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ABSTRACT

This tutorial will present an approach to conducting
a simulation project that will aid in avoiding many
common problems and pitfalls. The presentation will
provide recommendations on how to scope the
project, develop a functional specification, formulate
and construct the model, verify and validate, collect
data, document the work and perform the required
analysis. The intent is to provide the novice
simulation modeler with proven techniques for
conducting a successful simulation project. A variety
of case studies will be presented during the tutorial
to illustrate both the right and wrong ways to conduct
a project.

1. INTRODUCTION

Although there have been numerous descriptions of
the simulation process put forth, there is general
agreement on the basic steps required to complete a
simulation project. One must first identify and
define the problem to be solved and then must
determine whether simulation is an appropriate tool.
The process then continues with development of a
clear, concise statement of the objectives. Having
defined the objectives, the modeler can begin to
formulate the model, then proceed to the modecl
construction stage. At some point in this process the
modeler must define the data required and initiate
the collection of the necessary data.  Having
completed the model construction, the modeler must
then verify and validity the model.

The modeler can then begin to experiment with the
model. The experimentation stage provides insight
to the possible behavior of the modeled system, but
these results must be carefully interpreted in light of
the stated objectives. Finally, conclusions must be
drawn and implemented in order to complete the
entire process.

Given this fairly rigid set of steps for the simulation
process, it would seem to be easily implemented and
almost always guarantce a success. However, anyone
who has undertaken a simulation task has found that
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only rarely does the entire process proceed in a
logical and orderly fashion. The simulation process
is as much an art as it is a science. Teaching the
simulation process is somewhat like teaching
someone how to ride a bicycle. You can describe
and sometimes demonstrate the process, but the new
rider quickly learns that there is no substitute for
experience. One wrong move or turn of the wheel
and the bicycle reacts in fashion totally different than
anticipated; but in hindsight, the bicycle's reaction
could have been predicted.

The purpose of this tutorial is to provide some
instruction and insight into the simulation process.
There will be no attempt made to define an ideal
procedure for success, since it is not clear that one
exists.  The concentration instead will be on
identifying some of the right and wrong ways to
approach each phase of a simulation project.

2. DEFINING THE PROBLEM

The first step in any simulation process is to define
the scope of the project. Typically a simulation is
undertaken because an actual or potential problem is
perceived. Understanding what this problem is can
often make the simulation task much easier. One
should be careful to define as best as possible "the
real problem,"” rather than a symptom of the
problem. For example, the perceived problem may
be the lack of throughput from a manufacturing
system. If this is just a symptom of poor quality
control or a difficulty in getting raw materials, a
simulation model may not help to solve the
underlying cause of the perceived problem.

An accurate dcfinition of the problem can dictate the
level of detail required in the model and may indicate
specific areas where special care must be taken. The
problem definition often leads directly to a statement
of the objectives the resulting simulation model is to
achieve. Although this may also seem to be rather
straightforward, it can require a significant amount
of time and effort and still may not result in a well-
defined set of objectives if all parties do not share a
clear view of the problem at hand.



Consider the following analogy. We have identificd a
problem: we need transportation to and from work.
Our objective, then, is to purchase a car which will
satisfy this need for transportation. The concept
sounds simple, but the options range from
purchasing an old, and hopefully reliable, used car
Costing several hundred dollars to investing in a
fancy, high-performance sports car costing many
times more.

At this point we should examine the objective and
determine if our solution utilizes the proper tool. In
the case of our transportation problem, should a pass
to the local bus system be purchased rather than a
car? If we assume that the car is the right approach,
then we must further examine the problem and
refine our objectives in order to reduce the number
of available options. We should identify what the
conditions are for the drive and what impact they
have on our choice of vehicle. For example, does the
trip require air conditioning, room for other riders,
4-wheel drive for bad weather, etc?  Having
addresses these issues and further refined our
problem and objectives, we might also consider the
more cosmetic features. Do we really care about the
color, white walls, radio, sun roof, etc?

