Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

TUTORIAL: ARTIFICIAL INTELLIGENCE AND SIMULATION

Jeff Rothcnberg
The RAND Corporation
1700 Main Street
Santa Monica, CA 90406

ABSTRACT

The term “simulation” 1is often interpreted
quite narrowly: as a way of making predictions by
running a behavioral model to answer quecstions of
the form “What-if...?". The major impact of
Artificial Intelligence (AI) research on simulation
is to encourage the use of additional kinds of
modeling based on inferencing, reasoning, search

methods, and representations that have been
developed in Al This natural—though long
overdue—extension of simulation can produce

behavioral models that answer questions Beyond
“What-if...?"". The result is sometimes referred to
as “Knowledge-Based Simulation”. This tutorial
presents some of the major concepts of Artificial
Intelligence and illustrates their applicability to
simulation using examples drawn from recent
Knowledge-Based Simulation research. It focuses
on the present state-of-the-art, current problems
and limitations, and future directions and
possibilities.

1. A BRIEF OVERVIEW OF Al

Artificial Intelligence (AI) has defined many
of the frontiers of computer science since the 1950s
(Klahr and Waterman 1986). It is a vast, loosely
defined area encompassing various aspects of pattern
recognition and image processing, natural language
and speech processing, robotics, symbolic
computation, automated reasoning, cxpert systems,
neural nets, and a host of other disciplines.

Throughout its history, AI has been concerned
with problems whose solution scecmed impossible
using conventional computer science. This attempt
to make computers intelligent has two distinct
motivations, referred to here as modeling and
engineering. The modcling approach secks to model
the way humans (or other intclligent beings)
perform tasks that require intclligence: It attempts

33

to identify problems that require intelligence and to
elucidate the mechanisms we employ in our own
solutions of those problems. The engineering
approach, in contrast, is concerned with producing
systems that solve useful problems, regardless of
whether those problems require intelligence or their
solutions involve mechanisms parallel to our own.
In practice these two approaches are often merged or
even confused; but the distinction is useful for
understanding the different emphasis of different
Al efforts and the various roles of Al in modecling
(and modeling in AI).

The modeling approach to Al has a
psychological or philosophical premise: can we use
computers to build models of how we believe
intelligence works? That is, given a conceptual
theory of intelligence, can we embody that theory
in a computer model? Computer models ideally
make such theories concrete, allowing them to be
tested, validated, and refined much more effectively

than if they remained purely conceptual. The
modcling approach to AI therefore views the
implementation of computerized models as a

primary technique for advancing our understanding
of intelligence. In addition, the implemented
models often suggest novel mechanisms that may in
turn become part of new conceptual theorics. For
example, it is this kind of “metaphor feedback™ that
has led to the popular conception of the brain as a
computer. Insights gained from AI models (both
from their failures and their successes) have
contributed to revisions of theories in areas ranging
from linguistics to cognitive psychology.

The cngineering approach to Al has a different
premisc: computers are not organisms, so why not
use them to thcir own best advantage to try to
solve uscful problems, without worrying about
whether they are solving them the way we would?
This focusecs on solving interesting and useful
problems rather than on defining or understanding
intelligence. In practice, this approach works

symbiotically with the modeling approach; if a
model fails to work, engineering may suggest a
solution. While such solutions are often ad hoc,
and thercfore unlikely to provide diréct insight
from a modeling point of view, they may
nevertheless reveal fundamental flaws or
alternative possibilities in the conceptual theory
that produced the model, thereby suggesting
revisions to the theory. Whenever the engincering
approach succeeds in solving a problem (or cven
approaches success), its results tend to be
appropriated by conventional computer science or
engineering, so that Al often reccives no credit for
the eventual solution. This has occurred repcatedly

in AI's history, contributing to the partially
facetious adage that “Al never solves any
problem”. A more constructive interpretation of

this phenomenon is that it represents successful
technology transfer.

The lack of distinction between these two
different motivations often leads to confusion about
how Al research should be evaluated and judged.
Ideally, research stemming from a modeling
motivation should be judged according to the
insight it produces into how natural intelligence
works; mechanisms designed for such Al programs
should be evaluated with respect to how closely
they parallel and illuminate their corresponding
biological mechanisms. The behavior of such
programs should be judged according to how well
they mimic the behavior of humans (or other
intelligent entities), rather than how well they
solve particular problems. In contrast, research
stemming from an engineering motivation should be
judged solely according to its problem-solving
performance; mechanisms designed for these Al
programs should be evaluated according to standard
software engineering principlcs.

