Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

MODSIM II - AN OBJECT ORIENTED SIMULATION
LANGUAGE FOR SEQUENTIAL AND PARALLEL PROCESSORS

Otis F. Bryan, Jr.
CACI Products Company
1600 Wilson Boulevard, Suite 1300
Arlington, VA 22209, U.S.A.
703-875-2900

ABSTRACT

MODSIM 1I is an object-oriented general purpose and
simulation language designed to work with both
sequential and parallel processors. Its objects have both
single and multiple inheritance.

It has a single syntax that works across a variety of
systems including main frames, work stations and PC's.
A parallel version is currently under development on the
BBN Butterfly parallel computer under the Time Warp
operating system.

MODSIM 1I is based on the syntax of Modula-2. The
majority of statements are identical with those in
Modula-2. It has a few additional constructs that let the
user write discrete process simulations.

MODSIM II has built-in object oriented constructs,
including single and multiple inheritance, data
abstraction and information hiding. In addition, it
supports separate compilation. This makes it useful for
large projects.

It contains interactive dynamic graphics to improve
input and output.

INTRODUCTION

Computer science has made great strides in hardware and
software since the introduction of FORTRAN in the mid
1950's. Work stations, new data structures and dynamic
graphics have added important capabilities to
programming.

Many of the languages have attempted to keep up with
the ficld by adding new features. The original structure
did not anticipate these changes, so it is difficult to add
them clegantly. Eventually a new language necds to be
written.

The introduction of the object, parallel processing and
dynamic graphics have made it worth while to build a
new simulation language from scratch.

172

FEATURES

MODSIM 1II was designed from the beginning to support
large programming projects. It was designed to be a
compiled, object-oriented language with multiple
inheritance.

It's syntax is based on that of Modula-2. Programmers
trained in Pascal should have no difficulty in learning
the language. This saves training costs and time.

Modularity in MODSIM II improves reliability and
reusability. Objects performing related functions can be
grouped into modules. These can be put into libraries
for reuse by other programs.

The simulation constructs were part of the design. They
are based on CACI's 27 years of experience with discrete
event languages. MODSIM 1I can be ported to new
computer systems quite easily. The MODSIM II
compiler actually produces C code. This is compiled, in
turn, by the system's C compiler.

Finally, the integrated dynamic graphics of MODSIM II
substantially reduces the time and effort to display
results with animation and presentation graphics. It
only takes a few statements to make histograms, clocks
and meters appear and change as the simulation runs.

MODSIM 1I is a complete, powerful, general purpose and
simulation language for large software engineering
projects. Its features reduce work and improve reliability
when compared with other languages.

OBJECTIVES

MODSIM was developed under contract to the US Army
Model Improvement Program Management (AMIP) Office
at Ft. Leavenworth. MODSIM 1I is the commercial
version of MODSIM.

The AMIP Office laid down the following objectives for
MODSIM:

- Object-oriented

- Discrete simulation using processes

Modular development

Direct support for expert systems
- Implemented as a translator to a target language (C)
- Complete syntactic validation by the translator

All of these objectives were achieved by August, 1988,
except for two. MODSIM is a compiler, not a
translator. The expert module was deferred to work on
parallel processing.

OBIJECTS

An object is essentially an encapsulation of data and
code. The data describes the object's current status. The
code describes what the object does.

As an example of an object in MODSIM II, consider
things that move around, such as horses and airplanes.
This is the definition of a moving object:

MovingObj = OBJECT;

X, Y,
Speed,
TimeLastChange,
VX, VY: REAL;
ASK METHOD SetLoc (IN x,y: REAL);
ASK METHOD SetSpeed (IN speed: REAL);
TELL METHOD GoTo (IN destination:
MovingObj);
END OBJECT {MovingObj};

The brackets, {}, after END OBJECT enclose comments.

The MovingObj is an object. It has six data fields: two
for its current location (X,Y), one for Speed, and two for
its velocity vector (VX,VY). The sixth,
TimeLastChange, is used internally for movement.

In addition it has three methods:

- SetLoc uses the two input parameters (x,y) to set the
initial values of X,Y.

- SetSpeed uses the input parameter, speed, to set the
Speed field.

- GoTo makes the object go to the destination from its
current position. It asks the destination for its current
location. Then, using the Speed, it calculates the
components of the velocity vector (VX, VY). Finally
makes simulated time to pass.

ASK methods are instantaneous: no simulated time
passes. Control passes to the method and returns to the
calling object. They are equivalent to a procedure call.

TELL methods are asynchronous: simulated time can
pass. The TELL method is scheduled to execute, and the
object immediately goes to the next commmand.

173

A scheduled TELL method starts execution only when
control is passed to a master "timing routine”, and it
then passes control to the TELL method.

