Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

PRODUCTIVITY TOOLS IN SIMULATION:
SIMSCRIPT I1.5 AND SIMGRAPHICS

Otis F. Bryan, Jr.
CACI Products Company
1600 Wilson Boulevard, Suite 1300
Arlington, VA 22209, U.S.A.

ABSTRACT

The SIMSCRIPT II.5 simulation language with its
integrated dynamic graphics package, SIMGRAPHICS,
substantially reduces the time and effort to produce a
simulation when compared to general purpose languages.

Its structured English syntax improves readability and
reduces some of the need for documentation. This
syntax is supported by powerful libraries to relieve the
programmer of substantial amounts of work by pushing
it onto the computer.

SIMGRAPHICS adds graphics to a program to display
results dynamically. Graphics in most programs takes
thousands of lines of code. SIMGRAPHICS reduces this
task to a few lines of code with mouse-and-menu
graphics editors.

All of this adds up to major improvements in
productivity in programming. Rapid prototypes with
dynamic graphics can be written in a few days. Code is
open to inspection by non-programmers. Results are
faster and more reliable.

INTRODUCTION

Discrete event simulations comprise a substantial part of
the programming world. They range from simple models
in academia to massive programs in government.

General purpose programming languages are inherently
inefficient in the simulation world. They lack to
constructs necessary to handle routine matters such as
scheduling, filing and dynamic graphics.

To solve these problems, programmers write thousands
of lines of code to handle simple bookkeeping tasks
before they can ever get to the modeling questions.

This is worse with graphics because they have to use the
primitive commands of systems such as GKS.

The SIMSCRIPT II.5 programming language provides the
tools for discrete event simulation as part of its
libraries. This frees the the modeler to get into his
main task -- building the model.

164

This tutorial describes the main features of the language
and illustrates them with a simple example.

SIMSCRIPT's CONCEPT

Simulation involves the passage of time in the life of
some object. For example, passengers arrive at an
airport, wait for a passenger agent, get a boarding pass
and leave.

General purpose programming languages, such as Pascal,
C and FORTRAN, lack the constructs to make time pass
in a simulation. The programmer has to write these
constructs before he can get onto writing the simulation.

In general, SIMSCRIPT's simulation constructs are built
around the concept of a process. This is a routine that
describes what happens to the object as it moves
through time. For example, here is the SIMSCRIPT code
that processes a passenger in a terminal.

Process PASSENGER
Define ARRIVAL.TIME as a real variable

Let ARRIVAL.TIME = time.v

Request 1 PASSENGER.AGENT(1)

Let WAITING.TIME = time.v - ARRIVAL.TIME

Wait exponential.f (MEAN.SERVICE.TIME, 1)
minutes

Relinquish 1 PASSENGER.AGENT(1)
End "PASSENGER

Before getting into the details, a comment about style is
in order. SIMSCRIPT II.S, unlike many other languages,
is not case sensitive: ARRIVAL.TIME and arrival.time
are the same variable.

While SIMSCRIPT will not punish you for failing to
capitalize a word, it does require that variables be spelied
correctly. If you misspell a word, you will get a
warning message: Local variable used only once. This
is part of SIMSCRIPT's substantial error checking
capability.

As a matter of style all SIMSCRIPT words are shown as
capitals and lower case; user defined words are all

capitals. This way the substance of the model is
apparent as you scan the code.

The two apostrophes at the end of the process routine
are the beginning of a comment.

The first statement declares ARRIVAL.TIME to be a
local, real variable.

The PASSENGER.AGENT is a resource. The PASSENGER
has to have a PASSENGER.AGENT before he can get a
boarding pass. So he requests one. If one is available,
the next line of code is executed immediately.

If a PASSENGER.AGENT is not available, control passes
to the timing routine. The timing routine files this
PASSENGER in a queue waiting for a
PASSENGER.AGENT and starts execution of the next
process.

When a PASSENGER.AGENT becomes available and this
PASSENGER is first in the queue, the timing routine
removes the PASSENGER from the queue and schedules
him to continue execution.

When this PASSENGER is the next process to be
executed, control returns to the process routine at the
line after the request statement.

The next statement calculates the amount of time the
PASSENGER had to wait for a PASSENGER.AGENT.
Time.v is the current simulated time.