Unfortunately, since these two motivations
tend to be combined and confused, AI programs
often ask to be evaluated and judged by whichever
criterion provides a more generous answer. Poor
problem-solving performance is oftcn excused on
the basis that a program provides interesting
modeling insights, whercas ad hoc models are often

excused in the interests of performance. By
adopting a somewhat schizophrenic personality,
some Al programs simultancously attempt 1o

justify their poor performance on the basis of their
modeling while justifying their ad hoc models on
the basis of their performance. On the other hand,

34

many Al programs have produced interesting
modeling insights, many have achieved excellent
problem-solving performance, and some have
combined the two to a degree that entirely
eliminates the need for excuses.

Al has made many contributions to computer
science and software engineering. Often the
problems that Al attacks are also attacked from
other quarters of computer science, and it is not
always easy to assign credit for the solutions that
cventually emerge. Al has had at least some part in
producing—or is currently attempting to
produce—a number of advances that have direct
bearing on simulation and modeling. These include
the object-oriented programming paradigm, demons,
dynamic planning, goal-directed heuristic search,
spreading-activation search, taxonomic inference (as
implemented by class/subclass, or “IS-A”,
inheritance hierarchies), forward and backward
chaining, qualitative reasoning, truth maintenance,
proof procedures for formal logic, simulated
annealing, neural nets, and the representation of
spatial and temporal phenomena, uncertainty, plans,
goals, beliefs, and so-called “deep structures™.

The following sections outline some of the
most - important areas of overlapping research and
cross-fertilization between Al and simulation.

2. AT AND SIMULATION

In any discussion of Al and simulation, the
term “simulation” must be freed from the confines
of its own tradition, where it often denotes a very
limited form of modeling. There is a strong
tendency in simulation circles to view simulation
narrowly as a way of making predictions by running
an encoded behavioral model (“winding it up and
letting it run”) to answer “What-if?” questions.
This may be thought of as the “toy duck” view of
simulation (Rothenberg, et al. 1989).

A great deal of effort is required to encode the
knowledge nceded to build a simulation: having
gone to all this trouble, one should attempt to
derive the maximum benefit from this knowledge.
In particular, in addition to “running” a simulation
o answer “What-if?”" questions, one should be able
o utilize the full range of inferencing, reasoning,
and search methods that are available in AI. These
methods should be able to explain why a given

sequence of events occurred and answer definitive
questions such as “Can this event ever happen?” and
goal-directed questions such as “Which cvents
might lead to this event?”. This broad view of
simulation is referred 0 as Knowledge-Based
Simulation.

The major impact of AI on simulation is (or
should be) to encourage simulation to make usc of a
wider range of modeling techniques: the result will
still be a phenomenological model, but one that can
take full advantage of additional techniques to
answer a wider range of questions that are of
interest to its users. This natural, long-overdue
extension of simulation can be thought of as going
“Beyond What-if?".

Discrete-state simulation has derived great
benefit from many of the techniques developed in
Al The object-oriented paradigm, which first
appeared in Simula (Dahl and Nygaard 1966), owes
its present state of refinement to Al language
efforts like Smalltalk (Goldberg and Kay 1976) and
ROSS (McArthur, Klahr, and Narain 1984). The
object-oriented approach has many advantages,
despite its shortcomings (Rothenberg 1986). For
example, the appropriate use of inheritance
hierarchies (or lattices) greatly simplifies the
specification of a complex simulation, producing
highly comprehensible models (Klahr 1985).
Searching and planning techniques developed in Al
have made feasible models that simulate the
behavior of human decision makers in environments
involving “command and control”, while backward
chaining can help answer questions about how to
achieve a given result. Techniques for representing
goals and beliefs have helped build simulations that
can explain the behavior of simulated entities.
Some of the current outstanding problems in
discrete-state simulation, such as the problem of
representing and computing continuous information
like weather and terrain, may also yield to Al
solutions.

Analytic simulation has tended to look to
mathematics rather than Al for its methods, but
here too Al offers some new approaches. One
example is recent work at The RAND Corporation
in sensitivity analysis (a sorcly neglected problem
in simulation), where AI techniques are used o
represent and propagate sensitivity information
through a computation, so that it need not be
recomputed for every function call whenever some

35

higher-level function is perturbed to probe its
sensitivity to changes in its parameters. Similarly,
symbolic algebra programs developed by Al, such as
REDUCE (Hearn 1985), may allow applying expert
algebraic manipulation to analytic functions within
a simulation.