To use an object, we have to give it a specific name and
send it messages when we want it to do something.

MAIN MODULE;
VAR
Barn, Horse: MovingObj;
BEGIN

NEWOBIJ (Bamn);

NEWOBJ (Horse);

ASK Barn TO SetLoc (100.0, 100.0);
ASK Horse TO SetSpeed (1.0);

ASK Horse TO SetLoc (35.0, 27.5);

TELL Horse TO GoTo (Barn);
StartSimulation

OUTPUT (ASK Horse X, " ", ASK Horse Y);

END MODULE {Main}.

The Barn and Horse are specific instances of the
MovingObj, even though bamns, in reality, don't go any
where.

MODSIM II uses dynamic memory allocation for objects.
While the Barn and Horse are declared in the VAR block,
memory for them is not allocated until a NEWOBJ
statement is executed. DISPOSEOBIJ (Barn) releases
memory during execution.

Since the current location of the Barn cannot be changed
directly, the MAIN MODULE sends a message to the
Barn telling it to set its location. This is done with the
ASK statement.

When the Barn gets the message, it changes its current
location (X,Y) to 100.0, 100.0, and returns. MODSIM
I sets the initial values of all variables to 0.0. Because
the barn doesn't move, its Speed is left at 0.0. Itis a
static object.

The Horse sets its Speed and location as directed by the
ASK statements.

The Horse is then told to go to the Barn. The GoTo
mecthod asks the Barn for its location, calculates the
velocity vector and lets time pass until the Horse gets to
the Barn.

When the Horse reaches the Barn, the MAIN MODULE
asks the Horse for its current location and prints it.

INFORMATION HIDING

Access to an object's data fields and methods can take
several forms depending on the implementation in a

language.

In MODSIM 11, data in an object can be read or changed
only by the object itelf -- no outside statement can get
direct access to the data: it has to send a message with
an ASK or TELL statement.

Even the indirect access can be prevented by using the
PRIVATE option. For example,

MovingObj = OBJECT;
XY,
Speed,
VX, VY: REAL,;
ASK METHOD SectLoc (IN x,y: REAL);
ASK METHOD SetSpecd (IN speed: REAL);
TELL METHOD GoTo (IN destination:
MovingObj);
PRIVATE
TimeLastChange
END OBJECT {MovingObj};

TimeLastChange is used to calculate when the
MovingObj will arrive at its destination. No one
outside of the MovingObj needs to know its value. It
becomes a PRIVATE ficld to prevent access to it.

Methods can be PRIVATE, too. PRIVATE methods are
invoked only by other methods in the object.

INHERITANCE
Inheritance lets simple objects be expanded without
having to be rewritten completely. MODSIM 1I provides
for single and multiple inheritance.
Here is a VehicleObj created from a MovingObj:
VehicleObj = OBJECT (MovingObj);
Payload: REAL;
TELL METHOD Load (IN amount: REAL);
TELL METHOD Unload (IN amount: REAL);
END OBIECT { VehicleObj);
The VehicleObj has all of the fields and methods of a
MovingObj. In addition it has a payload plus two

methods for loading and unloading the vehicle.

Here is an example of the use of a VechicleOby:

MAIN MODULE;
VAR
DullesAirport: MovingObj;
Flight217: VehicleObj;
BEGIN

ASK DullesAirport TO SetLoc (39.0, -78.0);
ASK Flight217 TO SetlLoc (50.0, 0.0)
TELL Flight217 TO Load (324.0); {Passengers)

174

ASK Flight217 TO SetSpeed (560.0);
TELL Flight217 TO GoTo (DullesAirport);
TELL Flight217 TO Unload (324.0);
StartSimulation

END MODULE {MAIN}.

Flight217 is going to fly from London's Heathrow
Airport to Washington's Dulles Airport. First, it will
take some time to load 324 passengers.

Once loaded it will use the methods of the MovingObj to
sct speed and fly to Dulles. Upon arrival it will use the
Unload method of the VehicleObj to unload the
passengers.

Multiple inheritance works the same way, but the
declaraion is a little different:

AirplancObj = OBJECT(VehicleObj,
NavigationObj);

The AirplaneObj inherits the data and methods of both
the VehicleObj and NavigationOb;.

MODIFYING METHODS

An object's methods cannot be modified by another
object. But they can be inherited and inherited methods
can be modified by the inheriting object.

If the MovingObj uses Cartesian coordinates, then the
calculations for Flight 217 will be wrong. A different
algorithm is needed for locations given in latitude and
longitude.

The VehicleObj can still use the MovingObj, but it has
to provide its own method for great circle navigation.