The Wait statement represents the passage of time while
the PASSENGER gets his boarding pass. The amount of
time is drawn from an exponential distribution with a
mean of MEAN.SER VICE.TIME using a random number
stream 1.

As with the resource, control passes back to the timing
routine. The timing routine files the PASSENGER in a

queue of pending events, called an event set. This queue
is ranked by the time of reactivation.

Reactivation time for this PASSANGER is the current
simulated time plus the amount of time drawn from the
exponential distribution.

When this PASSENGER is next up for execution, control
returns to the statement after the wait statement. The
PASSENGER relinquishes the PASSENGER.AGENT so
that someone else can use it and disappears from the
scene.

The great advantage of the construct is the the modcler
can write the steps of the process in structured English.
Having done this, he only has to create passengers when
he wants them, and SIMSCRIPT will handle all the
details of scheduling and execution.

Notice that the process is clear about what is supposed
to happen. This reduces the chances of logical errors in
coding. More importantly, an airline employee can read

165

the code and know whether it represents what "really”
happens.

ENTITIES, ATTRIBUTES AND SETS

Behind the scene, SIMSCRIPT does quite a bit of
bookkeeping. This relieves that modeler of that tedium.

A PASSENGER is represented by a process notice. A
process notice is a temporary entity in SIMSCRIPT.
Temporary entities are similar to records in Pascal and
structures in C. The PASSENGER.AGENT is a permanent
entity and is represented by an array.

Both entities have attributes or characteristics. The
PASSENGER has nine attributes including time.a, the
reactivation time.

The term, set, refers to a doubly linked list. When the
timing routine puts the PASSENGER in the event set, it
files a temporary entity or record in a doubly linked list
ranked by time.a or reactivation time.

Processes are executed in order of occurrence in the event
set. To execute the next process, the timing routine
removes the first process notice from the event set and
sets time.v to the reactivation time from the process
notice. It then passes control back to the process
routine.

When control passes back to the timing routine, it will
do one of three things with the process notice.

- If it is at a request statement, the notice is filed in a
queue waiting for a resource.

- If it is at a wait statement, the notice is filed in the
event set according to reactivation time.

- If it is at the end of the process, the notice is
destroyed by returning its memory back to the
memory manager.

MEMORY MANAGEMENT

SIMSCRIPT uses dynamic memory allocation for most of
its constructs.

Anything requiring more than one or two computer
words gets memory to store it from the memory
manager. This includes string variables, arrays and
entities.

The address to this memory is stored in a pointer
variable with the same name as the data structure. For
example when a process notice for a PASSENGER is
created, the address of the first word of its block of
memory is stored in the pointer variable, PASSENGER.

While it is a little confusing to the user to have a
structure and variable with the same name, it is
unambiguous to the program. This improves readability

by letter the user refer to the PASSENGER without have
to use two separate names.

Dynamic memory allocation lets small computers such
as PC's run powerful programs. Even major programs
exceeding 150,000 lines of SIMSCRIPT II.5 code can
run on work stations.

CREATING INSTANCES OF PROCESSES

The process routine shows what happens to one
passenger. We need to create many passengers to run a
simulation. The general technique involves creating a
second process that functions as a passenger gencrator.

Process PASSENGER.GENERATOR
Define I as an integer variable
For I =1 to 120 do

Activate a PASSENGER now
Wait exponential.f
(MEAN.INTERARRIVAL.TIME, 2) minutes

Loop "I =1t 120
End "PASSENGER.GENERATOR

PASSENGERs are created one at a time with some time
passing between creation of each PASSENGER. In
actuality, this is the wait between arrivals that normally
occur at an airport: generally passengers do not show up
all at once.

The PASSENGER.GENERATOR will create 120
passengers. An alternative to the For statement is:

Until time.v >= RUN.TIME

In this case PASSENGERSs would be created until some
simulated time had passed, say eight hours.

The Activate statement creates the process notice for
this instance of the passenger, scts the reactivation
time, time.a, to time.v (i.e. now) and files it in the
event set.

The PASSENGER.GENERATOR then waits some amount
of simulated time before looping and creating the next
PASSENGER. It passes control back to the timing
routine. The timing routine sets the
PASSENGER.GENERATOR's reactivation time to the
current time plus the time drawn from this exponential
distribution.

