Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

A GENERAL PURPOSE ANIMATOR

Daniel T. Brunner
James O. Henriksen
Wolverine Software Corporation
4115 Annandale Road
Annandale, VA 22003-2500, USA

ABSTRACT

During the 1980s, the simulation discipline has been
revolutionized by the introduction of software for graphical,
animated depiction of a running simulation on a display screen.
Advocates of simulation animation have given several main reasons
for using animation.

There have also been some detractors who felt that animation
was not always an appropriate tool. However, it has become clear
that animation is here to stay. Discussion is shifting to comparisons
among various animation tools and mapping out future directions for
animation.

Wolverine Software Corporation waited several years before
beginning development of animation software. The company began
animation development work in 1987, with the benefit of having
observed and otherwise learned about the strengths and weaknesses
of then-existing software.

The preliminary results of the development effort are now
available in product form. Wolverine has developed a general
purpose animator. This software has a wide variety of applications
and, thanks to its open architecture, can be used in conjunction with
virtually any simulation software and in some non-simulation areas
as well. For the IBM PC platform on which it runs, the product
redefines several performance characteristics, most notably with its
smooth motion and its geometry-based internal data structure.

1. INTRODUCTION

The benefits most often cited by advocates of simulation
animation include:

(1) Animation helps those who have created a simulation to
“sell” their quantitati ve conclusions to skeptical upper managers.

(2) Animation, used during the model development cycle,
helps the model builder(s) build, verify, and validate the model.

(3) Animation, because it is flashy and fun, helps users and
managers generate and maintain interest in exercising the analytical
power of simulation, to the presumed benefit of everyone.

Many have urged caution in applying this new technology.
A sampling of some of the reasons follows:

(1) Excessive reliance on animation (typically by [hc upper
manager) can dilute or even completely overshadow the reality of the
quantitative results.

155

(2) The time spent in the creation of realistic animations can
be long enough to add significantly to the cost of a simulation
project, sometimes without quantifiable benefits.

(3) Once animation has helped legitimize simulation in new
places, it may no longer be needed, to the potential political
detriment of both end users, who may have spent thousands of
dollars on hardware and/or software for simulation animation, and
vendors, who have invested heavily in software development.

Early-adopting vendors and their products that have
influenced animation in the U.S. market include Istel, Inc. (SEE
WHY), Minuteman Software (GPSS/PC), Simulation Software Ltd.
(PCModel), AutoSimulations, Inc. (AutoMod/AutoGram), Systems
Modeling Corp. (Cinema), and Pritsker Corp. (TESS). (Note:
Product names used throughout this paper are generally trademarks
of the respective companies.)

A few vendors held out against animation, most notably
Wolverine Software Corporation. The reasons most often cited
were negatives (1) and (3) above.

However, time has passed, animation continues to gain in
popularity, and even Wolverine has jumped on the bandwagon.
“We are all animationists now.”

P

THE PATH TO A NEW TOOL

When Wolverine Software decided in December of 1987 to
produce animation software, it had an advantage over its
competitors. That advantage was the ability to survey the animation
landscape and start fresh on something new.

Existing animation software had strengths in 1987, but
offered many areas for improvement:

Some of it required special hardware.

* Most of it had geometry that was character-based or pixel-
based.

The available animation primitives, while useful, were
stylized and sometimes applied only to a particular
application area.

* Most could not update the screen fast enough to produce
smooth animation of even small simulations.

+ Some of it could not run at the desired speed due to sharing
one CPU with a running simulation.

+ Closed architectures and tight couplings with particular
simulation tools limited expansion and customization
possibilities.

+ Most of it was expensive.

Wolverine's new software was unnamed at press time for
the conference proceedings. It is referred to throughout this paper
as “Product X, The Product X software addresses the concerns
outlined above:

» Product X runs on any 286-or better PC, with a math
coprocessor, that has an EGA or VGA display. This allows
great portability of animated models for demonstration
purposes.