The relationship between Al and simulation is
bilateral: Al has produced many systems that use
models as sources of internal expertise. One of the
earlicst examples of this was Gelernter’s Geometry
Machine (Gelernter 1959), which embedded a model
of a geometry student’s diagram (itself a model),
and used a virtual ‘““diagram computer” to test
hypotheses against this internal diagram. This has
become a classic Al paradigm that expresses Al’s
recognition of the importance of models to
intelligent agents: in seeking to model such agents,
Al is naturally driven to model their use of
models! In the case of the Geometry Machine,
whose stated motivation was to solve problems
genecrally considered to require intelligence, the
engineering approach converged with the modecling
approach in choosing a solution based on a model of
how we ourselves solve geometry problems: being
inveterate modelers, we use a model (ie., a
diagram).

Another classic example of an embedded model
in an Al system is SOPHIE (Brown, Burton, and
DeKleer 1982), which taught electronic circuit
diagnosis by means of an interactive dialog (in
English). In order to allow students to ask
hypothetical questions such as “What would happen
if I measured the voltage across points A and B?”,
SOPHIE used a simulator of the electronic circuit
being diagnosed. This simulator was treated as a
source of expertisc about electronic circuits. The
Al program that conducted the dialog with the
student did not encode answers to all possible
questions the user might ask; instead, it answered
those questions by consulting its internal model,
i.e., running its embedded simulation.

There is considerable cvidence that in order to
exhibit more than superficial intelligence, Al
systems must make usc of ‘“deep structures”, or
models ol reality like those described above.
Simple action-responsc rules can produce programs
that perform impressively up to a point, but beyond
that point there is no escaping the need to give
programs rcal ‘“‘understanding” of the world, at
least within their domains. There are many possible

approaches to providing such understanding, but
they all essentially involve giving a program a
model of its world that it can use to answer a wide
range of unanticipated questions about that world.

3. KNOWLEDGE-BASED SIMULATION AT

THE RAND CORPORATION

This section elaboratcs some of the areas
discussed above, drawing on recent work in
Knowledge-Based Simulation at The RAND

Corporation. This work is representative of current
research efforts that are attempting to blend Al and
simulation.

Artificial intelligence and simulation have been
major areas of research at RAND for many years
(Klahr and Waterman 1986). The work of Newell,
Shaw and Simon at RAND in the 1950s (Newell,
Shaw, and Simon 1957) was one of AI’s earliest
successes and defined many areas that continue to be
focal points for Al research. More recently
RAND’s research in expert systems produced the
languages RITA (Anderson and Gillogly 1976;
Anderson, et al. 1977) and ROSIE (Sowizral and
Kipps 1985; Kipps, Florman, and Sowizral 1987)
as well as several expert system applications,
including LDS (Waterman and Peterson 1981),
TATR (Callero, Waterman, and Kipps 1984) and
SAL (Paul, Waterman, and Peterson 1986).
Similarly, RAND’s long history of simulation
research produced the Simscript language (Kiviat,
Villanueva, and Markowitz 1968) as well as both
theoretical and experimental results in game theory
and monte carlo simulation. RAND began applying
Al to simulation in the late 1970s and early 1980s.
The development of the object-oriented ROSS
simulation language demonstrated the potential
benefit of Al for simulation technology. The
Knowledge-Based Simulation effort continued this
tradition. The following describes this work as a
way of highlighting some of the overlap (and
potential overlap) between Al and simulation.

The goal of RAND’s Knowledge-Based
Simulation effort is to make simulations both more
powerful and more comprehensible by (1) allowing
modelers to build, validate, evolve and maintain
more powerful and realistic simulations that model
a wider range of relevant phenomena, and (2)
allowing users to interact with these simulations in
ways that provide deeper understanding of the

36

phcnomena being modeled. Making simulations
more powerful requires extending the kinds of
modeling they can perform and the kinds of
questions they can answer (as discussed above).
Making simulations more comprehensible requires
developing techniques for intelligent exploration and
explanation, which requires allowing users to
modify both the model and the course of events in a
simulation, and making the simulation explain its
behavior in useful ways.

This research has involved a number of distinct
tasks, the first of which is reasoning about
simulation behavior. This ultimately includes being
able to ask goal-directed questions, questions about
whether or how an initial state can produce a
desired result, questions about the possible values
of wvariables in a simulation, questions about the
interactions of objects or factors, questions about
the goals of an object, and questions about why an
object performed an action. The inability of current
discrete-state simulations to answer such questions
is the result of limitations in their representational
and inferential capabilities stemming from the fact

that knowledge is represented implicitly in
procedural code and is therefore not amenable to
inference. Support for reasoning requires

representing the behavior of objects in ways that
allow the use of automated reasoning techniques
(like forward and backward chaining) and
integrating these with other forms of inference,
such as those based on the use of object taxonomies.

