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ABSTRACT

The purpose of this paper is to present a comprehensive life
cycle of a simulation study and guide the simulationist in conduct-
ing 10 processes, 10 phases, and 13 credibility assessment stages of
the life cycle. The guidelines assist the simulation practitioners in:
formulating the problem; investigating solution techniques and the
system under study; formulating, representing, and programming
the simulation model; designing experiments; experimenting;
redefining the model; and presenting the simulation results. The
guidelines also assist the practitioners in: formulated problem veri-
fication, feasibility assessment of simulation, system and objectives
definition verification, model qualification, communicative model
verification, programmed model verification, experimeit design
verification, data validation, model validation, and presentation
verification. The practitioners can follow the guidelines presented
herein and significantly increase their chance of being successful in
conducting a simulation study.

1. INTRODUCTION

In a simulation study, we work with a model of the problem
rather than directly working with the problem itself. If the model
does not possess a sufficiently accurate representation, we can easi-
ly have “junk input” and “junk output.” It is no challenge to write a
computer program which accepts a set of inputs and produces a set
of outputs to do simulation. The challenge is to do it right.
Multifaceted and multidisciplinary knowledge and experience are
required for a successful simulation study. In order to gain the basic
knowledge for using simulation correctly, Shannon (1986) predicts
that a practitioner is required to have about 720 hours of formal
classroom instruction plus another 1440 hours of outside study
(more than 1 man-year of effort).

Assessing the acceptability and credibility of simulation results
is not something that is done after the simulation results are
obtained. Assessment of accuracy (i.e., verification and validation)
must be done right after completing each phase of a simulation
study.

Yl‘he key to success in a simulation study is to follow a compre-
hensive life cycle in an organized and well-managed manner. The
ever-increasing complexity of systems being simulated can only be
managed by following a structured approach to conducting the
simulation study.

The purpose of this paper is to present a comprehensive life
cycle of a simulation study and guide the simulationist in conduct-
ing 10 processes, 10 phases, and 13 credibility assessment stages of
the life cycle. The paper begins by defining the life cycle in Section
2. This is followed, in Section 3, by guidelines for each of the 10
processes and 10 phases of the life cycle. It goes on, in Section 4, to
discuss each of the 13 credibility assessment stages of the life cycle
and proposes an overall evaluation scheme for assessing the accept-
ability and credibility of simulation results. Concluding remarks are
given in Section 5.

2. THE LIFE CYCLE OF A SIMULATION STUDY

The life cycle is composed of ten phases as depicted in Figure
1 (Balci 1987a; Nance 1981). The ten phases are shown by oval
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symbols. The dashed arrows describe the processes which relate the
phases to each other. The solid arrows refer to the credibility assess-
ment stages (CASs). The life cycle should not be interpreted as
strictly sequential. The sequential representation of the dashed
arrows is intended to show the direction of development throughout
the life cycle. The life cycle is iterative in nature and reverse transi-
tions are expected.

3. PROCESSES OF THE LIFE CYCLE

There are ten processes of the life cycle as shown by the
dashed arrows in Figure 1. Although each process is executed in the
order indicated by the dashed arrows, an error identified may neces-
sitate returning to an earlier process and starting all over again.
Some guidelines are provided for each of the ten processes below.

3.1 Problem Formulation

When a problem is recognized, a decision maker (a client or
sponsor group) initiates a study by communicating the problem to
an analyst (a problem-solver, or a consultant/research group). The
communicated problem is rarely clear, specific, or organized.
Hence, an essential study to formulate the actual problem usually
follows. Problem Formulation (problem structuring or problem
definition) is the process by which the initially communicated prob-
lem is translated into a formulated problem sufficiently well defined
to enable specific research action (Woolley and Pidd 1981).

Balci and Nance (1985) present a high-level procedure that: (1)
guides the analyst during problem formulation, (2) structures the
verification of the formulated problem, and (3) seeks to increase the
likelihood that the study results are utilized by decision makers. The
reader is referred to (Balci and Nance 1985) for details of the
procedure.

3.2 Investigation of Solution Techniques

All alternative techniques that can be used in solving the for-
mulated problem should be identified. A technique whose solution
1s estimated to be too costly or is judged to be not sufficiently bene-
ficial with respect to the study objectives should be disregarded.
Among the qualified ones, the technique with the highest expected
benefits/cost ratio should be selected.

The statement “when all else fails, use simulation” is mislead-
ing if not invalid. The question is not to bring a solution to the prob-
lem, but to bring a sufficiently credible one which will be accepted
and used by the decision maker(s). A technique other than simula-
tion may provide a less costly solution, but it may not be as useful.

Sometimes, the communicated problem is formulated under the
influence of a solution technique in mind. Occasionally, simulation
is chosen without considering any other technique just because it is
the only one the analyst(s) can handle. Skipping the investigation
process may result in unnecessarily expensive solutions, sometimes
to the wrong problems.