Finally, after thoroughly defining the objectives, we
set out to make our purchase, only to find that we
may have set forth objectives that are beyond our
price range, while at the same time noticing that
there were several options we had simply overlooked.
So, we again refine our objectives until a compromise
between budget and performance is reached.

The thought process for solving the problem of
finding transportation to work is quite similar to that
which one should go through in defining the
objectives of a simulation project. As with the
transportation example, the objectives you establish
can have a great effect on the final simulation model.
For starters, the level of detail incorporated in the
simulation model can greatly affect the amount of
effort required to create the model.

Let's consider the development of a model for a new
manufacturing system.  Consider three possible
objectives. The first is to construct a model that can
be used to evaluate candidate systems to determine if
they will work. This type of model normally requires
a minimum level of dctail because you are only
considering the functionality of scveral systems; it
could be developed in a very short time period (c.g.,
days or weeks).

The second possible objective is that the model will
be used to compare two systems and evaluate which
is better. More detail is required in this case since
you are going to compare the performance of one
system to that of another. Here, we are concerned
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that the relative performance of the two systems are
accurately measurcd by the simulation; the actual
values predicted are not as important. For example,
if the key performance mecasure is throughput, then
you are altempling to establish which system will
provide the largest throughput, not nccessarily to
determine the cxact throughput of either system.

The third possible objective is to accurately predict
the performance of the selccted system. In the
previous case it was sufficient to determine that one
system would provide morc throughput than the
other. For this last objective, though, we must
provide a model which will yield an accurate estimate
of that throughput. These types of models require
the greatest amount of dctail as they must be capable
of replicating the activity of the real or proposed
system very closely in order to provide a rcliable
prediction of the systems's performance.

The construction of a simulation model with too little
detail will result in information which may not be
accurate enough to achieve the real goal. If the
modcl contains too much detail, it requircs more
effort to create, longer run times and is more likely
to contain errors. If you must err, you should include
more detail rather than less. Idcally an accurate
definition of the problem and project objectives will
prevent one from straying too far in either direction.

The natural tendency of the novice modeler is to
include too much dectail, whereas the more
experience modcler tends toward greater abstraction.
One technique that helps determine what needs to be
included is to decompose the perceived model into
smaller components; e.g., buffers, operator logic, job
priorities, job release strategy, etc. Then examine
each component and ask the following question: if
this component is not included, will it have a
significant cffect on the key performance measurcs?
For example, what if the paramcter to be evaluated is
the number of fork trucks used for material handling
in a large system. If therc are ample trucks and the
materials tend to spend large amounts of time in
buffers, then one could probably model this activity
as a simple dclay, approximating the amount of time
typically required for a load to be picked up and
moved by a fork truck. On the other hand, if the
system has a limited number of trucks with a just-in-
time control system, the fork trucks could well be the
main bottleneck in the system and should be
modcled explicitly.

3. THE FUNCTIONAL SPECIFICATION

One method which will assist in developing an
accurate dcfinition of the system problem and
simulation objcctives is Lo initiate the project with a
complete functional specification. This can be a very
time-consuming cffort, but it does not neccssarily



increase the project duration; in some cases it might
even shorten the process. Developing a functional
specification requires that the modeler completely
define all inputs to and outputs from the simulation,
describe each of the simulation components, define
all control logic for the model, and present at least a
short discussion of possiblc extensions under
consideration for the future. If the simulation
project is of short duration with very little dctail
required, this specification may be a single hand-
written sheet.  For a large, complex model with
numerous options and great dctail, this document
can be quite large.