« Product X has a CAD-like data structure for accurate
rendering of backgrounds and moving objects at any scale or
orientation. Full bitmap accuracy is generated when the data
structures are rendered.

« Although its powerful high-level primitives are influenced by
demand for solving material handling problems, Product X
has a set of extremely low-level and flexible primitives that
can be manipulated to address a wide variety of needs. Even
the material handling primitives have already been used in
areas as diverse as chemical processing and transportation.

+ Product X has been carefully crafted at the machine
instruction level to produce dramatically high screen refresh
rates. On a 386-based VGA PC, animations usually run at
70 updates per second.

+ Product X is post-processed. This accomplishes three
things. First, it allows very high speed animations,
including fast-forward to any point in simulated time.
Second, it allows the simulation and the animation to run on
different machines. One configuration might be a simulation
language running on a ‘“real” computer such as a
workstation, VAX, or mainframe, with an Ethernet link to a
single-tasking PC (which is well suited for display-intensive
applications) running Product X. Finally, post-processing
allows development of an Product X “demonstration mode”
for creation of highly tuned presentations depicting complete
simulation studies.

» Product X has an open architecture. This opens wide areas
of future application to vendors and users of other software.
The animation processor is detached completely from the
underlying simulation tool. Product X is the first animation
tool that is adaptable for use by any simulation tool that has a
file 1/O capability available, including GPSS/H, SIMAN,
SLAM II, GPSS/PC, and AutoMod, and for many non-
simulation applications as well, including real-time displays
and desktop presentations.

« Product X is initially being marketed to people already active
in simulation for whom the desired level of animation quality
has been unavailable due to the cost of the software.

156

3. PRODUCT DESCRIPTION

Let us examine each of the seven areas of improvement in
more detail, fleshing out our description of Product X as we do so.
3.1 Hardware Requirements

One of the most important decisions taken in late 1987 was
the choice of a primary hardware platform. Surveying the hardware
landscape during the second half of 1989, we find tens of millions
of IBM and compatible PCs, a substantially smaller number of
Macintoshes, and a rapidly growing contingent of Unix-based
workstations. There are also many organizations that apply the
superior instruction-crunching capabilities of IBM mainframes and
high-end VAXes to their simulation problems.

The first question in 1987 was which family of hardware to
consider: mainframes, workstations, or PCs.

3.1.1. Large Computers. Mainframes (for this discussion,
that includes VAXes) were, and still are, out of the question, due to
the limited communications bandwidth between the host processor
and the display. Dedicated terminals, even high-end graphics
terminals, are typically connected to mainframes by links that are too
slow to support raster graphics or even higher-level graphics
commands at the rates needed for smooth animation.

By making the “terminal” smarter and smarter, one can
reduce the need for communication bandwidth. In the limiting case,
the display is itself a computer. It made more sense to us to offload
the less demanding CPU-intensive part of the animation software as
well as the power-hungry graphics. The mainframe is then no
longer needed by the animator at all.

3.1.2. Workstations. Graphics workstations are the cream
of the crop for standalone graphics applications. However, they too
have problems. Despite their image of enormous graphics
horsepower, we have observed that the leading edge of workstations
graphics tends to cater to visual simulation. How many zillions of
colors can it display? How many kinds of shading can it do? What
about hidden surface removal? There is no discrete simulation
animation software available (in 1989) that portrays photorealistic
images, so many of these features are wasted on the expensive
workstations that support animation. In fact, such systems can
prove slower than one would expect for discrete simulation
animation due to their orientation toward producing beautiful but
often static images.

Another problem with Unix-based workstations is their
multitasking, multiuser environment. Good animation software
makes frequent demands for chunks of CPU time, and cannot wait
for even 1/60 second for someone else to load a large file. Even in
standalone mode this seemed likely to create problems, because
Unix itself generates many little processes that nibble away at the
CPU periodically.