As aresult of the investigation process, we assume that simula-
tion is chosen as the most appropriate solution technique. At this
point, the simulation project team should be activated and be made
responsible for the verification of the formulated problem and feasi-
bility assessment of simulation before proceeding in the life cycle.
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3.3 System Investigation

Characteristics of the system that contains the formulated prob-
lem should be investigated for consideration in system definition
and modeling. Shannon (1975) indicates six major system charac-
teristics: (1) change, (2) environment, (3) counterintuitive behavior,
(4) drift to low performance, (5) interdependency, and (6) organiza-
tion. Each characteristic should be examined with respect to the
study objectives that are identified with the formulation of the prob-
lem.

In simulation, we mostly deal with stochastic and dynamic real
systems that change over a period of time. How often and how
much the system will change during the course of a simulation
study should be estimated so that the model representation can be
updated accordingly. Changes in the system may also change the
study objectives.

A system's environment consists of all input variables that can
significantly affect its state. The input variables are identified by
assessing the significance of their influence on the system's state
with regard to the study objectives. For example, for a traffic inter-
section system, the interarrival time of vehicles can be identified as
an input variable making up the environment, whereas pedestrian
arrivals may be omitted due to their negligible effect on the
system's state. Underestimating the influence of an input variable
may result in inaccurate environment definition.

Some complex systems may show counterintuitive behavior
which we should try to identify for consideration in defining the
system. However, this is not an easy task, especially for those
systems containing many subjective elements (e.g., social systems).
Cause and effect are often not closely related in time or space.
Symptoms may appear long after the primary causes (Shannon
1975). To be able to identify counterintuitive behavior, it is essen-
tial that the simulation project employs people who have expert
knowledge about the system under study.

A system may show a drift to low performance due to the dete-
rioration of its components (e.g., machines in a manufacturing
system) over a period of time. If this characteristic exists, it should
be incorporated within the model representation especially if the
model's intended use is forecasting.

Before we start abstracting the real system for the purpose of
modeling, we should examine the interdependency and organiza-
tion characteristics of the system. In a complex stochastic system,
many activities or events take place simultaneously and influence
each other. The system complexity can be overcome by way of
decomposing the system into subsystems and subsystems into other
subsystems. This decomposition can be carried out by examining
how system elements or components are organized.

Once the system is decomposed into subsystems the complexi-
ty of which is manageable and the system characteristics are docu-
mented, model formulation process can be started following the
system and objectives definition verification.

3.4 Model Formulation

Model formulation is the process by which a conceptual model
is envisioned to represent the system under study. The Conceptual
Model is the model which is formulated in the mind of the modeler
(Nance 1981). Model formulation and model representation
constitute the process of model design.

Under the current practice, it seems that, a Simulation
Programming Language (SPL) is chosen and the model is designed
under the conceptual framework (world view) of that SPL usually
by not recognizing model design as a distinct process. It is not
appropriate to force the modeler to work under a conceptual frame-
work intended for implementation level during the design process.
This practice makes the model design very much error prone,
complex and difficult to diagnose especially for large-scale
complex model development efforts. Errors induced within the
model design right at the beginning of model development are
either caught in much later phases resulting in a higher cost of
correction or never detected resulting in the type 11 error (Balci and
Sargent 1981).

Although some software engineering principles can be applied,
there are significant differences between simulation model and soft-
ware development which must be fully recognized. Simulation

64

modeling is an art. Given a set of objectives, if ten economists are
asked to build a simulation model of the U.S. economy, each one
will come up with a model which will produce a different set of
results. The differences in the results are considered normal and as
expected under the paradigm of the art of modeling. On the other
hand, if ten software engineers are asked to computerize an
accounting system, each one will come up with a software system
which must produce the required results. We cannot expect the net
pay on a paycheck to be different from one system to another. In
simulation, we experiment with the model to obtain the results. In
software engineering, we do not experiment with the software to
obtain the results.

Modeling is an artful balancing of opposites. On the one hand,
a model should not exclude the essential elements of the system,
and on the other, it should not include unnecessary details. Missing
an essential element may invalidate model representation. Inclusion
of unnecessary details would only make the model unnecessarily
complex and difficult to analyze. A model is an abstraction of the
reality and it is built for a specific purpose. The level of representa-
tiveness of a model must be judged with respect to that purpose.

There is a fundamental human limitation called the Hrair Lim-
it; a human being cannot handle more than 712 entities simultane-
ously (Miller 1956). Although this is a very old result, its implica-
tions for model development have not been fully recognized.
Simulation is used mostly for stochastic systems containing many
simultaneous events, activities, and processes. The modeler needs
methodological and computerized assistance to be able to
conceptualize a model representing many simultaneous entities
during the design of a simulation model. (This is currently being
researched in the Simulation Model Development Environment
project at Virginia Tech (Balci and Nance 1987).)

Input data analysis and modeling is a subprocess of Model
Formulation and is conducted with respect to the way the model is
driven. Simulation models are classified as either self-driven or
trace-driven. A self-driven (distribution-driven or probabilistic)
simulation model is the one which is driven by input values
obtained via sampling from probability distributions using random
numbers. A trace-driven (or retrospective) simulation model, on the
other hand, is driven by input sequences derived from trace data
obtained through measurement of the real system.