The first assumption behind the need for a functional
specification is that thcre are always at lcast two
parties involved in a simulation project: the
modeler/analyst and the user/customer. The first
needs to know what the second expects and the
second needs to know what the first will deliver. This
is obviously the case if an outside consultant is hired,
but it also applies in most other cases. The
simulation may be performed by a corporate group,
an in-house group, or even an individual in the same
department. Even if the simulation is performed by
the individual making the final decision, development
of a functional specification is recommended so the
scope, objectives and data requirements of the model
are clearly identificd before the modeler is immersed
in the actual modeling process. There might also be
teams representing each party. In any case, it is fair
to assume that the responsibility of the
modeler/analyst is provide expertise and a final
simulation model which will accurately answer the
questions put forth. The responsibility of the
user/customer is to provide the system description,
accurate data and control logic, and support the
modeler in achieving the defined goals. Ultimately,
since the user/customer will use the results to make
decisions, and to judge the wisdom of future use of
simulation, a well conceived and executed model
benefits both.

The second assumption underlying development of a
functional specification is that it is created jointly
after the project has been initiated.  If the
user/customer devclops the specification without
input from the modecler, then key clements might be
overlooked. After all, the modeler should be the
expert on simulation for this project. Remember
that an expert is defined as onc who knows most
about the subject. Take advantage of this expertise,
but don't always assumc the modeler is correct.

This specification devclopment  process  often
beccomes a series of negotiation sessions between the
two parties. The modeler might be presented with
several new requests and retire to cvaluate the
impact on the ultimate simulation modcel. The uscr
might be informed of implications in either
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dcvelopment time or accuracy of results and retire to
consider the options. The tendencies are for the
modecler to resist any additional work and for the
uscr to want additional capabilities. The overall goal
of this process is to completely specify requirements
of the tool which will answer the agreed-upon
qucstions, not to protect onc's turf.

Dcpending on the model complexity, the urgency for
complction and the number of participants, this
process might be completed in one session or it could
rcquire a few months. This may appear to be an
exccssive amount of time, but it serves many
purposcs. Both parties arc requircd, at an early
stage, to consider the final product. It can also serve
as an educational process for both the modeler and
the user. It provides the modeler with the time to
truly understand the system to be modeled.
Conversely, the uscr is given a better understanding
of simulation and often gains a more through
understanding of how the system really works.

There are other advantages to development of a
functional spccification prior to model development.
The user is forced to define all the logic and data at
an carly stage. If the data does not exist,
development of the functional specilication provides
an carly warning so that a data collection procedure
can be developed and initiated. If extensive data
collection is nccessary, the collection time may
excced the time to develop the simulation model.

Devclopment of the functional specification also
prevents the user from periodically changing the
scope or objectives of the project based on current
cvents. Often the user has not thoroughly considered
the complexity of the problem and assumes that the
ultimate model will have many more capabilities than
the modeler assumed.

As the specification is being developed, the modeler
frequently begins to mentally organize the structure
of the simulation model, identifying what system
componcnts will be modeled and the specific
constructs to be employed. Often this is prompted
by requests from the user for the inclusion of
additional detail; the modeler must determine how
the ncw issues will be incorporated into the final
simulation model.  Dcvelopment of the functional
specification also allows time to organize the data
structure to be cmployed in the simulation. The
novice modcler often starts the modeling process by
developing a simulation modcl of the physical
system, considering the data requirements only as
they appear.  Generally, though, the complete data
structure should be defined before the actual
construction of the model begins.

Often the amount and type of data can influence the
specific constructs to be used. For example, should



individual job characteristics be carricd with cach
entity or placed in a data array and only accessed
when needed? Having the data structure defined can
also help prevent the "why did I do that?" part of
modeling. Most modelers tend to define the data
structure in an abstract manner which means it can
be easily changed. Once the model construction
begins, modelers tend to develop an attitude of
ownership which discourages change.

The discussions that take place between the modeler
and the user also can help to clarify subtle points and
assure that both are intcrpreting the modeling effort
in the same manner. It can also help identify
problems at an early stage. For example, a
simulation was to be developed of a computer
controlled flexible manufacturing systcm which had a
data collection system built into the central
controller. Periodically the system archived this data
and it was easily available for statistical analysis. It
was assumed that the distributions for process,
load/unload, travel, inspection, etc. could be
extracted from these data files for use by the
simulation study. However, during the development
of the specification it was found that almost all the
data being collected was unusable. For example, the
collected data for loading operations was based on
the time from when a request for load was made to
when it was reported to have been completed. Thus,
it included waiting time, coffee breaks, and other
interruptions; these, however, were to be represented
separately in the model. Since this was uncovered at
the beginning of the project, rather than well into
model development, the user had time to obtain the
required data without scriously delaying the project.