Finally, and most importantly, we had (in 1987) watched a
fine crop of Motorola-based workstations, already GPSS/H-capable
since 1985, attract little interest from potential customers. Everyone
wanted software for a PC, it seemed, and Sun and Apollo were not
well known among prospective discrete event simulation users. (As
of 1989, this has of course changed dramatically, and simulation
software is becoming more popular on certain workstations,

including the Motorola-based models and the RISC-based Silicon
Graphics 4D (MIPS) and Sun-4 (SPARC) machines.

3.1.3. Personal Computers. In personal computers, there
were (and are) IBM PCs and Macintoshes. PCs were the obvious
choice, but we did consider Macintosh.

Why not Macintosh? There were several reasons.
Macintoshes, aside from comprising not more than 10% of the
installed personal computer base, had a specific problem in 1987.
Graphics-intensive applications demanded cycles from the main
CPU chip for all calculations and writes to video memory (which
was just a dedicated piece of not-terribly-fast main memory).
Worse, the only path to the main/video memory was through ROM-
based I/O routines written in 680x0 assembly language. This meant
that the only way to build a graphics co-processor that would run
with all Macintoshes would have been to try to create one based on a
second Motorola 680x0 CPU. To the best of our knowledge, no
one built such a device. (In the summer of 1989, we have finally
seen the introduction by one manufacturer of a NuBus-based
graphics accelerator, which works if one has that manufacturer’s
display adapter card. All calls to the ROM-based screen graphics
routines are trapped and routed to the card.) Apple Computer, in
1987, provided us with information that convinced us that that high-
speed simple graphics would not come quickly to Macintosh. In
1989 we see Macintosh behaving more and more like a workstation,
with image beautification taking precedence over frame rates, and
the threat of disruptive multitasking on the horizon.

Also, there was the overriding marketing factor. People
really seemed to want software that would run on an IBM PC,
although this attitude is beginning to erode somewhat in 1989. PCs
and compatibles are somewhat handicapped by primitive and
memory-constrained MS-DOS operating system and a slow bus.
(As we will discuss later, MS-DOS does have one significant
advantage for animation.) However, PCs are cheap and ubiquitous,
and we wanted to stress portability in our final design. There is
certainly no other machine that one is practically guaranteed to find
on site at any location.

So, the decision was made. Product X would run on the
PC. But the story does not end there.

3.1.4. Graphics Hardware. PC graphics hardware has
evolved steadily over the years. Our biggest problem during the
development cycle (and it cropped up more than once) was, “EGA
or VGA?” What about dedicated graphics accelerator cards (then as
now, very expensive if significant performance gains were
included)? At least one competitor took the latter approach,
requiring them to provide an add-in board (one not commonly
known or generally available) along with their software.

In late 1987, VGA was new and just catching on. Third-
party VGA cards for non-IBM PS/2 machines were not yet
available. EGA had been around for over two years, the cards were
stable, and there was a substantial installed base. From a marketing
standpoint, we wanted people to be able to take their animations into
anyone’s office and run them.

The overriding reason to stick with EGA, however, was
technical. Standard EGA cards have 256K of video memory. One
standard EGA pixel needs four bits (16 colors at once), and four
times 640 times 350 (the EGA screen dimensions, in pixels) is
896.000 bits, or 112K bytes. This lets us double buffer — that is,

157

improve the appearance of the animation by keeping two copies of
the screen in video memory, displaying one while updating the
other. Double buffering was and remains very important to us.

We considered VGA, but standard VGA also has 256K of
memory. At 640 by 480, one screenful of information in 16 color
mode takes up over 150K. Double buffering in VGA mode is
impossible with a standard VGA card. Also, standard VGA cards
offer EGA emulation modes (some better than others, as we have
discovered and dealt with). This means that standard VGA card
users can run standard Product X in EGA mode.