In addition to the explicit use of rcasoning, it
is important to allow implicit reasoning based on
multple relations. ~ Complex simulations require
the ability to represent multi-dimensional
relationships among objects, such as “A is a-kind-of
B”, “A is a-part-of B”, “A is in-control-of B”, “A
is in-communication-with B”, or “A is near B”. It
1s vital for the simulation user to be able to define
relations freely, examine the state of the simulation
in terms of these relations, and modify them
dynamically. Most object-oriented systems support
only minor variations of the “class-subclass” (also
called “IS-A” or “taxonomy”) relation along with
a corresponding “inheritance” mechanism to
maintain taxonomic relationships (i.e., specialized
inferential support for the class/subclass relation).
It is important to provide a truc multiple relation
environment in which different kinds of relations
are supported by appropriate specialized inference
mechanisms and to provide a general facility to

allow the simulation developer to define new
relations with appropriate inferential support.

In order to be comprehensible
simulations must provide intelligent exploration
and explanation. This should include graphic
querying of the simulation state, being able to roll
the simulation back to a previous state, change a
parameter, and rerun the simulation, saving
multiple simulation states for later analysis and
comparison, being able to build or modify
simulation scenarios graphically, and being able to

to users,

build or modify simulation objects graphically
(e.g., defining and exercising new behaviors
graphically).

As mentioned above, sensitivity analysis is one
of the great abandoned areas of simulation. Yet
without it there is no guarantee that the results of a
simulation might not be drastically different if
some small change were made (0 some initial
parameter. Sensitivity analysis is also important
for indicating which parameter values are the most
important to verify for a simulation to be valid and
believable. The straightforward approach to
sensitivity analysis requires running a simulation
many times, perturbing individual parameters to see
how the results differ. This is prohibitively
expensive in most cases, as a consequence of which
it is rarely done. Current RAND research seeks to
provide a means of computationally feasible
sensitivity analysis in a simulation environment,
utilizing a new approach that propagates and
combines the sensitivities of composite functions
through a computation. This approach computes a
representation of the sensitivity of each called
function the first time it is executed, and
propagates this sensitivity information rather than
recomputing it each time it is needed.

Another major shortcoming of current
simulation models is their inability to vary the
level at which they are aggregated (also referred to
as their “resolution”). It is gencrally necessary to
choose a desired level of aggregation in advance and
design a simulation around that level. Changing
this level typically ~ requires considerable
reprogramming of the simulation; changing it under
user control or dynamically is generally
unthinkable. The fact that the level of aggregation
of a model gets frozen in early in its design is a
major impediment to the reusability of models and
the utility of simulation in gencral. Users should

37

be able to vary the level of aggregation of a
simulation and to indicate which aspects of the
model are of particular interest, running those
aspects of the simulation disaggregated while
running peripheral aspects at higher levels of
aggregation. Users should also be able to run
highly aggregated simulations to identify
interesting cases and then examine those cases in
more detail by rerunning them disaggregated. The
goal is to develop a methodology for building
simulations whose level of aggregation can be
varied either statically or dynamically. This
requires mechanisms for representing vertical slices
of objects in an aggregation hierarchy and allowing
interactions between objects at different levels of
aggregation. It is also necessary to address
problems of inconsistency that can arise between
different levels: that is, running a simulation at an
aggregated level should produce results that are
consistent with the results of running the same
simulation at a disaggregated level.

Modeling real-world environments that include
human decision makers requires building
simulations that embed models of intelligent agents
possessing varying degrees of awareness, authority,
initiative, intelligence, etc. This also requires
hierarchical planning so that at each level, plans
will be translated into objectives for agents at the
next lower level.

Finally, there are a number of pseudo-objects or
phenomena that are not modeled well by current
object-oriented simulations. For example, terrain,
roads, rivers, and weather defy easy representation
by conventional object-oriented means. These
pseudo-objects seem to require representations and
manipulations that are different from those used for
more compact objects, either because they traverse
or interpenctrate other objects (without actually
being part of them), or because they are best
described by continuous models (such as partial
differential equations). A number of Al techniques
are being explored to represent such pseudo-objects
and their interactions.

4. CONCLUSIONS

Al is a vast field that represents the lcading
edge of computer science research along many
fronts. It can best be understood in terms of its
two distinct motivations: the modeling motivation,

which sccks to model the cognitive processes of
intelligence and the engineering motivation, which
simply attempts to solve useful problems that
cannot be solved by conventional mcans. Al has
made many contributions to computer science and
software enginecring and has both produced and
made use of many modeling concepts. The wedding
of Al and simulation is still in progress; its
consummation promises 1o be of great value to both
ficlds of cndeavor.