Under some study objectives (e.g., evaluation, comparison,
determination of functional relations) and for model validation,
input data model(s) are built to represent the system's input process.
In a self-driven simulation (e.g., of a computer system), we collect
data on an input random variable (e.g., interarrival time of jobs),
identify the distribution, estimate its parameters, and conclude upon
a probability distribution as the input data model to sample from in
driving the simulation model (Law and Kelton 1982). In a trace-
driven simulation, we trace the system (e.g., using hardware and
software monitors) and utilize the refined trace data as the input
data model to use in driving the simulation model (Balci and
Sargent 1983).

A simulation model may have several parameters the values of
which are either known or determined through measurement or
estimation. Number of terminals, maximum service quantum, and
fixed overhead time are example parameters of a time-shared com-
puter model (Balci and Sargent 1983). Sometimes, due to the lack
of data, we may not be able to characterize an input variable or a
parameter. In this case, either a heuristic procedure (such as the one
based on triangular or beta probability distribution (Law and Kelton
1982)) or the process of calibration can be used. Calibration is an
lterative process in which a probabilistic characterization for an
input variable or a fixed value for a parameter is tried until the
model is found to be sufficiently valid.

3.5 Model Representation

This is the process of translating the conceptual model into a
communicative model. A Communicative Model is *‘a model repre-
sentation which can be communicated to other humans, can be
judged or compared against the system and the study objectives by
more than one human” (Nance 1981). A communicative model (i.e.,
a simulation model design) may be represented in any of the follow-
ing forms: (1) structured, computer-assisted graphs, (2) flowcharts,
(3) structured English and pseudocode, (4) entity-cycle (or activity-



cycle) diagrams, (5) condition specification (Overstreet and Nance
1985), and (6) more than a dozen diagramming techniques
described in (Martin and McClure 1985).

Several communicative models may be developed; one in the
form of Structured English intended for nontechnical people,
another in the form of a micro flowchart intended for a program-
mer. Different representation forms may also be integrated in a
stratified manner.

The representation forms should be selected based upon: (1)
their applicability for describing the system under study, (2) the
technical background of the people to whom the model is to be
communicated, (3) how much they lend themselves to formal
analysis and verification, (4) their support for model documenta-
tion, (5) their maintainability, and (6) their automated translatability
into a programmed model.

3.6 Programming

Translation of the communicative model into a programmed
model constitutes the process of programming. A Programmed
Model is an executable simulation model representation in a simula-
tion programming language (e.g., GPSS, SIMAN, SIMSCRIPT,
SIMULA, SLAM, etc.) or in a high-level programming language
(e.g., C, Fortran, Pascal, etc.) that do not incorporate an experiment
design. There is an abundance of literature on simulation program-
ming languages. Balci (1987b) describes how to conduct the pro-
gramming process in high-level languages.

3.7 Design of Experiments

This is the process of formulating a plan to gather the desired
information at minimal cost and to enable the analyst to draw valid
inferences (Shannon 1975). An Experimental Model is the pro-
grammed model incorporating an executable description of opera-
tions presented in such a plan.

A variety of techniques are available for the design of experi-
ments. Response-surface methodologies can be used to find the
optimal combination of parameter values which maximize or mini-
mize the value of a response variable (Law and Kelton 1982). Fac-
torial designs can be employed to determine the effect of various
input variables on a response variable (Fishman 1978). Variance re-
duction techniques can be implemented to obtain greater statistical
accuracy for the same amount of simulation (Law and Kelton
1982). Ranking and selection techniques can be utilized for compar-
ing alternative systems (Law and Kelton 1982; Banks and Carson
1984). Several methods (e.g., replication, batch means,
regenerative) can be used for statistical analysis of simulation out-
put data (Law 1983).

3.8 Experimentation

This is the process of experimenting with the simulation model
for a specific purpose. Some purposes of experimentation are
(Shannon 1975): (1) comparison of different operating policies, (2)
evaluation of system behavior, (3) sensitivity analysis, (4) forecast-
ing, (5) optimization, and (6) determination of functional relations.
The process of experimentation produces the Simulation Results.

3.9 Redefinition

This is the process of: (1) updating the experimental model so
that it represents the current form of the system, (2) altering it for
obtaining another set of results, (3) changing it for the purpose of
maintenance, (4) modifying it for other use(s), or (5) redefining a
new system to model for studying an alternative solution to the
problem.

3.10 Presentation of Simulation Results

In this process, simulation results are interpreted and presented
to the decision makers for their acceptance and implementation.
Since all simulation models are descriptive, concluding upon a solu-
tion to the problem requires rigorous analysis and interpretation of
the results.

The presentation should be made with respect to the intended
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use of the model. If the model is used in a “what if”’ environment,
the results should be integrated to support the decision maker in the
decision-making process. Complex simulation results may also
necessitate such an integration. The report documenting the study
and its results together with its presentation also constitutes a form
of supporting the decision maker.

