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ABSTRACT

This tutorial surveys the state of the art in executing
discrete event simulation programs on a parallel com-
puter. Specifically, we will focus attention on asyn-
chronous simulation programs where few events occur at
any single point in simulated time, necessitating the con-
current execution of events occurring at different points
in time.

We first describe the parallel discrete event simulation
problem, and examine why it so difficult. We review
several simulation strategies that have been proposed,
and discuss the underlying ideas on which they are based.
We critique existing approaches in order to clarify their
respective strengths and weaknesses.

1 INTRODUCTION

Parallel discrete event simulation (PDES) refers to the
execution of a single discrete-event simulation program
on a parallel computer. PDES has attracted a consid-
erable amount of interest in recent years. From a prag-
matic standpoint, this interest arises from the fact that
large simulations in engineering, computer science, eco-
nomics, and military applications (to mention a few) con-
sume enormous amounts of time on sequential machines.
From an academic point of view, parallel simulation is
interesting because it represents a problem domain that
contains substantial amounts of parallelism, yet para-
doxically, is one of the most difficult to parallelize on
existing machines. A sufficiently general solution to the
PDES problem may lead to new insights in parallel com-
putation as a whole. Historically, parallel discrete event
simulation has been identified as an application where
vectorization techniques using supercomputer hardware
provide little benefit [7].

The simulations of particular interest here are those
of asynchronous systems. For these systems, simulation
techniques based on lock-step execution using a global
clock perform poorly because few simulator events occur
at any single point in simulated time. As we shall soon
see, concurrent execution of events at different points
in simulated time introduces interesting synchronization
problems that are at the heart of the PDES problem.

This paper deals with the execution of a single simula-
tion program on a parallel computer by decomposing the
simulation application into a set of concurrently execut-
ing processes. For completeness, we close this section by
mentioning other approaches to exploiting parallelism in
simulation problems. Comfort has proposed using ded-
icated functional units to implement specific sequential
simulation functions (e.g., event list manipulation) [12].
This method can provide only a very limited amount of
speedup, however.

If the simulation is largely stochastic and one is per-
forming long simulation runs to reduce variance, or if one
is attempting to simulate a specific simulation problem
across a large number of different parameter settings, an
alternative (and probably preferred) approach is to exe-
cute independent, sequentialsimulation programs on dif-
ferent processors [5, 24]. This replicated trials approach
can be very effective, though it is only useful if each pro-
cessor contains sufficient memory to hold the entire simu-
lation. This approach is less suitable in a design environ-
ment, however, where results of one experiment are used
to determine the experiment that should be performed
next, since one must wait for a sequential execution to
be completed before results are obtained.

2 WHY IS PDES HARD?

Discrete event simulation would initially appear to
be an ideal candidate for parallel processing. Not only
do many large simulation problems consume enormous
amounts of time on sequential machines, but the sys-
tems that are typically modeled often contain substan-
tial amounts of intrinsic parallelism. Yet, paradoxically,
eflectively utilizing parallel computers to speed up large
discrete event simulation problems continues to be one
of the most challenging problems in parallel computation
today.

The reason PDES is so hard becomes evident if one
examines the operation of a sequentialdiscrete event sim-
ulator. Sequential simulators typically utilize two (often
global) data structures: the state variables that describe
the state of the system, and an event list containing all
pending events that have been scheduled for the simu-
lated time future, but have not yet taken effect. Each
event contains a timestamp, and usually denotes some
change in the state of the system being simulated (with
the timestamp denoting when this change occurs in the
actual system). The “main loop” of the simulator re-
peatedly removes the smallest timestamped event from
the event list, and processes that event. Processing an
event involves executing some simulator code to effect
the appropriate change in state, and scheduling zero or
more new events to model causality relationships in the
system under investigation.

In the above execution paradigm, it is crucial that
one always select the smallest timestamped event (Emin)
from the event list as the one to be processed next. If
one were to select some other event Ex, it would be
possible for Ex to modify state variables used by Emin.
This would amount to simulating a system in which the
future could aflect the past! This is clearly unacceptable;
we call errors of this nature causality errors.

Let us now consider parallelization of a simulation pro-
gram that is based on the above paradigm. The greatest
opportunity for parallelism arises from processing events
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Figure 1: Event E; affects E; by scheduling a third

event E3 which modifies a state variable used by E;.
This necessitates sequential execution of all three events.

concurrently on different processors. However, a direct
mapping of this paradigm onto (say) a shared memory
multiprocessor quickly runs into difficulty. Consider two
events E; and F; with timestamps 7 and T3 respec-
tively, such that Ty < T. If E) and F> both access a
common state variable (say Ej writes into the variable
and FE; reads it), then F; and E; must be executed se-
quentially (E; before E;) to be sure no causality error
occurs.