Finally, the completed functional specification
provides a contractual agreement between the two
parties that completely defines the project, although
changes often are made as the model development
proceeds.

4. MODEL FORMULATION
AND CONSTRUCTION

As discussed earlier, most novice modelers simply
start coding a model based on the physical system.
This can create problems at later stages because data
requirements may have been overlooked or control
logic may not have been considercd. It can
sometimes be very difficult to add or modify logic in
an almost completed model if it was ncver
contemplated. Thus it is helpful to scparate the
actual modeling process into two stages: formulation
and construction.

The formulation stage should be a mental activity
which attempts to develop an overall strategy for the
simulation and evaluates alternative  modcling
approaches. This is the timec when the modcler
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should lean back, prop his feet up on the desk, and
endeavor to determinc the most effective way to
construct the model. It is during this stage that
fellow modclers should be consulted. Someone not
directly involved in the project can often help to
identify unique ways to replicate the real system
effectively.  Idcally, several different approaches
should be considered and evaluated before the model
construction stagc begins.

Experience has shown that if a functional
specification is developed, much of the model
formulation is completed by the time the
specification is accepted. The model construction
phase then becomes an integration of the data
structure and the modeling framework into a
working simulation model.

5. VERIFICATION AND VALIDATION

Almost every paper dealing with the topic of
simulation at lcast touches on the subjects of
verification and validation. However, there are no
step-by-step procedures available to guide the
modeler in performing these important tasks.
Verification -- ensuring that the model behaves in
the way it was intended -- is the easier of the two
tasks. Even so, it can be difficult to conduct a
complete verification of a complex model.

If the model is constructed in components, then each
component should be verified separately as it is
completed. As groups of these components are put
together, it is wise also to verify the model at this
point. The final verification has to be performed
with the completed model. The difficulty is in
contriving all of the possible situations that could
occur when the completed model is subjected to
experimentation. Modclers who have animation
capabilities find the verification task much easier. It
allows the modeler to display all the key elements on
the scrcen to observe the important interactions
within the model. The alternative is to watch a trace
of the system activitics and create a paper
scoreboard in order to capture the intcractions.

During the verification stage one should be sure to
check the function of the model under extreme
conditions. What happens when the system becomes
overloaded, or when multiple failures occur?
Consider using deterministic times that will allow you
to more casily predict the outcome for simple
simulation runs.  Often the modeler tests the
devcloping modcl at various stages under the same
sct of conditions. In the interest of time, these are
normally very short runs designed as quick checks of
newly incorporated code. Occasionally one should
make extended runs to assure that the randomness in
the model does not create circumstances that were
not previously considered.



Validation -- ensuring that the model behaves the
same as the real system -- can be difficult and in
some cases impossible to perform. If the system
currently exists, then some kind of comparison can
be made to ensure that the model represents the real
world. If the system docs not exist, but similar ones
do, then the simulation results can be compared to
the similar system and at lcast a partial validation
performed. If there is no real system to compare
with the simulation, then validation cannot be
performed. If this is the case, then it is
reccommended the extra effort be devoted to the
verification and that those who are familiar with the
system design be closely involved with the simulation
effort.

6. DEVELOPING THE MODEL
CONTROL LOGIC

As discussed earlier, the control logic which dictates
how decisions arc to be made during a simulation
run should be completely defined during the
development of the functional specification. This is
fairly easy if the real world system is completely
automated and all decisions are made by a
controlling computer. However, most systems are
not automated to the extent that there is no human
intervention that impacts the system's performance.
Trying to capture the logic employed by human
operators or controllers can be extremcly
challenging. Even if documented procedures exist,
they are often out-dated or not rigorously followed.
Such documentation often yields a set of rules that
do not really capture the true operating conditions.
There are always numerous undocumented
exceptions that tend to become the rule.