4. CREDIBILITY ASSESSMENT STAGES OF THE LIFE
CYCLE

In Elmaghraby's words, “It is well to remember the dictum that
nobody solves the problem. Rather, everybody solves the model
that he [or she] has constructed of the problem” (Elmaghraby 1968,
p- 305). Thus it is crucial that we assess the credibility of each
process as we progress in the life cycle.

Since a model is an abstraction of the reality, we cannot talk
about its absolute accuracy. Credibility, quality, validity, and verity
are measures that are assessed with respect to the study objectives
for which the model is intended. In some cases, a 60% level of
confidence in the credibility of simulation results may very well
serve for the purpose; in another, 90% may be required.

Three types of errors may be committed in conducting a simu-
lation study. Type I Error is committed when the study results are
rejected when in fact they are sufficiently credible. Type Il Error is
committed when the study results are accepted when in fact they are
not sufficiently credible. The definitions of type I and type II errors
can be extended to apply for every CAS. In the case of model
validation, we called the probability of committing type I error as
model builder’s risk and the probability of committing type II error
as model user's risk (Balci and Sargent 1981). Type Il Error is
committed when the formulated problem does not completely
contain the actual problem (Balci and Nance 1985). Committing
type III error corresponds to solving the wrong problem.

A simulation project team should possess at least four areas of
knowledge and experience to be successful: (1) project leadership,
(2) modeling, (3) programming, and (4) knowledge of the system
under study (Annino and Russell 1979). Lacking the necessary level
of expertise in any area may result in a failure of the project or an
error of type I, IT or I1I.

Subjectivity is and will always be part of the credibility assess-
ment for a reasonably complex simulation study. The reason for
subjectivity is two-fold: modeling is an art and credibility assess-
ment is situation dependent.

A subjective, yet quite effective method for evaluating the
acceptability of simulation results is peer assessment, the assess-
ment of the acceptability by a panel of expert peers. This panel
should be composed of: (1) people who have expert knowledge of
the system under study, (2) expert modelers, (3) expert simulation
analysts, and (4) people with extensive experience with simulation
projects.

The panel examines the overall study based upon the project
team's presentation and detailed study of documentation. Working
together and sharing their knowledge among each other, panel
members measure the indicators shown by the leaves of the tree in
Figure 2 which assists in explaining the hierarchy of CASs. A
branch of the tree represents a CAS except the branch of “other
indicators” of experimental model quality.

An indicator is an indirect measure of a concept. It can be
decomposed into other indicators. The ones at the base level (i.e.,
the ones that are not decomposed further) must be directly
measurable.

The indicators (leaves) are presented in the following subsec-
tions. The kth indicator out of Nij ones corresponding to the jth

branch (from the top of Figure 2) at level i is measured with a score,
Sijr> out of 100 and is weighted with W, a fractional value

between 0 and 1, according to its importance. The following
constraint must be satisfied:

N‘-j
W= 1 W)= ((12), @1), 2.2), 23),
k=1 3.1, (32), ... 37)
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Thus, a score for the jth branch at level i, §;;, is calculated on a 7
scale from 0 to 100 where 0 represents “not credible at all” and 100 Spa=2 Ws; S3
means “sufficiently credible.” Jj=1
NU Similarly, S, is computed and an overall score, § (= W,,S;, +
Sij =3 Wi;k Sijk (i, )= ((1,2), (2,1),(2,2), (2,3) W,5S,5), is obtained as a value on a scale from 0 to 100.
k=1 (3,1),(3,2), ..., 3N} The higher the overall score the more confidence we gain for

the acceptability of simulation results. However, even a perfect
In addition to weighting the indicators, panel members can also score would not guarantee that the results will be accepted and used
weight the branches based on experience and training. For example, by the decision makers; because, acceptability is an attribute of the
model validation branch should be given higher weight than the decision maker not an attribute of the simulation study. Perfect
other branches at level 3, if it is possible to validate the model results may be rejected due to the lack of credibility of the institu-
objectively using the real system data under all experimental tion performing the study or due to a political reason. Nevertheless,
conditions of interest. On the other hand, if the model represents a the objective of the simulation project management should be to
nonexistent system or a future-oriented situation in which the past is increase the confidence as much as possible. A higher overall score
not a good predictor of the future, higher weight should be given to may not guarantee the acceptance of results but a lower overall
other branches at level 3. score can easily result in their rejection or an error of type I1.
Assume that W;; denotes the weight for the jth branch at level 1.

W,; is a fractional value between 0 and 1 where O represents “not 4.1 Formulated Problem Verification

critical at all” and 1 indicates “extremely critical.”