It then files the PASSENGER.GENERATOR in the event
set, gets the next process notice and starts executing it.

When the PASSENGER.GENERATOR is first in the event
set, the timing routine returns to the statement after the
Wait statement, loops, creates the next passenger and
goes back on the event sect.

RUNNING THE SIMULATION

All that remains is to start the simulation and build
some infrastructure to support this model.

Main
Call READ.DATA
Activate a PASSENGER.GENERATOR now
Start simulation

End "Main

Every SIMSCRIPT program must have a Main routine.
This is where execution starts.

In this case Main calls a subroutine (READ.DATA),
creates the first instance of a process with an activate
statement and passes control to the timing routine with
the Start Simulation statement.

When the simulation finishes, control returns to Main.
Here the simulation ends immediately.

There must be at least one process notice in the event
set before starting the simulation. Anytime the timing
routine finds the event set empty, it assumes the
simulation is finished and returns control to the routine
with Start Simulation.

If you forget to activate a process before starting the
simulation, you will tie the world's record for the
shortest running simulation in history.

INPUT AND OUTPUT

Input and output can be done with text or graphics.
We'll look at a textual method first.

Because the program uses data from the user, we'll add a
subroutine to get the data from the user.

Routine READ.DATA

Print 2 lines with time.v thus
** *** Enter the mean service time in minutes:
Read MEAN.SERVICE.TIME
Print 2 lines thus

Enter the mean interarrival time in minutes:

Read MEAN.INTERARRIVAL.TIME
End "READ.DATA
The Print statements will write something to the current

output unit, namely the screen. What is written is on
the two lines following the Print statement.

First there will be a blank line, because it is one of the
two "format" lines. The next line will start with the
current value of time.v in place of the asterisks followed
by whatever is written on the remainder of the line.

This is a what-you-see-is-what-you-get print statement.
There is no counting of characters, columns etc. Just
type in what you want to see, and the print statement
will put it there.

Similarly the Read statement does not require counting
of characters. It just reads the next field from the current
input unit and sets MEAN.SERVICE.TIME to that value.

A field is any string of characters between two blanks or
a blank and a carriage return. Consequently the data
values can go anywhere in a file, just as long as they
come in the correct order. That is, the value for
MEAN.SERVICE.TIME has to come before the value for
MEANINTERARRIVAL.TIME.

THE PREAMBLE

Variables in SIMSCRIPT are either local or global; there
is no intermediate state. SIMSCRIPT routines are
recursive, and memory for a local variable is created for
each call to that routine. The value in that variable is
visible only to that call of that routine.

At the other end of the spectrum, global variables are
visible from anywhere in the program.

A SIMSCRIPT program generally begins with a preamble
where all global variables must be defined.

Preamble

Define MEAN.SERVICE.TIME,
MEAN.INTERARRIVAL.TIME and
WAITING.TIME

as real variables

Define LOW,
HIGH,
DELTA

as integer variables

Processes include
PASSENGER.GENERATOR and
PASSENGER

Tally WAITING. TIME HISTOGRAM (LOW 10 HIGH
by DELTA) as the histogram of WAITING.TIME

End "Preamble

The two Define statements declare the list of variables as
global real or integer variables.

WAITING.TIME is an output variable whose value is
established in the process, PASSENGER.

167

All processes have to be declared in the preamble.

MONITORING AND AUTOMATIC STATISTICS
COLLECTION

SIMSCRIPT has a feature, called monitoring, that
automatically intercepts control of the program and
passes it to a subroutine. When the subroutine is
finished control is passed back to the statement where it
was intercepted and the program proceeds.

The Tally statement in the preamble creates a one
dimensional array to store the data for the histogram.

Its size is determined by the variables LOW, HIGH, and
DELTA. If these values are 0, 100 and 5 respectively,
there will be 21 cells in the one dimensional array.

The Tally statement declares WAITING.TIME to be a
variable monitored on the left. That is, every time
WAITING.TIME in the process, PASSENGER, is about to
change, control is passed to a library routine that
updates the histogram.