This problem is further complicated by the fact that
the modeler is frequently separated from the real
shop floor decision maker by at least one layer of
managcment. Only rarcly is the user/customer the
individual that controls thesc day-to-day dccisions.
Expericnce would tend to imply that activity on the
shop floor is quite different than that perceived by
management.  Obtaining the actual logic which
controls the system requires that someone document
thc normal control policies. In most simulation
studies, there are many people involved in this task.
It is neccessary to get them together to dcfine and
agree upon what really happens "out there.”

At the specification stage therc is no easy way (o
assure that the acquired control logic represents
reality. The modcler should assume that it is
rcasonably close, but will probably have to be
changed. The best way to uncover the actual
operating procedures is during the verification
process. Involving the individuals that make these
day-to-day dccisions in this process normally yields at
lcast a sct of rules which will allow the simulation
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model to approximate the real system control logic.
This verification is best performed with the aid of an
animation. Using a pictorial model of the system for
this purpose is far better than flow charts or tables of
data. It is not uncommon to see the shop floor
personnel  become  extremely interested  and
cooperative in providing the needed information
when viewing an animation of "their" system.

Somectimes thec modcler discovers that the complexity
of the opecrational rules prevents their
implementation in an exact form. If the actual rules
require simplification, the assumptions should be
verified with the shop floor personnel before the
simulation is used for decision making. Often, they
can assist in arriving at control procedures that
accurately represent the majority of the decisions
made in the real-world system.

7. DATA REQUIREMENTS

Acquiring accurate data in the right form often is the
modeler's most formidable task. There are typically
two extremes when it comes to data requirements.
The most frequent case is the lack of data. If
possible, the modcler should define and initiate a
data collection procedure early in the simulation
project so the required information is available when
nceded. Occasionally one finds that it is infeasible to
collect good data due to the amount required or cost
limitations. If this is the case, the people at the
source of the data should be interviewed for
approximate values. However the modeler should be
cautious of the quality of this information as the
memory of these individuals tends to be very short-

termed. The most recent past will be heavily
weighted in the estimates. One should attempt to
address questions to the long-term system

performance, rather than to recent cvents.

Given that you can only obtain rough estimates of
thc data, you must then fit these estimates to
distributions for inclusion in the simulation model.
There is no magic set of rules to guide you in this
process. In most systems the time between failures
follows an exponential distribution. This is the only
statcment that can normally be made without fear of
being wrong. Even here one must be careful: is it the
"time" between failure or the "number" of cycles
between failure? It seems logical that a machine
uscd twenty percent of the time will fail less often
then the same machine used ninety percent of the
time. Failurcs are often keyed to the work load as
they arc dependent on tool wear or similar factors
which will vary greatly if the utilization of the
machinc changes drastically.

Process times, load/unload times, repair times and
o!hcr similar data can vary greatly in the form of
distribution which they follow. Thus, the exact



parameters required are dependent on the chosen
distribution.  You are often forced to adjust your
choice of distributions based on how the information
on the data is provided. You should recognize that
the way this information is given is very dependent
on how the initial questions are posed. If you
request only the minimum and maximum values, you
will probably assume the distribution is uniform or
maybe a symmetrical triangular distribution. Be
cautious to avoid the inclusion of catastrophic values
in the estimates. One should stress that the values
you want are these for normal operating conditions.