Most existing PDES strategies avoid scenarios such
as these by mandating that a process-oriented method-
ology is used which strictly forbids processes to have
direct access to shared state variables (an exception is
the mechanism described in [17]). The system being
modeled, usually referred to as the physical system, is
viewed as being composed of some number of physical
processes that interact at various points in simulated
time. The simulator is constructed as a set of logical
processes LPy, LPy,...LPn_1, one per physical process.
Interactions between physical processes are modeled by
time-stamped event messages sent between the corre-
sponding logical processes. Each logical process contains
a portion of the state corresponding to the physical pro-
cess it models. We will later examine the implications of
requiring this world view of the simulation.

This view of the simulation as a set of logical processes
that communicate by exchanging timestamped messages
is used by all of the simulation methods discussed here.
Using the logical process paradigm, one can ensure that
no causality errors occur if each LP processes events in
non-decreasing timestamp order. We call this require-
ment the local causality constraint; adherence to this
constraint is sufficient, though not necessary, to guar-
antee that no causality errors occur. It is not necessary
because two events within a single LP may be indepen-
dent of each other, in which case processing them out of
timestamp sequence does not lead to causality errors.

Although the logical process paradigm avoids many
types of causality error, it does not prevent others. Con-
sider two events, F; at logical process LP) with times-
tamp 10, and E; at L P2 with timestamp 20 (see figure 1;
it is convenient to depict these situations using a space-
time graph). If E; schedules a new event E3 for LI
which contains a timestamp less than 20, then E3 could
affect E>, necessitating sequential execution of all three
events. If one had no information regarding what events
could be scheduled by what other events, one would be
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forced to conclude that the only event that is “safe” to
process is the one containing the smallest timestamp,
leading to a purely sequential execution.

Consider this situation from the perspective of the
physical system. If the activity in the physical system
corresponding to Ep has any effect, either direct or lnd}-
rect, on the activity that is modeled by Ez, then there is
a cause-and-effect relationship between these activities.
The laws that govern the way our universe works dictate
that E;’s activity must occur before that of E3’s. In
the simulator, these cause-and-effect relationships corre-
spond to data dependence relationships (i.e., one compu-
tation modifies one or more state variables that are used
by another) that dictate that one computation must pre-
cede the other for the computation to be correct. In other
words, the constraints that dictate which events must be
processed before which other events are dictated by the
behavior of the physical system itself, and no amount of
“massaging” of the simulation code (short of reformula-
tion of the model) can change this fact.

Now comes the hard part. Operationally, we must
decide whether or not E; can be executed concurrently
with E,. But, how do we know whether or not E) affects
E, without actually performing the simulation for Ey?
This is the fundamental dilemma PDES strategies must
address. The scenario in which E; aflects E2 can be very
complex, and is critically dependent on the timestamp of
events affected by F).

PDES is hard because the precedence constraints that
dictate which computations must be executed before
which others is, in general, quite complex and highly
data dependent. This contrasts sharply with other areas
in which parallel computation has had a great deal of
success, e.g., vector operations on large matrices of data,
where much is known about the structure of the compu-
tation at compile time. Thus it is not too surprising that
a general solution to the parallel simulation problem has
been elusive.

PDES mechanisms broadly fall into two categories:
conservative and optimistic. Conservative approaches
strictly avoid the possibility of any causality error ever
occurring. These approaches rely on some strategy to
determine when it is “safe” to process an event, i.e.,
they must determine when all events that could affect
the event in question have been processed. On the other
hand, optimistic approaches use a detection and recovery
approach: causality errors are detected, and a rollback
mechanism is invoked to recover. We will now describe
some of the details and underlying concepts behind sev-
eral conservative and optimistic simulation mechanisms
that have been proposed. First, however, we will make
a brief digression to discuss the implications of forcing
the computation to be written without the use of shared
variables.

Throughout this paper, we assume that the simulation
consists of N logical processes, LP...LPn_1. Clock,
refers to the simulated time up to which LP; has pro-
gressed: when an event is processed, the process’s clock is
automatically advanced to the timestamp of that event.
If L Pi may send a message to LP, during the simulation,
we say a link exists from LP, to LP,.

3 LOGICAL PROCESSES, REVISITED

The logical process methodology requires application
programmers to statically partition the simulator’s state
variables into a set of disjoint stales, and ensure that
no simulator event accesses more than one state. It is



appropriate to ask if this is a natural way to program
simulations.

The exclusion of shared variables may or may not be
burdensome, depending on the application. For exam-
ple, it is usually not a severe restriction for a queucing
network simulation. Here, it is natural to create on logi-
cal process for each server. Because the behavior of one
server is independent of the state of the others, exclusion
of shared variables does not create any problem.