This one declaration frees the programmer from having
to put statements throughout the program to update the
histogram. It eliminates the possibility that he will
forget to do it some place and get erroneous results.

This method can also be used to collect statistics for
means, variances, maxima, minima and counts.

PRESENTATION GRAPHICS

Output and input can be done with the Print and Read
statements shown above. This is useful in dealing with
precise data and files.

There are times when the data needs to be displayed
graphically, and SIMSCRIPT automates that process.

In this example, we will use the dynamic graphics
capability of SIMSCRIPT to display the histogram.
There are three steps:

- Use the SIMGRAPHICS editor to lay out a histogram
on the screen. The editor has a number of standard
presentation graphics including graphs,
histograms, clocks and meters. Using a mouse-
and-menu system, we change the attributes, such as
color, line style and location.

- When the screen layout is finished, its characteristics
are saved in a file (e.g. WAIT.GRF) in the
program's directory.

- Then it is attached to the program with two
statements.

The Tally statement is modified in the preamble and a
second statement is added to the Main routine.

Tally WAITING.TIME.HISTOGRAM (LOW to HIGH
by DELTA) as the dynamic histogram of
WAITING.TIME.

The word, dynamic, causes the histogram on the screen
to redraw itself every time WAITING.TIME.HISTOGRAM
changes; that is, every time WAITING.TIME changes.

In the Main routine prior to Start Simulation, add:

Display WAITING.TIME.HISTOGRAM with
"WAIT.GRF"

This statement tells SIMSCRIPT to use the image in
WAIT.GRF to display the data in
WAITING.TIME.HISTOGRAM.

From here on SIMSCRIPT will take care of the details.

ANIMATION

Dynamic graphics is not limited to presentation
graphics. SIMSCRIPT has a similar capability for
animation.

Suppose we have a process that simulates an airplane
flying from one point to another. It is a straight
forward matter to make the image of an airplane fly
across the screen.

Preamble

Processes include AIRPLANE

Dynamic graphic entities include AIRPLANE
End "Preamble

Animated movement requires the use of processes,
because time has to pass.

The second statement adds attributes to the process
notice to cover movement. This includes attributes for
location, velocity and image. In addition it brings up
the library routines that change location and update the
image automatically.

Main

Activate an AIRPLANE now
Display AIRPLANE with "AIRCRAFT.ICN"
Start simulation

End "Main

The image of the airplane with be drawn with a mouse
using 2 SIMGRAPHICS editor. When done, the data
representing it will be saved in a file called
AIRCRAFT.ICN.

As with the presentation graphics, the image of the
aircraft is attached to the process with the display
statement. Every time the AIRPLANE changes its

168

location, SIMSCRIPT will erase the old image and redraw
it at the new location.

Process AIRPLANE

Let location.a(AIRPLANE) = location.f(200, 300)
Let velocity.a(AIRPLANE) = velocity.f(520, pi.c/4)

Wait 1.5 hours
End "AIRPLANE

The initial location is set with the location.a statement.
This is normally the only time the user changes the
location directly. From now on SIMSCRIPT will change
the location automatically.

The two parameters, 200 and 300, are the x and y
coordinates of the AIRPLANE. These could be variables
or expressions.

The velocity vector is set with the velocity.a statement.
The first parameter is speed (i.e. 520 knots). The
second parameter is direction in radians (i.e. 45 degrees
from north). The velocity.f function changes these
parameters to Cartesian coordinates for purposes of
calculation.

Given the initial location and velocity vector all that
remains is to figure out how long to fly in that direction
and to do so. The Wait statement says to fly for 1.5
hours. When done, the AIRPLANE will be 780 miles
northeast of where it started.

Reduced to bare essentials, animation in SIMSCRIPT
involves controlling the velocity vector and waiting
time. SIMSCRIPT takes care of the rest of it behind the

scenes.

FORMS EDITORS

Graphics input is the third feature of SIMGRAPHICS.
Rather than use a text editor, it is possible to build a
form and attach that to a program.

Whenever data is needed, the form is automatically
displayed.

To enter data the user clicks on the appropriate data box.
A question mark appears, and the user types in the value.
When all data is entered, the user clicks on a button and
the simulation proceeds.

Building a form works the same way presentation
graphics and animation does: design the form with a
mouse-and-menu editor, save it in the directory and
attach it to the program.