Recently, we have been evaluating “extended VGA” cards,
which offer 512K of video memory, usually as an option. In fact,
we are considering supporting one or more such cards at resolutions
up to 800 by 600 pixels of resolution. Also, we are carefully
studying the rapidly developing 8514/A, TIGA, and “Super VGA”
display standards, all of which offer resolution at or above 1024 by
768.

3.1.5. Qperating Environment, One final note is the choice

of operating environment. In 1987, standard DOS was the only real
option. Now that OS/2 and Unix have gained a little more support,
we could consider them. Unfortunately, we would lose the single-
tasking environment, that by providing total control over the CPU,
is so good for animation (this is the hidden strength of MS-DOS
alluded to earlier). If memory proves to be a problem (it has not so
far, as Product X processes its occasionally voluminous input
information from disk in a serial fashion), we will consider taking
Product X to a DOS-Extended environment.

3.2 Graphics Data Structure

It was obvious from the beginning that we needed a CAD-
like data structure, in which all graphics data were stored using
coordinates instead of pixels. In this we were probably influenced
by AutoSimulations’ AutoMod, which could rotate, pan, and zoom
on its high-powered workstation display. No one had done
anything with as much capability as AutoGram on a PC. Only one
product (PCModel/GAF, later renamed CADmotion, from SimSoft)
had a vector-based orientation at all. Of the other PC-based
animators, SEE WHY/Witness was character-based, as was
GPSS/PC. Cinema, the well-known PC simulation animation
software from Systems Modeling, was pixel-based.

The power of a CAD-like data structure provides benefits in
two areas. The first is the versatility of the available drawing tools.
The second is the flexibility with which the display can be
manipulated.

3.2.1. Drawing Capabilities. Product X will have a
drawing environment that resembles a simplified CAD program. At
this writing, the drawing environment is under development, and
cannot be described in detail.

In the absence of a drawing environment, early commercial
users of Product X have had to create manually the ASCII layout file
that contains the geometry information. This has been done using a
set of low-level drawing primitives such as LINE, ARC, and
TEXT. Although this takes some extra time, and results in
simplified looking objects and layouts, the process has not been an
obstacle to the creation of some impressive animations. The
published layout file format, which will continue to exist once the

drawing environment is available, is an important feature (see
Section 3.6).

The drawing primitives and the drawing cnvironment will
share a common characteristic: the same techniques are used for
drawing background information, moveable Objects, and Paths (see
Section 3.3.3 for more about Paths). It will also be possible to scale
and manipulate drawn entities. This manipulation will include
creation and maintenance of object libraries.

Although Product X is primarily two dimensional (sce
Section 3.2.2), it does support the concept of layers. Initial
versions of Product X support two layers: the layout/background
layer and the object layer. Objects can move freely over the layout
and background without disrupting it on the screen. Additional
layers will probably not be available during animation runs until
better graphics hardware becomes available (see Section 3.1.4),
although more layers might be added to the graphics database before
that time. (Layers, in a CAD database, allow for selective display
and editing of different subsystems while in draw mode).

3.2.2. Viewing Modes. A CAD-based architecture allows
unprecedented (among PC animators) control over the viewing
environment. The geometric data structure allows complete
panning, zooming, rotating, and changes of viewpoint. The best
way for us to illustrate the viewing power of the CAD-based
architecture is with illustrations.

Figure 1 is a screen snapshot of a running animation.
(Menus have been omitted.) This simple AGV layout was created
and animated as part of a benchmark study (McKay and Rooks
1989). For more information on the simulation model on which this
animation is based, see reference (Crain and Brunner 1989).
Figures 2 through 5 are different views of the animation, frozen at
the same instant in animated time.

Panning allows the user to use the display screen as a
“window"™ to a much larger “canvas” of animation activity. The
Product X coordinate system allows animations of virtually
unlimited size. Figures 4 and 5 have been panned.