On the other hand, consider the simulation of a pool
table with some number of pool balls randomly moving
across its surface, and occasionally colliding with each
other and/or the sides of the table [3]. This simulation
is similar to that found in many military applications
[20, 47). To avoid expensive global searches, the pool
table is usually partitioned into a two-dimensional grid
with each “grid sector process” containing state infor-
mation indicating which pool balls currently reside in
that grid sector, as well as their velocities, directions,
etc. Because pool balls may simultaneously reside in
several grids, processes modeling these entities must ac-
cess state that resides in several distinct grid processes.
Where a sequential simulation would simply use mem-
ory references to global state variables, the distributed
simulator must invoke expensive message passing mech-
anisms to duplicate the necessary state information in
the appropriate processes. This can lead to substantial
performance degradations, and may significantly compli-
cate the coding of the simulation model. The situation
becomes even worse in combat simulations where some
simulation entities, e.g., aircraft, can “see” into many
grid sectors at a single point in simulated time. It is
noteworthy that such performance degradations will not
be apparent in speedup curves if the parallel simulation
model executing on a sequential simulator is used as the
basis for computing speedup.

4 CONSERVATIVE MECHANISMS

Historically, the first distributed simulation mecha-
nisms were based on conservative approaches. As dis-
cussed earlier, the basic problem conservative mecha-
nisms must solve is to determine when it is “safe” to
process an event. More precisely, if a process contains an
unprocessed event E; with timestamp 71 (and no other
with smaller timestamp), and that process can determine
that it is impossible for it to later receive another event
with timestamp smaller than T3, then it can guarantee
that local causality will be preserved, so it may safely
process E). Processes containing no “safe” events must
block; this can lead to deadlock situations if appropriate
precautions are not taken.

Decadlock Avoidance

Independently, Chandy and Misra[10], and Bryant[6]
developed some of the first PDES algorithms. In or-
der to determine when it is safe to process a message,
it is required that the sequence of timestamps on mes-
sages sent from one process to another is non-decreasing.
This guarantees that the timestamp of the last message
received on an incoming link is a lower bound on the
timestamp of any subsequent message that will be later
received.

Messages arriving on each incoming link are stored in
FIFO order, which is also timestamp order because of
the above restriction. Each link has a clock associated
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Figure 2: Dcadlock situation.

with it that is equal to the timestamp of the message
at the front of that link’s queue, if the queue contains a
message, or the timestamp of the last received message,
if the queue is empty. The process repeatedly selects the
link with the smallest clock and, if there is a message in
that queue’s link, processes it. If the selected queue is
empty, the process blocks. This protocol guarantees that
each process will only process events in non-decreasing
timestamp order, thereby ensuring adherence to the local
causality constraint.

If a cycle of empty queues arises that has sufficiently
small clock values, each process in that cycle must block,
and the simulation deadlocks. Figure 2 shows one such
deadlock situation. In general, il there are relatively few
unprocessed event messages compared to the number of
links in the network, or if the unprocessed events become
clustered in one portion of the network, deadlock may
occur very frequently.

Null messages are used to avoid deadlock situations.
Null messages are used only for synchronization pur-
poses, and do not correspond to any simulation activity.
The clock value of each incoming link provides a lower
bound on the timestamp of the next unprocessed event
that will be removed from that link’s buffer. When cou-
pled with knowledge of the simulation performed by the
process, this incoming bound can be used to determine a
lower bound on the timestamp of the next outgoing mes-
sage on each ontput link. When a process blocks, it sends
a null message on each of its output ports indicating this
bound; the receiver of the null message can then compute
new bounds on its outgoing links, send this information
on to its neighbors, and so on. It can be shown that this
mechanism avoids deadlock as long as one does not have
any cycles in which the collective timestamp increment
around this cycle is zero. A necessary and sufficient con-
dition for deadlock using this scheme is that a cycle of
links must exist with the same link clock time [37].

An alternative to sending null messages whenever a
process blocks is to have processes query other processes
when they need to receive a better link clock value (2, 33).
This helps to reduce the amonnt of null message traflic.

4.2 Decadlock Detection and Recovery

Chandy and Misra also developed an alternative ap-
proach to parallel simulation that eliminates the use of
null messages. The mechanism is similar to that de-
scribed above, except no null messages are created when
a process blocks. A separate mechanism is used to detect



deadlock situations, and still another mechanism is used
to break the deadlock. Deadlock detection mechanisms
are described in [13, 21, 33]. The deadlock can be bro-
ken by observing that the smallest timestamped message
in the entire simulation is always safe to process. Alter-
natively, one may use a distributed computation to com-
pute lower bound information (not unlike the distributed
computation using null messages described above) to en-
large the set of safe messages. Unlike the deadlock avoid-
ance approach, this mechanism does not prohibit cycles
of zero timestamp increment, though performance may
be poor if many such cycles exist.

Several other conservative approaches to parallel sim-
ulation have been developed [1, 8, 22, 23, 30, 37, 42]. The
key ideas used by these mechanisms are described next.

4.3 Synchronous Opcration

Several researchers have proposed synchronous algo-
rithms in which one iteratively determines which events
are safe to process, and then processes them. Barrier
synchronizations are used to keep one iteration (or com-
ponents of a single iteration) from interfering with each
other. Because barrier synchronizations are necessary,
these algorithms are best suited for shared memory ma-
chines in order to keep the associated overheads to a
minimum.