Attaching a form to the program is a little more
complicated than attaching a graph. A form can have
multiple data boxes and buttons.

When the user selects a box, the program has to know
what to do with the data from the box. Each box has an
identifier. When the user clicks on the box, SIMSCRIPT
not only gets the value, but it records the identifier of
the box and passes control to a routine written by the
user.

This routine is essentially a large case statement. Each
case is the identifier of a particular box. Under each
case are the statements as to what to do when the box is
chosen.

For example, instead of typing in data in the Passenger
Agent Problem, suppose we used a form. The user
routine would look like this

Routine CONTROL

Given
FIELD.ID,
FORM

Yielding
STATUS

Select case FIELD.ID
Case "SERVICE"

Let MEAN.SERVICE.TIME
= ddval.a(dfield.f("SERVICE", FORM))

Case "ARRIVAL"
Let MEAN.INTERARRIVAL.TIME

= ddval.a(dfield f("TARRIVAL", FORM))

Case "RUN"
Endselect "FIELD.ID
End "CONTROL

The form has two data boxes and one button.
(Technically, the form has three fields).

By clicking on the data box for the mean time between
arrivals and entering a new value, the user has selectED
the field with the identifier, ARRIVAL. This is passed
to this routine through the input parameter, FIELD.ID.

When control is passed to this routine, it executes the
statements under the case ARRIVAL. Here it reads the
value in the field, "ARRIVAL", from the form whose
name is stored in FORM.

Then it returns control to SIMSCRIPT which waits for
the user to select another field.

When the user clicks on the button, RUN, the form
disappears and the simulation starts.

169

The forms editor has a number of other fields the user
can employ in his form. These include scroll boxes,
menu bars, radio buttons, and icon lists. This material
is too extensive to pursue here. The reader should refer
to the SIMGRAPHICS manual, (1988), for details.

SIMANIMATION AND SIMGRAPHICS

The developers of SIMSCRIPT and related programs have
tried to develop a language that will save time and effort
for the users. This led to the SIMSGRAPHICS editors
with their mouse-and-menu systems.

At the same time it was recognized that these could not
do everything the user wanted to do. So primitive
commands have always been available to the "do-it-
yourself” user.

SIMGRAPHICS refers to the three editors for
presentation graphics, animation and forms along with
their supporting libraries.

SIMANIMATION refers to the primitive graphics
commands that are an integral part of the SIMSCRIPT
I1.5 programming language. These commands were
based on the concepts of the Graphical Kernel System
(GKS). Because general GKS libraries are too slow for
simulation, the statements have been implemented with
SIMSCRIPT libraries.

For more details see the SIMGRAPHICS User's Guide and
Casebook (1988).

SIMGRAPHICS has recently undergone a major revision.
SIMGRAPHICS 1I integrates the editors into a single
editor with a common method of developing screen
layouts for presentation graphics, animation and forms.

SIMGRAPHICS 1I has been designed to work with X-
Windows. As X-Window implementations become
available on various systems, the entire language
including graphics can be ported quickly to new
machines.

GENERAL PURPOSE PROGRAMMING

SIMSCRIPT is a powerful general purpose language in
its own right, independently of its uses as a simulation
language.

It has general purpose constructs, such as assignments,
branches, loops, inputs, outputs and subroutine calls.
Its data structures include scalars, arrays, records and
lists.

For example, suppose the user wanted to create an airline
with a fleet of 50 airplanes. Here is the code to do it:

Preamble
Permanent entities

Every AIRLINE has

a NAME and
owns a FLEET

Define NAME as a text variable
Temporary entities

Every AIRPLANE has
a TAILNUMBER and
a GROSS. TAKEOFF.WEIGHT and
belongs to a FLEET

Define TAIL.NUMBER as an integer
variable

Define GROSS.TAKEOFF.WEIGHT
as a real variable

End "Preamble
Two entities have been declared.

- The AIRLINE is a permanent entity and will be stored
as an array. It has one attribute, NAME.

- The AIRPLANE is a temporary entity and will be
stored as an individual record. It has two
attributes, TAIL. NUMBER and
GROSS.TAKEOFF.WEIGHT.