VehicleObj = OBJECT (MovingObj);

Payload: REAL;
TELL METHOD Load (IN amount: REAL);
TELL METHOD Unload (IN amount: REAL);
OVERRIDE

TELL METHOD GoTo;

END OBIJECT {VehicleObj};

The OVERRIDE indicates that the existing GoTo method
will be replaced by a different one for VehicleObj's. In
this case the user will have to write it himself.

MODULAR DEVELOPMENT

Putting all objects into a single MAIN MODULE is
feasible but not very good practice. In big models it
leads to unwieldy programs.

One approach is to collect objects with related functions
into a module and put modules in libraries. This
improves cohesion and reduces coupling. Rather than
copy the object into the program one just imports it by

referring to the object and module.

Morcover, it is desirable to separate the definition of an
object from the actual coding of its mecthods. Since the
other parts of the program can only send messages 1o
invoke methods, they do not have to know how the
methods work.

This leads to the concept of DEFINITION MODULEs and
IMPLEMENTATION MODULEs.

DEFINTION MODULE MoveLib;
MovingObj = OBJECT;

Speed,
VX, VY: REAL;

ASK METHOD SetlLoc (IN x,y: REAL);
ASK METHOD SctSpeed (IN speed: REAL);
TELL METHOD GoTo (IN destination:
MovingObj);
END OBJECT {MovingObj};
END MODULE {MoveLib}.
IMPLEMENTATION MODULE MoveLib;
OBJECT MovingObj;

ASK METHOD SectLoc (IN x,y: REAL);

BEGIN
X :=x;
Y =y,

END METHOD ({SetLoc};
END OBJECT {MovingObj};
END MODULE {MoveLib}.

To use the MovingObj in the MAIN MODULE, it is only
necessary to IMPORT it.

MAIN MODULE;

FROM MoveLib IMPORT MovingObj;

VAR
Barn, Horse: MovingObj;

BEGIN
ASK Barn TO SctLoc (100.0, 100.0);
ASK Horse TO SctSpeed (1.0);
ASK Horse TO SectLoc (35.0, 27.5);
TELL Horse TO GoTo (Bamn);
StartSimulation (ASK Horse X, " ", ASK Horse

Y);

END MODULE {Main}.

178

The DEFINITION MODULE is the interface between the
object and the rest of the program. If something is
defined in this module, the rest of the program can have
access to it.

The source code for an IMPLEMENTATION MODULE
does not have to be present, as long as an object file is
available when the program is linked. This is
information hiding with a vengence.

In fact, the IMPLEMENTATION MODULE doesn't have to
be present at all. MODSIM II will compile a program
consisting only of a MAIN MODULE and DEFINITION
MODULESs. Implementation can be deferred until the
architecture is complete.

This makes MODSIM 1II an excellent design tool.
DISCRETE SIMULATION USING PROCESSES

Adding simulation to Modula-2 involved adding a few
more statements and developing the supporting libraries
to execute them -- no mean task.

The WAIT statement is used to make simulated time
pass. Here is an example using the Load method of the

VehicleObj.

TELL METHOD Load (IN amount: REAL);

VAR
rate,
loadingTime: REAL;

BEGIN
rate := .25; (seconds per passenger)
loadingTime := amount / rate;
WAIT DURATION loadingTime;

OUTPUT ("Loading completed");

ON INTERRUPT

OUPUT ("Loading stopped");
END WAIT {DURATION loadingTime};

END METHOD {Load};

The WAIT DURATION statement causes the object to
suspend execution for the indicated amount of time.
Control returns to the scheduler which starts execution
of the most imminent process.

When the completion of loadingTime is the next event,
control returns to this method at the statement after the
WAIT statement.

Objects can interrupt any of their methods waiting for
completion. If the method reccives an interrupt
command, it exccutes the part of the WAIT statement
after ON INTERRUPT. This is essentially a two-part
branching statcment.

Two other forms of the WAIT statement let methods
synchronize themselves.

WAIT FOR Flight217 TO Load (324.0);

This statement invokes the Load mecthod of Flight217
and waits for it to complete. Note that this is different
from the usual mcthod. The usual method schedules Load
and proceeds without waiting.

The other form of the WAIT statement uses semaphores
or TriggerObj's to synchronize methods.

WAIT FOR ControlTowerLight TO Fire;

This statement makes the Flight217 wait for permission
from the ControlTowerLight before it moves. The
ControlTowerLight is an object. It has a TELL method
that raises a semaphore when it fires.

IMPLEMENTATION AS A COMPILER

Transporting programs from one computer system to
another has always been a problem. Frequently they
have to be extensively rewritten to modify machine
dependencies.

MODSIM II avoids this. The goal is to take source code
and recompile it without changes.

MODSIM II is a two part compiler. The first part
coverts MODSIM II code to C. The second part uses the
C compiler on the machine to convert the C code to an
object file. The linker completes the process of creating
an executable file.