[t is instructive to compare the synchronous style of
execution with the deadlock detection and recovery ap-
proach described earlier. Both share the characteristic
that the simulation moves through phases of (1) process-
ing events, and (2) performing some global synchroniza-
tion function. Deadlock recovery is similar to the over-
head function of the synchronous methods in that one
attempts to determine which events are safe to process.

In the best case, the detection and recovery strategy
will never deadlock, virtually eliminating clock synchro-
nization overhead completely. In contrast, synchronous
methods will continually block and restart throughout
the simulation. On the other hand, the synchronous
methods do not require a deadlock detection mecha-
nism, though deadlock dctection is trivial on shared-
memory machines (a counter indicating the number of
non-blocked processes is sufficient). One disadvantage
of the detection and recovery method is that the period
leading up to a deadlock may contain very little par-
allelism. Such behavior can lead to limited speedup in
accordance with Amdahl’s law which states that no more
than k fold speedup is possible if 1/kth of the computa-
tion is sequential. Synchronous methods have some con-
trol over the amount of computation that is performed
during each iteration, so, at least in principle, they offer
some advantage here.

The feature that separates different synchronous ap-
proaches is principally the method used to determine
which events are safe to process. We discuss ideas that
have been introduced to streamline this process below.
A common thread that runs through many techniques is
the minimum timestamp increment function used in the
original deadlock avoidance approach. A simple exten-
sion of this concept leads to the distance between pro-
cesses; distance provides a lower bound on the amount
of simulated time that must expire for an unprocessed
event on one process to propagate (and possibly affect)
another event.
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4.4 Conservative Time Windows

Lubachevsky uses a moving simulated time window to
reduce the overhead associated with determining when
it is safe to process an event [30]. The lower edge of the
window is defined as the minimum timestamp of any un-
processed event. Only those unprocessed events whose
timestamp resides within the window are eligible for pro-
cessing.

The purpose of the window is to reduce the “distance”
one must search in determining if an event with smaller
timestamp will later be received. For example, if the
window extends from simulated time 10 to time 20, and
the application is such that each event processed by an
LP generates a new event with a minimum timestamp
increment of 8 units of simulated time, then each LP
need only examine the unprocessed events in neighboring
LPs to determine which events are safe to proceed. No
unprocessed event two or more hops away can affect one
in the 10 to 20 time window because such an event would
have to have a timestamp earlier than the start of the
window.

Of course, one must not make the window so small
that it contains few unprocessed events. Similarly, if the
window is too large, it does little to improve efficiency.
Setting the window to an appropriate size requires appli-
cation specific information that must be obtained either
from the programmer or from monitoring the simulation.

4.5 Improving Lookahead

Lookahead refers to the ability to predict what will
happen, or equally important for conservative methods,
what will not happen, in the simulated time future based
on knowledge of the application, events that have al-
ready been processed, and pending events waiting to be
processed. Non-zero minimum timestamp increments are
the most obvious form of lookahead and were essential for
the deadlock avoidance approach to make progress. Be-
cause lookahead enhances one’s ability to identify events
that are safe to process, it is reasonable to expect that
improving a process’s lookahead ability is bound to im-
prove performance.

Nicol proposes improving the lookahead ability of pro-
cesses by precomputing portions of the computation for
future events [36]. For example, in a queueing network
simulation without preemption, one can precompute the
service time of jobs that have not yet been received. If
the server process is idle and its clock has a value of 100,
and the service time of the next job has been precom-
puted to be 50, then the lower bound on the timestamp
of the next message it will send is 150 rather than 100.
If the average service time is much larger than the mini-
mum, then this will provide a better lower bound on the
timestamp of the next message.

Interestingly, the ability to use precomputation to im-
prove lookahead itself requires lookahead ability. Pre-
computation is possible if one can predict aspects of fu-
ture event computations without knowledge of the event
message that causes that computation, or the state of
the process when the event constructs the message times-
tamp. For example, if the service time depends on a pa-
rameter in the message (e.g., a message length for a com-
munication network simulation), precomputation would
not be possible. Nevertheless, precomputation appears
to be a useful technique when it can be applied.



4.6 Conditional Knowledge

Chandy and Sherman propose a paradigm that com-
bines mechanisms used in sequential simulations with
conservative mechanisms [8]. In a sequential simulation,
one often schedules an event (e.g., a job departure from
a queueing network server) under the premise that this
event will take place if no disruptive event (e.g., a job
preemption) occurs first. Such events are referred to as
conditional events.