If the one-of-a-kind catastrophic data point is
incorporated into the data to be used by the
simulation, it can distort the simulation results. For
example, consider the case where delivery times are
typically between three and five days, but six years
ago a delivery took nine weeks. First of all, we
should not be considering situations where a
combination of a snowstorm, truck and rail strike,
lost order, shortage of raw materials and quality
problems caused a nine week delivery. Secondly,
specifying a distribution to accurately capture this
phenomenon along with the normal delivery times
would be rather difficult. Finally, the simulation runs
would have to extremely long in order to be sure that
a representative sample of the catastrophic events
had occurred

One typically finds that it is easier to obtain
information on the average time then it is about the
variation of the distribution. Unfortunately, it is the
variation that often has the greatest affect on the
performance of the system. In attempting to define
this variation, one should be careful to identify the
cause. Is the variation in a processing time due to
uncontrollable events in process, or is it cause by the
need for an operator that is monitoring several
processes. If the latter is true, and the operator
activity is being modeled explicitly, then the
processing time may well be a constant. In fact, the
cycle times for most automated equipment are
constants. The cause of most variation in processing
times is due to the variability caused by an operator,
not the process itself.

Repair times are frequently operator-dependent and
multi-modal. This is caused by the different types of
failures that typically occur. For example, in an
automated circuit board facility there might be three
distinct types of repairs. The shortest could be
caused by a jammed board which is repaired by an
operator moving to the machine and "banging" the
board holder. The second repair type might require
several minutes while an operator disassembles the
feeder mechanism to clear the board. The last type
may required a maintenance operator and take
several hours.
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In dealing with failure and repair times one should
recognize that there is a direct relationship between
the mean time between failure, the mean time to
repair, and the fraction of up or available time.
Given any two, the third can be calculated. The most
critical of the three is the distribution of the repair
time, as a repair activity implics that the machinc is
in a non-productive mode and potentially creating
starving and/or blocking of other equipment in the
system. The greater the variation of the repair time,
the more likely the impact on the system
performance.  For example, if a machine is
unavailable for production for a duration of
approximately 6 minutes every hour, the long-term
impact is far less than if it were unavailable for one
year out of every ten. In both cases the average up
time is ninety percent.

If only estimates of data are available, then a two-
step approach is recommended. The first step is to
obtain the data and incorporate it into the
simulation. Once the simulation has been verified, it
should be used to test the sensitivity of the system's
performance to the data estimates. Sensitivity to
both the mean and variance should be checked. If
large variations in the estimated data have little or no
impact on the results of the simulation, then there is
little incentive to spend additional time and money to
obtain better values. If slight variations in the
estimated data have a significant effect on the results,
then it may be wise to initiate a data collcction
procedure or at least consider this sensitivity in the
analysis stage.

If the system to be simulated is a new design for
which no data exists, then the estimates are likely to
come from the equipment vendors. One should
expect that these values would tend to be optimistic.
If a sensitivity analysis indicates that certain pieces of
equipment can easily become bottlenccks, the
simulation could be used to determine what the
operation times or failure rates must be in order to
meet the stated goals of the system. These can then
be used in developing the equipment specifications.
If monetary incentives are tied to these specifications
and included in the purchase contracts, the likelihood
of the system performing as designed is greatly
increased.

If adequate data exists, cither from historical records
or from shop floor collection systems, then the use of
a statistical package to fit distributions is highly
recommended, at least for the critical data. Prior to
devoting a large amount of time to this task, one
should make surc that the data is truly representative
of what is requircd by the simulation. There is really
very little difference between a statistically fitted
distribution of bad data and unrcliable estimates
where no data exists. Even worse, the analyst may



confidently draw the wrong conclusion with bad data
that appears to be good.

8. ANALYSIS

The process of analyzing results from a simulation
model can, and often should, bring a look of fcar to
the eyes of the analyst. He is about to use the model
that he created to draw conclusions that could Icad to
major changes and expenditures.  There is an
enormous of literature available to the analyst, but
much of it is not relevant and most of it is hard to
understand. Remember that the basic issues to be
faced in any analysis are of a statistical nature. The
first recommendation is to acquire a background in
statistics, or if even better, acquire a statistician.

There are generally two questions which must be
answered prior to the analysis stage: how long of a
simulation run is required to obtain significant
information, and is there a difference among sets of
results to be compared? The first question is often
the most difficult to answer, as it requircs the analyst
to define steady-state conditions and minimum
sample size.