L . . . t S 1ati R aine .
W‘-/ 's are specified with the following constraints: Substantiation that the formulated problem contains the actual

problem in its entirety and is sufficiently well structured to permit
the derivation of a sufficiently credible solution” is called

2i ) 1 formulated problem verification (Balci and Nance 1985). For this

Iwy =1 i=12and 2 Wy=1 substantiation, a Questionnaire is developed in (Balci and Nance

j=1 j=1 1985) with 38 indicators. People who are intimately knowledgeable

of the problem(s) based on experience and training verify the

Thus, a credibility score for the quality assurance branch is cal- formulated problem by measuring the indicators. The reader is

culated as referred to (Balci and Nance 1985) for the details of the verifica-
ton.
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4.2 Feasibility Assessment of Simulation

Are the benefits and cost of simulation solution estimated
correctly? Do the potential benefits of simulation solution justify
the estimated cost of obtaining it? Is it possible to solve the problem
using simulation within the time limit specified? Can all of the
resources required by the simulation project be secured? Can all of
the specific requirements (e.g., access to pertinent classified infor-
mation) of the simulation project be satisfied? These questions are
the indicators of the feasibility of simulation.

4.3 System and Objectives Definition Verification

We should justify that the system characteristics are identified
and the study objectives are explicitly defined with sufficient
accuracy. An error made here may not be caught until very late in
the life cycle resulting in a high cost of correction or an error of
type IT or IIL

Since systems and objectives may change over a period of
time, will we have the same system and objectives definition at the
conclusion of the simulation study (which may last from 6 months
to several years)? Is the system's environment (boundary) identified
correctly? What counterintuitive behavior may be caused within the
system and its environment? Will the system significantly drift to
low performance requiring a periodic update of the system defini-
tion? Are the interdependency and organization of the system
characterized accurately?

4.4 Model Qualification

A model should be conceptualized under the guidance of a
structured approach such as the Conical Methodology (Nance 1987,
1981). One key idea behind the use of a structured approach is to
control the model complexity so that we can successfully verify and
validate the model. The use of a structured approach is an important
factor determining the success of a simulation project, especially for
large-scale and complex models.

During the conceptualization of the model, one makes many
assumptions in abstracting the reality. Each assumption should be
explicitly specified. Model Qualification deals with the justification
that all assumptions made are appropriate and the conceptual model
provides an adequate representation of the system with respect to
the study objectives.

4.5 Communicative Model Verification

In this stage, we confirm the adequacy of the communicative
model to provide an acceptable level of agreement for the domain
of intended application. Domain of Intended Application
(Schlesinger et al. 1979) is the prescribed conditions for which the
model is intended to match the system under study. Level of Agree-
ment (Schlesinger et al. 1979) is the required correspondence
between the model and the system, consistent with the domain of
intended application and the study objectives.

Communicative Model Verification can be conducted by using
one or more informal and static analysis techniques (e.g., desk
checking, walkthrough, code inspection, review, audit, structural
analysis, data flow analysis, etc.) described in (Whitner and Balci
1989).

4.6 Programmed Model Verification

Whitner and Balci (1989) describe software verification
techniques applicable for Programmed Model Verification. They
provide a taxonomy of techniques in six categories: informal, static,
dynamic, symbolic, constraint, and formal analysis techniques. The
reader is referred to (Whitner and Balci 1989) for the details of the
verification techniques.

4.7 Experiment Design Verification

The design of experiments can be verified by measuring the
following indicators: (1) Are the algorithms used for random variate
generation theoretically accurate?; (2) Are the random variate
generation algorithms translated into executable code accurately?
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(Error may be induced by computer arithmetic or by truncation due
to machine accuracy, especially with order statistics (e.g., X = —
log.(1-U)) (Schmeiser 1981).); (3) How well is the random number

generator tested? (Using a generator which is not rigorously shown
to produce uniformly distributed independent numbers with
sufficiently large period may invalidate the whole experiment
design.); (4) Are appropriate statistical techniques implemented to
design and analyze the simulation experiments? How well are the
underlying assumptions satisfied? (See (Law 1983) for several
reasons why output data analyses have not been conducted in an
appropriate manner.); (5) Is the problem of the initial transient (or
the start-up problem) (Wilson and Pritsker 1978) appropriately
addressed?; and (6) For comparison studies, are identical
experimental conditions replicated correctly for each of the
alternative operating policies compared?

4.8 Data Validation

In this stage, we confirm that the data used throughout the
model development phases are accurate, complete, unbiased, and
appropriate in their original and transformed forms. The data used
can be classified as (1) model input data and (2) model parameters
data.

Data validation deals with the substantiation that each input
data model used possesses satisfactory accuracy consistent with the
study objectives, and that the parameter values are accurately
identified and used. Here are some indicators to measure data
validity: (1) Does each input data model possess a sufficiently
accurate representation?; (2) Are the parameter values identified,
measured, or estimated with sufficient accuracy?; (3) How reliable
are the instruments used for data collection and measurement?; (4)
Are all data transformations done accurately? (e.g., are all data
transformed correctly into the same time unit of the model?); (5) Is
the dependence between the input variables, if any, represented by
the input data model(s) with sufficient accuracy? (Blindly modeling
bivariate relationships using only correlation to measure
dependence is cited as a common error by (Schmeiser 1981).); and
(6) Are all data up-to-date?

4.9 Model Validation

Substantiating that the experimental model, within its domain
of applicability, behaves with satisfactory accuracy consistent with
the study objectives is called Model Validation. The Domain of
Applicabiliry is the set of prescribed conditions for which the
experimental model has been tested, compared against the system to
the extent possible, and judged suitable for use (Schlesinger et al.
1979).