All conservative approaches convert conditional events
to definite events (events that are guaranteed to occur)
before they can be processed. This is accomplished in se-
quential simulations by virtue of the fact that no events
exist in the event list with smaller timestamp than the
conditional event when that event is processed. Like
other conservative mechanisms, a protocol is required to
determine when it is “safe” to process conditional events.
Chandy and Sherman propose both synchronous and
asynchronous protocols to perform this task; these pro-
tocols use broadcasts to distribute “time of next event”
information in order to avoid deadlock situations (8].
The conditional knowledge approach to simulation arises
from the Unity theory of parallel programming [11]. An
alt?r]native approach, also based on Unity, is described
in [9].

4.7 Conservative Performance

A substantial amount of work has been completed
to evaluate the performance of the deadlock avoidance
and deadlock detection and recovery algorithms. Reed,
Malony, and McCredie performed simulations of queue-
ing networks, and report disappointing performance [39].
Fujimoto demonstrated that performance of these algo-
rithms is critically related to the degree to which logical
processes can look ahead into the simulated time future
[15]; processes must exhibit good lookahead character-
istics, and be programmed to exploit this lookahead, or
else performance will be poor. Fujimoto reproduced the
poor performance reported by Reed, and showed that re-
programming processes to exploit lookahead yielded dra-
matic improvements in performance for networks using
first-come-first-serve queues. These techniques are not
generally applicable to other disciplines, however. Su
and Seitz report some success in using variations of these
algorithms to speed up logic simulations [44]. Reed et
al., Fujimoto, and Wagner, Lazowska and Bershad[46]
exploit techniques using shared memory to improve the
efficiency of these algorithms.

Wagner and Lazowska[45], Lin and Lazowska[28], and
Nicol[35] examined lookahead analytically. Lubachevsky
has examined the performance and scalability of the
bounded lag approach that uses synchronous execution,
lookahead, and time windows to improve performance
[30, 31]. Specifically, he uses two forms of lookahead:
minimum timestamp increments to allow idle logical pro-
cesses to lookahead, and “opaque” periods that allow
certain busy processes to do the same. The latter re-
quires the exclusion of (for example) preemptive behav-
ior. Lubachevsky argues that performance of this ap-
proach scales as the problem and machine size increase
in proportion to within a factor of O(logN) of idea], as-
suming adequate lookahead is available. Ayani [1] and
Chandy and Sherman (8] also report some success in
speeding up queueing network simulations using their
approches.

Much has been learned concerning the performance of
conservative mechanisms. As noted in our introduction
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to the PDES problem, all conservative mechanisms rely
on the ability to predict the future in order to ascertain
which events may be safely processed. If no such capa-
bility existed, one could not guarantee the safety of any
event other than the one containing the (globally) small-
est timestamp, forcing sequential execution (ignoring the
case of two events on distinct processes having identical
timestamps).

In order to achieve good performance, conservative
mechanisms must be adept at predicting what will not
happen because it is the fact that “no smaller times-
tamped event will later be received” that is the firing
condition that allows an event to be safely processed.
Various forms of information are used to predict what
will not occur, including:

1. the structure of the network of logical processes, i.e.,
which processes can send messages to which other
processes. This structure restricts the paths “dan-
gerous” events may use to reach others; Sparsely
connected networks present the best case for con-
servative mechanisms.

2. received event messages. Assuming messages are
transmitted in timestamp order, each received mes-
sage excludes the possibility of later messages con-
taining a smaller timestamp. Conservative mecha-
nisms usually work best when there are many un-
processed events relative to the connectivity of the
network (i.e., the number of processes), and these
events are uniformly distributed among the links.

3. knowledge of logical process behavior. Here, the
characteristic that one looks for is lookahead, i.e.,
a guaranteed invariance in behavior in the physi-
cal system, regardless of any new events that might
later occur. For example, new jobs arriving at a
non-preemptable queue do not affect the behavior
of the job that is currently receiving service. Sim-
ilarly, a minimum timestamp increment for some
logical process is derived from the observation that
the corresponding physical process will not perturb
the system in any way up to some guaranteed time
in the future, regardless of what happens next. We
shall return to this property later.

Any given simulation application may exhibit favor-
able, or unfavorable characteristics for each of these
properties. It appears that the inability to effectively ex-
ploit any of these aspects of behavior 1s fatal to existing
conservative approaches. Conversely, most approaches
can obtain good speedup if all of these properties appear
in a favorable manner. Depending on the specifics of the
strategy in question, the inability to exploit one or more
of these aspects may or may not be fatal. It remains to
be seen to what extent applications that arise in practice
exhibit these properties.

4.8 Critique of Conservative Mechanisms

Perhaps the most obvious drawback of conservative
approaches is that they cannot fully exploit the paral-
lelism available in the simulation application. If it is
possible that event F4 might afflect E'p either directly or
indirectly, conservative approaches must execute F4 and
Ep sequentially. If the simulation is such that F. sel-
dom affects E'g, these events could have been processed
concurrently most of the time. In general, if the worst
case scenario for determining when it is safe to proceed is
far from the typical scenario that arises in practice, the



conservative approach will usually be overly pessimistic,
and force sequentiality when it is not necessary.