Zooming allows the user to view the running animation with
a microscope or a “‘macroscope.” The viewer can always shrink the
layout down so that it is all visible on one screen. Or, the viewer
can grow the images up until main memory for storing ready-made
video bitmaps becomes scarce. (This is usually quite a large zoom
factor). Figures 2, 4, and 5 have been zoomed in or out.

Rotating allows the stationary observer to “turn around™ at
the overhead viewing point in orthogonal mode (see below), and to
“walk around the catwalk™ in isometric mode. Rotation always
occurs about the screen center at the then-current pan location and
zoom factor. There is no illustration of rotation, which is similar to
isometric mode (see below) but without the foreshortened effect.

Changes of viewpoint — we call it “isometric™ vs.
“orthogonal” viewing mode — allow the viewer to shift the vantage
point from directly over the layout so that it becomes above and offt
to one corner. This is done without perspective, and only in two
dimensions, but still adds a flavor of “z" (depth) to the viewing
process. Many layouts give a convincing illusion of more than two
dimensions in this mode. Figures 3 and 5 show isometric mode.

158

3.3. Animation Primitives

Any animation software needs basic commands or features
that permit dynamically changing an object’s shape, color, or
location. We refer to these features in Product X as “animation
primitives.”

There are really two things to look at here. The first is the
flexible, low-level primitives that allow Product X to present
moving images of just about anything. The second is the higher
Jevel primitives that allow Product X to animate certain sophisticated
things with surprising ease.

This discussion is necessarily brief, and omits some existing
and many potential features.

3.3.1. Objects and Object Classes. Of course, the
animation primitives are closely interrelated with the graphics data
structure of Product X. The most important concepts are the Object
Class and the Object.

An Object Class is a geometric description of some type of
object. It could be an Automated Guided Vehicle (AGV) in a
material handling animation. An automobile traffic model might
have five different Object Classes: Cars, Trucks, Buses, Campers,
and Motorcycles.

An Object, on the other hand, is an instance of an Object Class.
Expanding on the traffic model mentioned above, one could have
northbound and southbound cars; cars making continuous turning
movements; ted, green, or beige cars; large cars and small cars.
Each of these cars is an Object, based on the single geometric
description of a car. There can be an arbitrary number of “Car”
Objects in the system at once, but there needs to be only one “Car”
Object Class.

Note: One could correctly infer from the above paragraph
that Objects can have only one color. This is true, but as of this
writing, Compound Objects are under development and should be
part of the first release of Product X.

All of the motion and color changing primitives in Product X
operate on Objects. Note that we have not discussed background
drawing (e.g. plant floor layout). Most layouts will be drawn
directly on the screen and their components cannot move or change
color. However, if that is desired, then the components can be
made into Objects. (See discussion of AGV example model.)

3.3.2. Simple Object Manipulation Primitives. The simple
things one can do with an Object include: CREATE or DESTROY

(causing it to exist or not), PLACE or ERASE (making it visible or
not); MOVE (causing smooth motion from point A to point B); SET
COLOR; and SET TEXT (there is a single variable text field present
in each object, for a tag or value to be displayed: there could also be
an arbitrary amount of non-varying text).

3.3.3. Paths. The more complicated things one can do with
an Object involve Paths. Actually, using Paths is very simple,
because Product X does all the work. That is why we refer to Paths
as a higher level primitive. The most commonly used Path
command is PLACE [object] ON [Path].

A Path is a data structure composed of an arbitrary number
of line and/or arc segments. Once an Object is placed on a Path, it

Material

AGV ANIMATION

WOLVERINE
SOFTWARE

CORPORATION

Product

Figure 1. AGV Layout at Detault Orientation and Scale

AQYV ANIMATION
WOLVERINE
SQFTWARE
CORPORATION

Praduct

Figure 2. AGV Layout, Zoomed Out

159

Figure 3. AGV Layout in Isometric Viewing Mode

Figure 4. AGV Layout, Zoomed In and Panned

160

Figure 5. AGV Layout in Isometric Viewing Mode, Zoomed In and Panned

will follow the Path until it comes to rest at the end. Paths provide
outstanding power in response to a single command.