Model validation is performed by comparing model behavior
with system behavior when both model and system are driven under
identical input conditions. Only under those input conditions we can
claim model validity, because a model which is sufficiently valid
under one set of input conditions can be completely absurd under
another. If a model is used in a “what if” environment or if it is a
forecasting model, the possible input conditions may form a very
large domain over which model validation may become infeasible.

The existing literature on simulation model validation (Balci
and Sargent 1984a) generally falls into two broad areas: subjective
validation techniques and statistical techniques proposed for
validation. Tables 1 and 2 list these techniques and contain the
related reference(s).

The applicability of the techniques in Tables 1 and 2 depends
upon the following cases where the system being modeled is: (1)
completely observable — all data required for validation can be
collected from system, (2) partially observable — some required data
can be collected, and (3) nonexistent or completely
unobservable.The techniques in Table 1 are described below. The
statistical techniques in Table 2 are applicable only for case 1.

Event Validation employs identifiable events or event patterns
as criteria against which to compare model and system behaviors.
Events should be identified at a level of generality appropriate with
the study objectives. Observing the same events in both the model
and system outputs does not justify event validity if their temporal
sequence differs. It may be necessary to weight events since a



Table 1: Subjective Validation Techniques

Event Validation

Face Validation

Field Tests

Graphical Comparisons

[Hermann 1967]

[Hermann 1967]

[Shannon 1975; Van Horn 1971]
[Cyert 1966; Forrester 1961;
Miller 1975; Wright 1972]
[Naylor and Finger 1967]
[Hermann 1967]

[Hermann 1967]

[Naylor and Finger 1967,

Law and Kelton 1982]

[Emshoff and Sisson 1970]
[Schellenberger 1974; U.S.
General Accounting Office 1979]
[Hermann 1967; Miller 1974a,
1974b; Van Horn 1971;

Shannon 1975]

[Balci 1987a)

[Mitroff 1969; Schruben 1980;
Turing 1963; Van Homn 1971)

Historical Methods
Hypothesis Validation
Internal Validation
Multistage Validation

Predictive Validation
Schellenberger’s Criteria

Sensitivity Analysis

Submodel Testing
Turing Test

Table 2: Statistical Techniques Proposed for Validation

Analysis of Variance [Naylor and Finger 1967)
Confidence Intervals/Regions [Balci and Sargent 1984b;
Law and Kelton 1982; Shannon 1975]
Factor Analysis [Cohen and Cyert 1961]
Hotelling's T2 Tests [Balci and Sargent 1981, 1982a, 1982b,
1983; Shannon 1975]
Multivariate Analysis of Variance[Garratt 1974]
« Standard MANOVA
+ Permutation Methods
» Nonparametric Ranking Methods
Nonparametric Goodness-of-fit Tests [Gafarian and Walsh
1969; Naylor and Finger 1967]
+ Kolmogorov-Smirnov Test
+ Cramer-Von Mises Test
+ Chi-square Test
Nonparametric Tests of Means [Shannon 1975]
» Mann-Whitney-Wilcoxon Test
+ Analysis of Paired Observations
Regression Analysis [Aigner 1972; Cohen and Cyert 1961;
Howrey and Kelejian 1969]
Theil's Inequality Coefficient [Kheir and Holmes 1978;
Rowland and Holmes 1978; Theil 1961]
Time Series Analysis
« Spectral Analysis [Fishman and Kiviat 1967,
Gallant et al. 1974; Howrey and Kelejian 1969;
Hunt 1970; Van Horn 1971; Watts 1969]
» Correlation Analysis [Watts 1969]
» Error Analysis [Damborg and Fuller 1976; Tytula 1978]
t-Test [Shannon 1975; Teorey 1975]

particular event may be more important for the model to replicate
than another (Hermann 1967).

Face Validation is useful as a preliminary approach to
validation. The project team members, potential users of the model,
people knowledgeable about the system under study, based upon
their estimates and intuition, subjectively compare model and
system behaviors to judge whether the model and its results are
reasonable.

Field Tests place the model in an operational situation for the
purpose of collecting as much information as possible for model
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validation. These tests are especially useful for validating models of
military combat systems. Although it is usually difficult, expensive,
and sometimes impossible to devise meaningful field tests for
complex systems, their use wherever possible helps both the project
team and decision makers to develop confidence in the model
(Shannon 1975).

Graphical Comparisons is a subjective, inelegant, and heuris-
tic, yet quite practical approach especially useful as a preliminary
approach. The graphs of values of model variables over time are
compared with the graphs of values of system variables to investi-
gate similarities in periodicities, skewness, number and location of
inflection points, logarithmic rise and linearity, phase shift, trend
lines, exponential growth constants, etc. (Cyert 1966; Forrester
1961).

Historical Methods are quite philosophical in nature and
explore three major methodological positions conceming the valida-
tion of especially economic models: rationalism, empiricism, and
positive economics (Naylor and Finger 1967).