The FLEET ISowned by the AIRLINE and containing
AIRPLANESs at members is a set. Technically it is
doubly linked list.

Main
Define I as an integer variable
"Create ten airlines and read their names from a file
Create every AIRLINE(10)
For each AIRLINE do
Read NAME(AIRLINE)
Loop "each AIRLINE
"For AIRLINE number 7, create 50 AIRPLANE:sS, read
their"attributes and put them in the FLEET of
that AIRLINE
Let AIRLINE =7
For I =1 to 50 do
Create an AIRPLANE
Read TAILNUMBER(AIRPLANE),
GROSS.TAKEOFF.WEIGHT(AIRPLANE)
File the AIRPLANE in the FLEET(AIRLINE)
Loop I =1 to 50 do
End "Main

The entity, AIRPLANE, is a two-dimensional array. The
"rows" are the attributes, and the "columns” are the

170

individual airlines. In addition to the NAME attributes,
it has two pointer attributes containing the addresses of
the first and last AIRPLANESs currently in the set,
FLEET.

The For statement loops through each AIRLINE from 1
to 10. Inside the loop it reads the names of the airlines
from the current input unit, one field at a time.

AIRLINE is the name of the entity and the name of a
variable used as an index for the array.

The statement, For I = 1 to 50 do, sets up a loop to
create AIRPLANE:S one at a time.

Creating an airplane gets the memory to hold the data
for a single AIRPLANE. Its address is stored in a
pointer variable, AIRPLANE, used to refer to this entity.

After creating an AIRPLANE, values for the two
attributes are read from the current input file using a the
free format READ statement.

The file statement adds the AIRPLANE to the set FLEET.
Technically, this involves modifying pointers in the
doubly linked list, FLEET. Each AIRPLANE has two
pointer attributes for the addresses of predecessor and
successor of this AIRPLANE in the FLEET.

It is possible to loop through the fleet looking for a
particular AIRPLANE and doing something with it. For
example,

For each AIRPLANE in the FLEET(AIRLINE)
with TAILNUMBER(AIRPLANE) = "N627D"

Find the first case
If found

Print 1 line with TAIL NUMBER(AIRPLANE)
thus

Tail number; ****kdkkkkx

Remove the AIRPLANE from the
FLEET(AIRLINE)
Destroy this AIRPLANE

Endif "found

SIMSCRIPT goes through the FLEET looking for the
AIRPLANE with the TAILNUMBER equal to N627D. If
it finds it, SIMCRIPT drops out of the loop and goes to
the If found statement.

Since SIMCRIPT found the AIRPLANE it was looking
for, it will print the TAIL NUMBER, remove the
AIRPLANE from the FLEET and release the AIRPLANE's
memory back to the memory manager.

If the AIRPLANE were not in the FLEET, it would finish
the loop with AIRPLANE pointing to the last entity in
the set. Since we may not want to remove and destroy

this one, the If found statement, being false, will
prevent that.

This is a simple example of the power of SIMSCRIPT as
a general purpose programming language.

There is certainly far more to SIMSCRIPT than this.
Anyone interested in more details should contact the
author.

CONCLUSION

This short tutorial has gives some sense of the savings
in using SIMSCRIPT in both simulation and general
purpose programming.

As a rule of thumb it takes about four times as much
FORTRAN code to do the same thing as a SIMSCRIPT
program. Using other general purpose languages not
only takes more work, but it increases the chances of
undetected errors.

CACI provides a number of services in addition to
selling compilers under a 60 day free trial. Training
courses, consulting and program development are
available. For more information, contact CACI Products
Company at 703-875-2919.

REFERENCES

----, SIMGRAHPICS User's Guide and Casebook, CACI,
La Jolla, California, 1988.

----, SIMSCRIPT II.5 Programming Language, CACI, Los
Angeles , California, 1987

Russell, Edward C., Building Simulation Models with
SIMSCRIPT 11.5, Los Angeles, California, 1983.

SKIP BRYAN manages the Simulation and Modeling
Department for CACI Products Company. He received a
B.S. in Mechanical Engineering from MIT, an M.S. in
R & D Management from the University of Southen
California and an MBA from the University of Chicago.
His current interests include specification and design of
large scale simulation models.

171