A variant is the Accumulating Path, which offers even more
power. On an Accumulating Path, Product X reflects physical
reality when two Objects would otherwise appear to collide and
move through one another. (See Figure.) This often makes a
simulation model of the system much simpler to construct. A
surprising number of systems behave in this manner, from
conveyors to human queues to toll plaza lanes.

3.34

Business Graphics. Under development at this
writing, the business graphics features of Product X will include

time-varying representations (i.c. “dancing bar graphs™) as well as
static displays.

In the meantime, it is simple enough to construct all manner
of graphs, including animated ones, using the lower level drawing
primitives.

3.4 Smooth Motion

Smooth motion was a primary design goal for Product X,
and it has been achieved with stunning success.

In most media, it is necessary to create and re-create static

images rapidly in order to create the illusion of motion. This is of

course the principle behind motion pictures and television as well as
cartoon animation.

In the case of a computer and raster-based CRT screen, or
the equivalent raster-based video game, the image is created as a set

161

of discrete pixels represented in video memory. For these
applications, the pixel representation must be either recreated on the
fly at different locations, or saved and “blitted” to different locations
on the screen. This process must be repeated quickly many times
per second, or the motion will appear jerky.

How fast is fast enough? Motion pictures run at something
like 20 frames per second, and standard television at about 30
frames.

Simulation animation software available in the 1980s has
been plagued by slow frame rates. Compounding this problem is
the fact that, due to the relatively few colors available and the
discreteness of the pixels, computer displays of artificially created
objects can require even higher frame rates than television, or the
motion will appear to buzz or jerk. The frame rates on much of the
available software have been on the order of 10 frames per second
or less.

As of mid-1989, the capabilities of Product X for handling
large animations have not been thoroughly tested. However, on
small- to mid-sized animations, frame rates of 60 (EGA) or 70
(VGA) frames per second are routinely achieved on a 386 or fast
286 based machine. Furthermore, these rates are most likely to be
affected by the total number of pixels in motion, and not by the
number of objects being moved. Thus, full-floor views of material
handling systems can be run at arbitranly fast speeds.

What happens when Product X cannot keep up? With other
animation software, the apparent speed of objects moving across the
screen generally diminishes in such circumstances. With Product
X, a constant (though user-adjustable) ratio of animated time to

“wall clock” time is always maintained, even when the model cycles
between congested and not-so-busy. This is accomplished by
reducing the frame rate and increasing the increment by which each
object travels. Product X performs this adjustment “on the fly.”
With starting frame rates of 60 or 70 frames per second, the effect of
reducing the frame rate remains visually acceptable.

3.5 Post-Processing

Product X offers “post-processed” animation. Some other
software provides “concurrent” animation. What is the difference?

3.5.1. Post-Processed vs. Concurrent Simulation
Animation. Concurrent animation has one major benefit. It is
possible with most simulation/animation software that runs
concurrently to make certain limited types of changes to the system
(e.g. machine breakdowns) and “watch that queue build up.” Many
types of changes are difficult to animate without advance work by
the modeler (e.g. added machines, especially in an unexpected
place), and many of those are impossible to simulate without
advance work as well (e.g. a sudden utterance of “say — didn’t we
decide to make that subassembly based on periodic inspection,
instead of weekly?”).

Concurrent animation has one major pitfall. The animation
is completely tied dependent on the execution of the simulation
model. This can be very painful when the software is under
consistent use, especially if the underlying simulation language or
algorithm is not particularly fast at executing.

We have summarized this situation in the table below.

