the last block selected.

DELETE - Delete the last block selected, from both

the current model and the savable program.



6.3. The Other Interactive Graphics Windows

The other interactive graphics windows are used to
observe and interact with GPSS facilitics, matrices,
storages, and tables. All windows can show the changing
state of the running simulation. For example, the
convergence of frequency histograms toward parent
distributions can be observed visually in the Tables
Window. Students can sce for themselves the effects of run
length on the regularity of the input and output
distributions.

These Window menus have 2 items which can be

selected with the pointing device:

CONTINUE - Resume the simulation until a stop or

end condition is detected.

STEP - Attempt 1 block entry, then stop.

6.4. Interactions through the Major Graphics
Windows

In line with GPSS/PC's design objectives, a high
level of interactivity is available to the student. The
keyboard cursor keys or a pointing device, such as a mouse
or light pen, can be used to interact with entities visible in
the windows. The general procedure is to select an entity
on the screen with the pointing device and then to select
the menu item which initiates the intended action.

All windows allow the student to single step or to
continue an interrupted simulation using the pointing

device.

7. ANOVA

The ANOVA command is a significant feature in
GPSS/PC. It operates on an accumulation of data in a
results database. The student can use it to calculate
confidence intervals and easily perform an analysis of
variance on experimental results.

In the vein of protecting the user from unforescen

danger, GPSS/PC does not allow a statistically

190

homogeneous simulation to be perturbed by user
interactions. This protection is indicated since the
interactive nature of GPSS/PC creates a temptation to
manipulate the environment right through the final
simulations. To prevent such interactions from
invalidating the homogeneity assumptions required by the
statistical treatment of results, GPSS/PC prevents data
from a perturbed environment from being saved in a results
data base. This mcans that the ANOVA command cannot be
used on such data without an explicit override by the user.
In this manner, the student is guided into the required

procedure for a valid statistical analysis.

8. Restrictions

The Student Version of GPSS/PC has several
restrictions with respect to the full commercial version.
Since it was designed to introduce students to the
operation mechanisms of GPSS simulation entities, it
contains all the traditional GPSS blocks and control
statements of the full version. However, it is restricted in
the size and speed of models that can be run. At this
writing, models of up to 100 blocks and 20K of RAM
memory can be run nearly as fast as the full commercial

version when it was introduced on IBM PCs in 1984.

The following fecatures are not available:

1. The Positions Window and CAD based

animation Post-processor.

2. Simulation swapout via the GPSS/PC DOS

Command.

3. The HELP block and FORTRAN interface.

4. The Secssion Journal.

Actually, for introductory work, the GPSS/PC
Student Version is not restricted very significantly. The
Positions Window and the FORTRAN interface are
considered to be more advanced features that are not
appropriate in a first course in simulation. Statistically,
the longer run times of the Student Version may require the

student to scttle for wider confidence intervals. But even



this tends to draw attention to important statistical
considerations which should be addressed in the

classroom.

9. Conclusions

The Student Version of GPSS/PC was designed to
provide a very visual and interactive environment where it
is easy to manipulate, and get an accurate intuitive “feel”
for, those factors that determine model behavior. Except
for HELP and MOVE, the complete set of GPSS/PC blocks
and control statements are implemented. The graphics
windows require no programming, and are available at a
keystroke for viewing the dynamics of running
simulations. A model can be explored and manipulated
very easily in order to verify its behavior, or to explore
exceptional conditions. The ability to modify simulations
in situ, means that small error trapping GPSS segments
can be inserted or removed, at will.

In addition, the software goes to great lengths to
relieve the student of irrelevancies and tedium which
might impede the learning process. For example, the
unified environment eliminates the need to learn and deal
with external editors, compilers, and linkers. Model
development tends to proceed from one problem to the
next without intervening edit/compilation/link/run
sequences. This means that much time is saved, and that
students can keep their attention on the model under
development.

The Keystroke Error Prevention feature prevents
syntax errors from entering the environment. For a student
approaching a new language for the first time, this can be a
godsend. Not only does it speed up the learning of the
essentials, but it removes the distracting and time
consuming recompilations required by old fashioned
environments.

The statistical reatment of results often does not
receive the attention it really descrves. The Student
Version of GPSS/PC includes built-in in dynamic
histograms and the ANOVA command, which are within
easy reach for the purposes of engendering an appreciation
of essential statistical methods.

The Student Version is extremely affordable. It is

available under a site license for education institutions, so

191

that a complete computer laboratory may be populated
economically. The modest hardware requirements of the
software mean that nearly all MS-DOS compatible
personal computers can run it without an upgrade.

Finally, recent improvements in speed and model
size have made the Student Version of GPSS/PC even more
attractive as a vehicle for the instruction of simulation

principles at an introductory level.

AUTHOR’S BIOGRAPHY

SPRINGER COX received his degrees in physics and
computer science from Cornell University and Syracuse
University, respectively, and has completed an advanced
study program at MIT. He worked in computer performance
evaluation and modeling for IBM and Xerox, and, in 1977,
went to the R & D Group at DEC to simulate virtual
memory operating systems. In 1982, he founded
Minuteman Software for the purpose of creating a
microprocessor based interactive simulation environment.
He has published over a dozen papers, and has spoken at

technical conferences in North America and Europe.