A related problem faced by conservative methods con-
cerns the question of robustness; it has been observed
that seemingly minor changes to the application may
have a catastrophic effect on performance. For example,
adding short, high priority messages that interrupt “nor-
mal” processing in a computer network simulation may
lead to severe performance degradations. This is prob-
lematic because experimenters often do not have advance
knowledge of the full range of experiments that will be re-
quired, so it behooves them to invest substantial amounts
of time parallelizing the application if an unforeseen ad-
dition to the model at some future date could invalidate
all of this work.

Critics of conservative methods are also quick to point
out that many existing conservative techniques (the
deadlock avoidance and deadlock detection and recovery
mechanisms in particular) require static configurations:
one cannot dynamically create new processes, and the in-
terconnection among logical processes must also be stat-
ically defined. Techniques to circumvent this problem,
e.g. to create “spare” processes at the start of the sim-
ulation and to define a fully connected network, usually
lead to excessive overheads, e.g., broadcast communica-
tions may be required to determine when it is safe to
proceed.

Many conservative schemes require knowledge con-
cerning logical process behavior to achieve good perfor-
mance. Information such as minimum timestamp incre-
ments or the guarantee that an event occurring at time T
really has no effect on the behavior of certain other events
may be difficult to derive for complex simulations. Users
would be ill-advised to give overly conservative estimates
(e.g., a minimum timestamp increment of zero) because
very poor performance may result.

Proponents of optimistic approaches argue that the
user should not have to be concerned with the details of
the synchronization mechanism in order to achieve good
performance. Sequential simulation programs need not
be concerned with the details of the implementation of
the event list (Actually, some sequential simulation pro-
grams rely on the fact that events with the same times-
tamp are processed in the order in which they are in-
serted into the event list; many regard this as an unwise
design practice, however.). Of course, certain guidelines
that apply to all parallel programs must be followed when
developing parallel simulation code, e.g., selecting an ap-
propriate granularity and maximizing parallelism, but
requiring the programmer to also be intimately familiar
with the synchronization mechanism and program the
application to maximize its effectiveness will often lead
to “fragile” code that is difficult to modify and maintain.

5 OPTIMISTIC MECHANISMS

Optimistic methods detect and recover from causality
errors rather than strictly avoid them. In contrast to
conservative mechanisms, optimistic strategies need not
determine when it is safe to proceed; instead they need
to determine when an error has occurred, and how to
recover. One advantage of this approach is that it allows
the simulator to exploit parallelism in situations where it
is possible causality errors might occur, but in fact don’t.

The Time Warp mechanism, based on the Virtual
Time paradigm, is the most well known optimistic pro-
tocol [26]). Here, virtual time is synonymous with simu-
lated time. In Time Warp, a causality error is detected
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whenever an event message is received that contains a
timestamp smaller than that of the process’s clock (i.e.,
the timestamp of the last processed message). The event
causing rollback is called a straggler. Recovery is accom-
plished by undoing the effects of all events that have been
processed prematurely by the process receiving the strag-
gler (more precisely, those processed events that have
timestamps larger than that of the straggler).

An event may do two things that have to be rolled
back: it may modify the state of the logical process,
and/or it may send event messages to other processes.
Rolling back the state is accomplished by periodically
saving the process’s state, and restoring an old state vec-
tor on rollback. “Unsending” a previously sent message
is accomplished by sending an anti-message that annihi-
lates the original when it reaches its destination. If the
annihilated positive message has already been processed,
then that process must also be rolled back to undo the
effect of processing the message. Recursively repeating
this procedure allows all of the effects of the erroneous
computation to eventually be cancelled. It can be shown
that this mechanism always makes progress under some
mild constraints.

As noted earlier, the smallest timestamped, unpro-
cessed event in the simulation will always be safe to
process. In Time Warp, the timestamp on this event is
called global virtual time (GVT). No event with times-
tamp smaller than GVT will ever be rolled back, so stor-
age used by such events (e.g., saved states) can be dis-
carded. Also, irrevokable operations (such as I/O) can-
not be committed until GVT sweeps past the simulated
time at which the operation occurs. The process of re-
claiming memory and committing irrevokable operations
is referred to as fossil collection.

5.1 Lazy Cancellation

Some optimizations have been proposed to “repair”
the damage caused by an incorrect computation rather
than completely repeat it. For instance, it may be the
case that a straggler event does not sufficiently alter the
computation of rolled back events to change the (pos-
itive) messages generated by these events. The Time
Warp mechanism described above uses aggressive cancel-
lation, i.e., whenever a process rolls back to time T, anti-
messages are immediately sent for all positive messages
sent after simulated time T. In lazy cancellation [19],
processes do not immediately send the anti-messages for
any rolled back computation. Instead, they wait to see if
the reexecution of the computation regenerates the same
messages; if the same message is recreated, there is no
need to cancel the message. An anti-message created at
simulated time T is only sent after the process’s clock

sweeps past time T without regenerating the same mes-
sage.