Existing
Concurrent
Animators Product X
Ability to change the simulation
and immediately see resultsFair.............. Limited
Simulation performance
(execution speed)................ Variable Excellent
Animation performance (speed,
smooth motion).................. Poor............. Excellent
Ability to “fast forward” and
“rewind” the animation Limited.......... Good
Ability to run large models on a
faster machine and download
the results for animation........ None Excellent

Note that the decision to detach the Product X engine from
any simulation tool (see Section 3.6) does not permanently affect the
1989 decision to offer only post-processing. It may be possible
someday for those desiring concurrent animation to use the detached
Product X engine. All that is required is the specification of a
simple run-time programmer’s interface, and some means of
allowing both processes to run at the same time. Even on one CPU
running DOS, this could be accomplished through a stylized form of
cooperative multitasking that the authors believe would not be
difficult to implement. Market demand will dictate these future
directions.

1.5.2. Animation Portability. Another important benefit of
post-processing is that, coupled with the ubiquity of the “lowest
common denominator” hardware platform and the hardware
independence of the CAD-based data structure (any Product X
animation will run on any Product X equipped machine), Product X

162

animations are extremely portable. An analyst or a sales engineer
can easily take an animation “on the road” or across the hall. The
target machine does not need to be equipped to run any simulation
software.

Finally, the post-processing approach permits the
implementation of a demonstration mode. In this mode, the analyst
can create complete “bullet-proof” presentations that can be viewed
by others. The “viewer” in this case could be anyone with
absolutely no simulation experience, from a top manager to a line
operator. This mode is under development as of mid-1989.

3.5.3. Demonstration Mode. The potential for a
demonstration mode in a general purpose animator is vast. Features
could range from viewer control over speed and viewing orientation
all the way to explanatory windows with arrows and highlighting
that stay on the screen for a predefined length of time and call the
viewer’s attention to particular aspects of the simulation. There
could even be dialog boxes that allow the viewer to choose various
critical times or even to choose alternative experimental system
configurations for closer inspection.

3.6 Open Architecture

One of the fundamental characteristics of Product X is its
open architecture. What does this mean?

Some animation software is integrated into a simulation
language or package. In order to use the animation, one must go
through the process of building a simulation model using the
integrated tool.

Other animation software is post-processed and file driven.
Unfortunately, in the most notable of these cases, the specification
for the animation trace files is not provided by the manufacturer.
Users have decoded the file format and driven the animation from
other software, but without an official sanction, this practice is not
likely to be widespread.

Product X has an open architecture. It is the intent of its
creators that Product X be used in a wide variety of contexts. The
most dramatic impact of Product X's open architecture will initially
be the quick adoption of Product X as the animation engine of
choice for people using simulation software other than Wolverine
Software’s own GPSS/H.

[t would also be possible to build graphical animated
depictions of systems that have not been simulated, or to build a
new simulation/animation package around the Product X graphics
engine. Or, Product X could be used by non-engineers as
presentation software, even competing with established PC software
packages such as Show Partner FX. These capabilities open some
pretty wide doors for Product X.

Although Product X is being released initially as a post-
processed, standalone engine, there is little reason for that to be its
only form. Wolverine Software, as of mid-1989, is considering
opening up a real-time programming interface to Product X that
would allow it to be used for concurrent simulation animation or for
non-simulation real-time applications.

As of mid-1989, the open architecture of Product X consists
of a very simple, record-oriented animation language with English-
like commands. A typical animation has a layout file and an

animaton trace file. Both files are populated with printable ASCII
characters that form commands and data for the animation engine.
The layout file is used to hold static geometry information and
initialization commands. The trace file is used for recording the
time-dependent information that controls the animation activity.
Despite this distinction, most of the commands can be used in either
file.

Here are a few examples of the easy-to-use commands:

Drawing Commands Animation Commands

LINE SET...COLOR...
ARC MOVE

POLYGON PLACE..ON..AT..
DEFINE OBJECT CREATE

DEFINE PATH ERASE
DESTROY

TIME

This is just a sampling of available commands. It is not the
purpose of this paper to publish the specifications of the open
architecture of Product X. For more information about obtaining the
specifications, contact the authors.