Hypothesis Validation deals with comparing hypothesized rela-
tionships among system variables with simulated ones. If X is iden-

tified to bear a given relationship to Y, in the system, then X,
should bear a corresponding relationship to ¥, in a valid model

(Hermann 1967).

Internal Validation is another preliminary approach to valida-
tion. Holding all exogenous inputs constant, several replications of
a stochastic model are made to determine the amount of stochastic
variability in the model. The unexplained variance between these
replications would provide a measure of internal validity (Hermann
1967).

Multistage Validation combines the three historical methods
into a three-stage approach. In stage 1, a set of hypotheses or postu-
lates are formulated using all available information such as observa-
tions, general knowledge, relevant theory, and intuition. In stage 2,
it is attempted to justify model's assumptions where possible by
empirically testing them. The third stage consists of testing the
model's ability to predict system behavior (Naylor and Finger
1967).

Predictive Validation requires past data. The model is driven
by past system input data and its forecasts are compared with the
corresponding past system output data to test the predictive ability
of the model.

Schellenberger’s Criteria include (1) technical validation
which involves the identification of all divergences between model
assumptions and perceived reality as well as validity of the data
used, (2) operational validation which addresses the question of
how important the divergences are, and (3) dynamic validation
which insures that the model will continue to be valid during its
lifetime (Schellenberger 1974).

Sensitivity Analysis is performed by systematically changing
the values of model input variables and parameters over some range
of interest and observing the effect upon model behavior (Shannon
1975). Unexpected effects may reveal invalidity. The input values
can also be changed to induce errors to determine the sensitivity of
model behavior to such errors. Sensitivity analysis can identify
those input variables and parameters to the values of which model
behavior is very sensitive. Then, model validity can be enhanced by
assuring that those values are specified with sufficient accuracy.

Submodel Testing refers to both submodel verification and sub-
model validation, and requires a top-down model decomposition in
terms of submodels. The experimental model is instrumented to
collect data on all input and output variables of a submodel. The
system is similarly instrumented (if possible) to collect similar data.
Then, each submodel behavior is compared with corresponding
subsystem behavior. If a subsystem can be modeled analytically
(e.gl., as an M/M/1 model), its exact solution can be compared
against the simulation solution to assess validity quantitatively.

Turing Test is based upon the expert knowledge of people
about the system under study. These people are presented with two
sets of output data obtained, one from the model and one from the
system, under the same input conditions. Without identifying which
one is which, the people are asked to differentiate between the two.
If they succeed, they are asked how they were able to do it. Their
response provides valuable feedback for correcting model represen-
tation. If they cannot differentiate, our confidence in model validity



is increased.
4.10 Quality Assurance of Experimental Model

There are other indicators, described below, in addition to the
ones presented in Sections 4.4 - 4.9 for assuring the quality of
experimental model. These indicators correspond to the 7th branch
at level 3 in Figure 2 and are derived from software quality
characteristics (Boehm et al. 1976).

(1) Accessibility: Does the model facilitate selective use of its
parts for other purposes (e.g., for the construction of another
model)?

2) Accountability: Does the model lend itself to measurement of
its usage? Can probes be inserted to measure timing, whether
specified branches are exercised, etc.?

(3) Accuracy: Are the model's calculations and outputs sufficient-
ly precise to satisfy their intended use?

(4) Augmentabiliry: Can the model accommodate expansion in
component computational functions or data storage require-
ments?

(5)  Communicativeness: Does the model facilitate the specifica-
tion of inputs? Does it provide outputs whose form and con-
tent are easy to assimilate and useful?

(6) Completeness: Are all model inputs used within the model?
Are there no “dummy” submodels referenced?

(7) Conciseness: Is the model implemented with a minimum
amount of code? Is it excessively fragmented into submodels
so that the same sequence of code is not repeated in numerous
places?

(8) Consistency. Does the model contain uniform notation, termi-
nology, and symbology within itself? Are all model attributes
and variables typed and specified consistently for all uses?
Are coding standards homogeneously adhered to?

(9) Device-independence: Can the model be executed on other
computer hardware configurations? Have machine-dependent
statements been flagged and documented?

(10) Efficiency: Does the model fulfill its objective without waste
of resources?

(11) Legibiliry: Does the model possess the characteristic that its
function is easily discerned by reading the code?

Self-containedness: Does the model perform everything need-
ed for its execution within itself? Does it not require to use a
database, a library of routines or an application program?

Self-descriptiveness: Does the model contain enough informa-
tion for a reader to determine or verify its objectives,
assumptions, constraints, inputs, outputs, components, and
revision status?

(14) Structuredness: Does the model possess a definite pattern of
organization of its interdependent parts?

(15) Robustness: Does the model continue to execute reasonably
when it is run with invalid inputs? Can the model assign
default wvalues to non-specified input variables and
parameters? Does the model have the capability to check
input data for domain errors?

The dependence among the seven branches at level 3 in Figure
2 and the dependence among the corresponding indicators should
be observed for assuring the quality of experimental model. An
indicator with a low score may result in an unacceptable score for
an indicator later in the life cycle. For example, failure to justify the
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reasonableness of an assumption in Model Qualification may result
in poor model validity. Due to this dependence, it is important to
detect errors as early as possible in the model development phases.