ACKNOWLEDGMENTS

The research described above at The RAND
Corporation was supported by Defense Advanced
Research Projects Agency Contract MDA903-85-
C00030. Views and conclusions contained in this
section are those of the author and should not be
interpreted as representing the official opinion or
policy of The RAND Corporation, DARPA, the
U.S. government, or any other person or agency
connected with them.

REFERENCES

Anderson, R. H., and Gillogly, J. J. (1976).
RAND Intelligent Terminal Agent (RITA):
Design Philosophy, The RAND Corporation,
R-1809-ARPA.

Anderson, R. H., Gallegos, M., Gillogly, J. J.,
Greenberg, R. B., and Villanueva, R. V. (1977).
RITA Reference Manual, The RAND
Corporation, R-1808-ARPA.

Brown, J. S., Burton, R. R., and DeKleer, J.
(1982). Pedagogical, Natural Language and
Knowledge Engineering Techniques in SOPHIE
LII, and III. In: [ntelligent Tutoring Systems
(D. Slecman, J. S. Brown, eds.). Academic
Press, New York, 227-282.

Callero, M., Waterman, D. A., and Kipps, J. R.
(1984). TATR: A Prototype Expert System for
Tactical Air Targeting, The RAND Corporation,
R-3096-ARPA.

38

Simula—An
ACM

Dahl, O-J. and Nygaard, K. (1966).
Algol-Based Simulation Language.,
Communications, 9, 671-678.

Gelernter, H. (1959). Realization of a geometry

theorem-proving machine. Proceedings of an

International Conference on Information

Processing, Paris: UNESCO House, 273-282.

Goldberg, A. and Kay, A. (1976). Smalltalk-72
Instruction Manual. Report SSL 76-6, Xerox
PARC, Palo Alto, California.

Hearn, A. C. (1985). REDUCE User's Manual,
Version 3.2, The RAND Corporation, CP78.

Kipps, J. R., Florman, B. A., and Sowizral, H. A.
(1987). The New ROSIE Reference Manual and
User's Guide, The RAND Corporation, R-3448-
DARPA/RC.

Kiviat, P., Villanueva, R., and Markowitz, H.
(1968). The SIMSCRIPT Il Programming
Language, Prentice-Hall, Englewood Cliffs, NJ.

Klahr, P. (1985). Expressibility in ROSS: An
Object-oriented Simulation System. In: Al
APPLIED TO SIMULATION: Proceedings of the
European Conference at the University of
Ghent, 136-139.

Klahr, P. and Waterman, D. A. (1986).
Intelligence: A Rand Perspective.
Systems Techniques, Tools
Addison-Wesley, 3-23.

Artificial
In: Expert
and Applications,

McArthur, D., Klahr, P., and Narain, S. (1984).

ROSS: An Object-Oriented Language for
Constructing Simulations, The RAND
Corporation, R-3160-AF.

Newell, A., Shaw, J. C., and Simon, H. (1957).

Empirical Explorations with the Logic Theory
Machine. In: Proceedings of the Western Joint
Computer ~ Conference, Institute of Radio
Engincers, New York.

Paul, J., Waterman, D. A., and Pecterson, M. A.
(1986). SAL: An Expert System for Evaluating
Asbestos Claims. In: Proceedings of the First
Australian Artificial Intelligence ~ Congress,
Computerworld, Ltd., Mclbourne.

Rothenberg, J. (1986). Object-oriented
Simulation: Where Do We¢ Go from Here?
Proceedings of the 1986 Winter Simulation
Conference, Washington, DC, 464-469.

Rothenberg, J., Narain, S., Steeb, R., Heflley, C.,
and Shapiro, N. Z. (1989). Knowledge-Based
Simulation: An Interim Report, The RAND
Corporation, N-2897-DARPA.

Sowizral, H. A. and Kipps, J. R. (1985). ROSIE:
A Programming Environment for Expert Systems,
The RAND Corporation, R-3246-ARPA.

Waterman, D. A. and Peterson, M. A. (1981).
Models of Legal Decisionmaking, The RAND
Corporation, R-2717-1CJ.

AUTHOR’S BIOGRAPHY

Mr. Rothenberg is a Senior Computer Scientist
at The RAND Corporation who has worked
extensively in knowledge-based simulation. He
performed his graduate work in Al at the
University of Wisconsin in the arca of semantic nets
for robotic applications. His recent work has been
in the development of new formalisms for
integrating object-oriented and event-oricnted views
of discrete-state simulation.

Jeff Rothenberg

The RAND Corporation
1700 Main Street

Santa Monica, CA 90406
(213) 393-0411

39