Product X has its own built-in drawing capability. This
makes it easier for Product X users to populate the CAD-like
database with LINE, ARC, POLY, and similar commands simply
by pointing and clicking a mouse. However, the existence and
publication of the database specifications makes it possible for
anyone to create program-generated layouts or to create a translator
from any other source of CAD data. Wolverine Software will
produce such translators as market demand dictates.

The animation capabilities of Product X can be exercised in
similar ways. Normally, the animation primitives will be used over
and over in populating the animation trace file. This process will
virtually always be automated. For simulation, this means that the
model will write commands such as SET COLOR into the file. For
an example of using a language-based simulation model to populate
the animation trace file with animation commands, see reference
(Crain and Brunner 1989). For non-simulation applications such as
presentation graphics, the process can be similarly automated.

3.7. Reasonable Cost

At this writing, we do not know what Product X will cost
the end user. What we do know is that Wolverine Software
Corporation is committed to driving the performance of PC
animation software up while driving the price down. We expect that
Product X will be much more affordable than existing products.

4. SUMMARY

Animation of discrete event simulation has been a powerful
reason for the rapidly expanding use of simulation technology. The
1990°s should see further expansion in the use of simulation and
animation, thanks to continued technological innovation in both
areas. The new “Product X general purpose animation software
from Wolverine represents an important step forward for animation
technology. Important features of Product X include availability on
standard hardware platforms, a CAD-like graphics data structure,

flexible animation primitives, smooth animated motion, a post-
processing orientation, an open architecture, and reasonable cost.

ACKNOWLEDGEMENTS

The authors are grateful for the thoughtful input of Nancy
Earle, Roy Pafenberg, and Elizabeth Tucker of Wolverine Software,
and for the efforts of our adventuresome software alpha testers.

REFERENCES

Crain, R. C., and Brunner, D.T. (1989). Extended Features of
GPSS/H. In Proceedings of the 1989 Winter Simulation
Conference (E. A. MacNair, K. Musselman, and P.
Heidelberger, eds.).

McKay, K., and Rooks, M. (1989). WATMIMS JIT/Kanban
Benchmark — Summary and Recommendations. In Proceedings
of the 1989 Winter Simulation Conference (E. A. MacNair, K.
Musselman, and P. Heidelberger, eds.).

AUTHORS’ BIOGRAPHIES

DANIEL T. BRUNNER received a B.S. in Electrical
Engineering from Purdue University in 1980, and an M.B.A. from
The University of Michigan in 1986. He has been with Wolverine
Software Corporation since 1986. Mr. Brunner is a member of
SCS, and served as Publicity Chair for the 1988 Winter Simulation
Conference.

JAMES O. HENRIKSEN is the president of Wolverine
Software Corporation, which he founded in 1976 to develop and
market GPSS/H, a state-of-the-art version of the GPSS language.
Since its introduction in 1977, GPSS/H has gained wide acceptance
in both industry and academia. From 1980-1985, Mr. Henriksen
served as an Adjunct Professor in the Computer Science Department
of the Virginia Polytechnic Institute and State University, where he
taught courses in simulation and compiler construction at the
university’s Northern Virginia Graduate Center. Mr. Henriksen is a
member of ACM, SIGSIM, SCS, the IEEE Computer Society,
ORSA, and SME. A frequent contributor to the literature on
simulation, Mr. Henriksen served as the Business Chairman of the
1981 Winter Simulation Conference and as the General Chairman of
the 1986 Winter Simulation Conference. He presently serves as the
ACM representative on the Board of Directors of the Winter
Simulation Conference.

Daniel T. Brunner

James O. Henriksen

Wolverine Software Corporation

4115 Annandale Road

Annandale, VA 22003-2500, U.S.A.

(703) 750-3910

email: wolverine_software@ um.cc.umich.edu