4.11 Credibility Assessment of Simulation Results

Concluding upon sufficient quality of the experimental model
is a necessary but not a sufficient requirement for the credibility of
simulation results. The experimental model quality is assured with
respect to the definition of system and study objectives. An error
made in defining the system or a study objective or failing to
identify the real problem may cause unacceptable simulation results
or an error of type II.

4.12 Presentation Verification

The simulation project management should verify the presenta-
tion of simulation results before they are presented to the panel of
expert peers for acceptability assessment. There are four major indi-
cators that need to be measured for the verification: (1) interpreta-
tion of simulation results, (2) documentation of simulation study,
(3) communication of simulation results, and (4) presentation
technique.

4.12.1 Interpretation of Simulation Results

Since all simulation models are descriptive, simulation results
must be interpreted. In the simulation of an interactive computer
system, for example, the model may produce a value of 20 seconds
for the average response time; but, it does not indicate whether the
value 20 is a “good” result or a “bad” result. Such a judgment is
made by the simulation analyst depending upon the study objec-
tives. Under one set of study objectives the value 20 may be too
high; under another, it may be reasonable.

Naturally, if simulation results are not sufficiently credible the
interpretation will be in error. For example, when comparing
different operating policies, if experiments are not conducted under
identical conditions, a policy cannot be claimed as the best. If the
analyst fails to satisfy this requirement, the simulation results will
be erroneous resulting in inaccurate interpretation. Therefore,
interpretation accuracy is directly dependent on the credibility of
simulation results.

The project team should review the way the results are
interpreted in every detail to evaluate interpretation accuracy.
Errors may be induced due to the complexity of simulation results,
especially for large scale and complex models.

4.12.2 Documentation of a Simulation Study

Gass (1983) points out that “we do not know of any model
assessment or modeling project review that indicated satisfaction
with the available documentation”. This problem should be
attributed to the lack of automated support for documentation
generation integrated with model development continuously
throughout the entire life cycle (Balci 1986).

A simulation study should be documented with respect to the
phases, processes, and CASs of the life cycle. See (Nance 1977,
Newton and Weatherbee 1980; Gass 1979; Federal CPESC 1981;
Gass et al. 1981) for details.

4.12.3 Communication of Simulation Results

The simulation project team must devote sufficient effort in
communicating technical simulation results to decision makers in a
language they will understand. They must pay more attention to
translating from the specialized jargon of the discipline into a form
that is meaningful to the nonsimulationist and nonmodeler (Richels
1981; Watt 1977).

4.12 4 Presentation Technique
Simulation results may be presented to the decision makers as

integrated within a Decision Support System (DSS). With the help
of a DSS, a decision maker can understand and utilize the results



much better. The integration accuracy of simulation results within
the DSS must be verified.

If results are directly presented to the decision makers, the
presentation technique (e.g., overheads, slides, films, etc.) must be
ensured to be effective enough. The project management must make
sure that the team members are trained and possess sufficient
presentation skills.

4.13 Acceptability of Simulation Results

Acceptability of simulation study results is an attribute of the
decision maker(s) or the sponsor. The management of a simulation
project cannot control this attribute; however, they can significantly
influence it by following the guidelines provided herein. It is not
uncommon that the failure of a simulation study is attributed to the
sponsor or a related decision maker when in fact it is the fault of the
project team. The following actual story illustrates such a case:

In a country, the name of which is not important, the
Department of Energy (DoE) gave a project to a re-
search institution to determine the best location for
building a nuclear power plant. Following an exten-
sive study, a location was proposed and accepted by
the DoE. However, during the implementation
phase, the Department of Defense (DoD) rejected the
location for the reason that it can easily be attacked
by the enemy. The study was reinitiated.

In the above scenario fault must be attributed to the research
institution for failing to identify the DoD as a key influential deci-
sion maker during the formulation of the problem.

It is assumed that the acceptance of the study results implies
their implementation. If the results are not implemented, they are
considered to be rejected even if they are accepted by the sponsor as
illustrated in the actual story above.

5. CONCLUDING REMARKS

Although the life cycle of a simulation study is characterized
with 13 CASs, a literature review (Balci and Sargent 1984a) reveals
that most work has concentrated on model validation and very little
has been published on the other CASs. Model validity is a
necessary but not a sufficient requirement for the credibility of
simulation results. Sufficient attention must be devoted to every
CAS in order for a simulation study to be successful.

A simulation study is multifaceted and multidisciplinary as
illustrated by the life cycle presented herein. Sufficient effort must
be devoted to every process of the life cycle. Inadequate coverage
of a process, due to insufficient knowledge or time, may result in
unacceptable results or an error of type II.

The list of indicators for the CASs is not intended to be
exhaustive. Additional indicators that are specific to the area of
application should be employed whenever possible. There is also
the issue of assessing the validity and reliability of these indicators
which is extremely difficult if not impossible for the broad scope
adopted herein; however, for a specific area of application it should
be achievable.
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