~ Depending on the application, lazy cancellation may
improve or degrade performance. It requires some ad-
ditional overhead whenever an event is executed to de-
termine if a matching anti-message already exists; one or
more message comparisons will be required if one is reex-
ecuting previously rolled back events. Also, lazy cancel-
lation may allow erroneous computations to spread fur-
ther than they would under aggressive cancellation, so
performance may be degraded if the simulator is forced
to execute many incorrect computations. One can con-
struct cases where lazy cancellation executes a compu-
tation with N fold parallelism N times slower than ag-
gressive when N processors are used [40].



~ On the other hand, lazy cancellation has the interest-
ing property that it can allow the computations to be ex-
ecuted in less time than the critical path execution time
[4). The explanation for this phenomenon is that com-
putations with incorrect input may still generate correct
results! Therefore, one may execute some computations
prematurely, yet still generate the correct answer. This is
not possible using aggressive cancellation because rolled
back computations are immediately discarded, even if
they did generate the correct result. One can construct
a case where lazy cancellation can execute a sequential
computation with N fold speedup using N processors,
while aggressive cancellation requires the critical path
length execution time [40].

Although it is instructive to construct best and worst
case behaviors for lazy and aggressive cancellation, it is
not clear that such extreme behaviors arise in practice.
Some evidence exists that lazy cancellation tends to per-
form as well as, or better than, aggressive cancellation in
situations that commonly arise in practice.

5.2 Jump Forward

The jump forward optimization is somewhat similar
to lazy cancellation, but deals with state vectors rather
than messages. Consider the case where the state of
the process is the same after processing a straggler event
message as it was before it executed. If no new messages
arrived, then it is clear that the reexecution of rolled
back events will be identical to the original execution, so
one need not reexecute them, but instead, jump forward
over these events. This requires a comparison of state
vectors to see if the state has changed.

The utility of the jump forward optimization is not
clear. The place where one could derive significant ben-
efit from jump forward is “read-only” or query events
(Sokol also calls these non-side affecting events [43]).
However, it has been argued that query events should
not be provided anyway because they encourage users
to construct programs as if shared state variables were
permitted. This inevitably leads to poor performance
because query events entail a significant overhead to en-
sure correct synchronization, even if the hardware sup-
ports shared memory. Finally, it is worth mentioning
that jump forward may significantly complicate the Time
Warp code, detracting from its maintainability.

5.3 Relationship to Lookahead

As mentioned earlier, the fundamental aspect of the
computation that is exploited by lazy cancellation and
jump forward is an invariance in the behavior of events
in the simulated future to straggler events. This is closely
related to the lookahead property that is used extensively
by conservative approaches.

In any discrete event simulation, if a process at sim-
ulated time T can predict with absolute certainty that
some event will occur at simulated time T+ L (where L is
less than or equal to the process’s lookahead), then it can
immediately schedule that event. “Absolute certainty”
means the computation that produces the event at T+ L
is invariant to any new events that occur in the interval
[T, T+ L)]. Thus, we see that the invariance property that
lazy cancellation and jump forward attempt to exploit is
essentially the same as the lookahead property used in
conservative mechanisms.

The advantage offered by optimistic methods is that
unlike conservative approaches that require lookahead to
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be explicitly programmed into the application, the op-
timistic approach exploits lookahead in a way that is
transparent to the application program. For example,
suppose the application in the example described above
were not programmed to exploit lookahead, but instead
chose to wait until time T + L to schedule the event.
The process would normally accomplish this by send-
ing a message to itself with timestamp T + L, and have
this “self” event generate the desired message at time
“now,” i.e., T + L. Suppose this sell message were exe-
cuted prematurely. Despite the fact that it is premature,
it will generate the correct message because the compu-
tation that generates the second message at T + L is
(by assumption) invariant to stragglers with timestamps
between T and T + L. So, if such stragglers do arrive,
lazy cancellation will succeed because the self event will
recreate the same event message that it created during
the premature execution.

The disadvantage of exploiting lookahead in this way
(as opposed to specifying it explicitly) is that the over-
heads are greater. For lazy cancellation, the invariant
computation (the self event in the above example) must
be reexecuted, and message comparisons are required to
determine when the optimization is applicable. Similarly,
jump forward requires comparisons of state vectors. Ex-
plicitly programming lookahead into the application has
its advantages.

The place where using the lazy cancellation approach
does pay off is when invariance (i.e., lookahead) can-
not be statically guaranteed, but dynamically is usually
available. For example, this will be the case in a queueing
network where preemption is possible, but seldom occurs
because there are few high priority jobs. Here, the ap-
plication cannot be programmed to exploit lookahead.
However, lazy cancellation will still be able to exploit
it whenever it is available, i.e., whenever no preemption
actually occurs.