Writing a MODSIM II compiler for a new system
becomes straight forward. It is a matter of adapting a
small portion of the runtime library to the machine and
recompiling the compiler.

With this approach, procedures written directly in C can
be added to the MODSIM 1I code and compiled as part of
the program.

DYNAMIC GRAPHICS

Plotting results from a simulation has always been a
tedious task. MODSIM II automates this process.

A graph is a plot of various values of a variable. Since
these values are always available to the computer, the
computer should plot them as they change.

The general method, known as SIMGRAPHICS II, works
this way:

- The user lays out the graph as he wants to see it on
the screen using an interactive graphics editor. He
selects the type of graphic (eg. pie chart, graph) from a
standard library and changes the attributes, such as
color, location and X-axis values.

- When satisficd with the results, he saves it as a file in
his directory.

- Hec then attaches the graph to the object and tells the
object to display a data ficld using the graph. Every

time the data field changes a value, MODSIM II
automatically plots the new point.

This process works both for presenting results and
animating the simulation.

In the case of animation, the graph is replaced by an
image, say an airplane and is attached to a MovingObj.
When the MovingObj changes location, the image
moves to the new location.

Interactive graphics are available as a forms editor. The
user can create a data input form in the same way he
creates a graph. As the program runs, the form will
appear and the user will enter or modify data. This
provides dynamic control of the simulation at run time.

PARALLEL PROCESSING

Parallel computers are currently available on the market.
They promise substantial improvements in speed,
especially for asynchronous programs, such as discrete
process simulations.

MODSIM 1I inherently works with parallel processors.
Because each object is self-contained, the operating
system can assign it to any available processor. It will
exccute independently of any other object.

The operating system, Time Warp in MODSIM II's case,
has to synchronize the execution of objects on different
processors. The problem occurs when one object
finishes execution prior to the another one.

For example, consider two planes that fly from Los
Angeles to Washington. Flight 38 leaves Los Angeles,
goes through Chicago and arrives at Washington at 9
pm. Flight 164 flies directly from Los Angeles and
arrives at 9:30 pm.

The object representing Flight 164 finishes executing
on its processor before Flight 38 and gets the ground
crew to unload the plane. When Flight 38 arrives, it has
to wait for the ground crew even though it "arrived" 30
minutes earlier.

Time Warp handles this by keeping a log of messages
sent and received by each object as well as copies of
previous states. When it appears that something is out
of order, it cancels the message and rolls time back.

In this case upon arrival of Flight 38 Time Warp will
cancel the message from Flight 164 asking for the
ground crew. Flight 38 will get the ground crew, and
Flight 164 will have to wait.

MODSIM II works under Time Warp, but certain
modifications are needed to speed execution. In general,
there can be no global data. That is, every data element
must be part of an object and not a module. In short,
the object is the largest element of a parallel program.

TELL methods should be used exclusively. Otherwise

processors wait until control returns during an ASK
method. Parallel processing is faster if asynchronous
methods are used exclusively.

Preliminary results from small models are encouraging.
With the proper programming techniques, it appears that
the speed up can approach 1/2 the number of processors.
That is, 20 processors will lead to a reduction of
execution time in the vicinity of 8 or 9 times.

MODSIM 11 is currently in development for parallel
processors, but considerable work still needs to be done.
A commercial version is not available at this time.

BENEFITS

Any higher order language is designed to cut the work in
programming a set of problems. Simulation languages
make it easier to write simulations than general purpose
languages do.

The object-oriented and modular features of MODSIM II
substantially reduce the time and effort to write a
simulation.

- Objects improve reliability because they isolate data
fields from the rest of the program.

- They reduce development time because they can be put
in libraries and reused.

- Modules permit step-wise development, particularly by
separating the definition module from the
implementation module.

Early results in using MODSIM II with parallel
processors indicates substantial improvements in run
time are possible. But, again, much work remains.

The integrated dynamic graphics will substantially reduce
the time to display results.

CONCLUSIONS

MODSIM 1I is a robust general purpose and simulation
language incorporating the latest advances in computer
science.

These features will substantially reduce the time and
effort in writing compute programs.

ACKNOWLEGEMENTS

My thanks to Ron Belanger, Barbara Donovan and
Katherine L. Morse for their comments on an carlier
version of this paper.

REFERENCES

Belanger, R., Rice, S., Donovan, B., Morse, K. (1989a)
MODSIM Users Manual La Jolla, California

177

Mullarney, A., West, J., Belanger, R., Rice, S. (1989b)
MODSIM 1II Tutorial. La Jolla, California

SKIP BRYAN manages the Simulation and Modeling
Department for CACI Products Company. He received a
B.S. in Mechanical Engineering from MIT, an M.S. in
R & D Management from the University of Southern
California and an MBA from the University of Chicago.
His current interests include specification and design of
large scale simulation models.