Most simulation models of complex systems start
with the system empty, which requires that the
statistics be cleared after a reasonable time in order
to eliminate the initial bias due to the empty system.
Once this problem has been overcome, a decision
must be made as to how long the remaining run must
be in order to avoid misleading results. There are
statistical procedures that can be employed to aid in
answering these questions, but if time or expertise
does not permit a statistical analysis, the use of plots
on key performance measures can provide much
insight. If time is an issue, there should be a balance
between the length of run and the number of runs.
When in doubt, make longer runs.

The nature of the analysis should have been
considered in the definition of the problem and
statement of the simulation objectives. The type of
analysis required should be consistent with the types
of decisions to bc made. If the model was designed
to predict the performance of a system, then the
statistical issues can be very important and the
analysis will gencrally require much longer runs than
if a comparative analysis is being performed.

The appearance of animation has provided an
additional analysis tool, but it can be casily misused,
as with any tool. Animation is a exccllent tool for
bottleneck analysis and for identifying the cause of
strange system bchavior. However, it should ncver
bc used as the sole analysis tool. Using only
animation for making important systcm dccisions is
somewhat equivalent to walking out and obscrving
the shop floor for an hour and then making major
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cquipment decisions bascd on the observations.
Most systems are very dynamic and change rapidly
over time. What appears to be a problem today may
well have becn caused by an equipment failure
scveral days ago. A careful statistical analysis should
never be excused away by observation of an
animation.

9. THE NEED FOR DOCUMENTATION

Model documentation is a task that almost no one
cnjoys. It can consume a considerable amount of
time and often scems unimportant at the time it is
developed.  However, documentation can be a
critical task and therc arc very few cases where it
could be considered unnecessary. Rarely does the
modecling task result in a small throwaway model that
requires no documentation.

At a minimum, the model documentation should
describe the data structure, the key clements of the
model, the general flow logic, and all variables,
queues, etc. Sufficient documentation might consist
simply of comments throughout the model. The
depth of documentation depends on the user, the
expected life of the model, and the complexity of the
model. Never undercstimate the time required to
adcquately document a simulation model. It
normally requires far more time than onc would
think.

There are scveral reasons why documentation is
important. If the simulation model is to be utilized
over a long period of time, then changes will
undoubtedly have to be made to logic and/or data.
The documentation provides the means to
understand the approach at a later date, often by
someonc different than the original modeler. If the
model is extrcmely large and complex, the
documcntation may be very uscful in the later stages
of development. It can provide a quick reference
back to sections completed wecks or months ago,
and prevent duplicate use of variables or names. If
more than onc individual is working on the model
development, then the documentation can provide
the link between them.

As is often the case, it seems that if you do detailed
documentation, then it is never needed. Howecver, if
there is no documentation, then the model always
comes back to haunt you. It seems that the poorly
documented models are always the ones which are
resurrccted and require modification.

Many simulations are developed for users that desire
to have the ability to cxercise the models alter
completion. In this case, somc¢ form of
documentation is critical. Often the greatest need
for documentation is in what valucs can the user
change. One mcthod  which  can  simplify



documentation task is to remove the specification of
these variables from the simulation model and place
them in some form of data configuration file. Upon
execution, the simulation reads this data file and
assigns the values indicated at the start of cach run.
This prevents the novice user from changing values
which should not be altercd, and provides a readable
file of the values. It also prevents the novice user
from changing a value which causes the simulation to
terminate due to an crror, or worse yet, yield
incorrect results. The use of a data configuration file
can also be used to allow changes in the model logic,
provide these have been included. It can also greatly
simplify the development of a users manual and
decrease the time to train the user.

10. CONCLUDING REMARKS

The art of simulation is best learncd through
experience. With the completion of cach new project
the modeler becomes more adept at avoiding the
problems and pitfalls, many which may be specific to
their environment. Although mistakes will be made,
hopefully the simulation tool will become a valuable
addition to the analyst's sct of capabilitics.
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