5.4 Optimistic Time Windows

Time windows, not unlike those proposed for conserva-
tive mechanisms, have also been proposed for optimistic
protocols [43]. Only events within the time window are
eligible for processing. In optimistic methods, the time
window is used to prevent incorrect computations from
propagating too far ahead into the simulated time future.

The utility of time windows in optimistic mechanisms
1s also a point of debate. Critics of this method point
out that such windows cannot distinguish good compu-
tations from bad ones, so they may impede the progress
of correct computations. Further, incorrect computa-
tions that are far ahead in the future are already dis-
criminated against by Time Warp’s scheduling mech-
anism which gives precedence to activities containing
small timestamps. Finally, it is not clear how the size of
the window should be determined. Empirical data col-
lected by researchers at JPL suggest that time windows
offer only limited advantage [41].

5.5 Wolf Calls

Madisetti, Walrand, and Messerschmitt propose a
mechanism in WOLF whereby a straggler message causes
a process to send special control messages to stop the
spread of the erroneous computation [32]. Like the time
window scheme, the disadvantage of this approach is
that some correct computations may be unnecessarily
frozen. Also, the overhead to implement this mechanism



becomes excessive in certain applications because many
control messages will be required.

5.6 Direct Cancellation

Fujimoto proposes a mechanism that uses shared
memory to streamline the cancellation of incorrect com-
putations [16]. Whenever an event E; schedules another
event E3, a pointer is left from E; to E,. This pointer
is used if it is later decided that E should be cancelled
(using either lazy or aggressive cancellation). By con-
trast, conventional Time Warp systems must search to
locate cancelled messages. The advantages of this mech-
anism are two fold: it reduces the overheads associated
with message cancellation, and it speedily tracks down
erroneous computations to minimize the damage that is
caused. Good performance has been reported on a ver-
sion of Time Warp that uses direct cancellation [16].

5.7 Optimistic Performance

Several successes have been reported in using Time
Warp to speed up real world simulation problems. Im-
pressive speedups have been reported by researchers at
JPL in simulations of battlefield scenarios [47], commu-
nication networks [38], biological systems [14], and sim-
ulations of other physical phenomena [25].

Fujimoto has obtained significant speedups on a wide
range of queueing networks (as high as 56 using 64 pro-
cessors), and presents data that indicate that Time Warp
far outperforms the deadlock avoidance and deadlock de-
tection and recovery approaches for many networks, even
ones that exploit lookahead. The performance differen-
tial is particularly dramatic for networks containing pre-
emption [16].

A limited amount of work has been performed in de-
riving analytic models for Time Warp behavior. Models
for the case of two processors have been developed by
Lavenberg and Muntz [27] and Mitra and Mitrani [34].
Unfortunately, these models do not generalize to more
Processors.

Lin and Lazowska derive a condition under which
Time Warp will produce optimal performance (i.e., cor-
responding to the critical path lower bound) [29]. They
also identify situations where Time Warp will outper-
form the Chandy-Misra algorithms. This work assumes
that overheads for both Time Warp and the conserva-
tive mechanisms are negligible, so the results are largely
applicable to the case of large grained events.

5.8 Critique of Optimistic Methods

A critical question faced by optimistic systems such
as Time Warp is whether the system will exhibit thrash-
ing behavior where most of its time is spent executing
incorrect computations and rolling them back. Thus far,
the experience of researchers at JPL and Georgia Tech
has been that such behavior is seldom encountered in
practice, and, when discovered, usually points to a cor-
rectable weakness in the implementation rather than any
fundamental flaw in the algorithm. Critics argue, how-
ever, that no proof yet exists that Time Warp is stable.

An intuitive explanation as to why empirical data sug-
gest stable behavior is that erroneous computations can
only be initiated when one processes a correct event pre-
maturely; this premature event, and subsequent erro-
neous computations, must necessarily be in the simu-
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lated time future of the correct, straggler computation.
Also, the further the incorrect computation spreads, the
further it moves into the simulated time future, lowering
its priority for execution since preference is always given
to computations containing smaller timestamps. Thus,
Time Warp systems tend to automatically slow the prop-
agation of errors, allowing the error detection and correc-
tion mechanism to correct the mistake before too much
damage has been done. A potentially more dangerqus
case is when the erroneous computation propagates with
smaller timestamp increments than the correct one. It
remains to be seen, however, to what extent this be-
havior can degrade performance, or if such pathological
situations arise in practice.

A more serious problem with the Time Warp mecha-
nism is the need to periodically save the state of each log-
ical process. Fujimoto has demonstrated that state sav-
ing overhead can seriously degrade performance of many
Time Warp programs, even if the state vector is only a
few thousand bytes [16]. The state saving problem is
further exasperated by applications requiring dynamic
memory allocation because one may have to traverse
complex data structures to save the process’s state. State
saving overhead limits the effectiveness of Time Warp to
applications where the amount of computation required
to process an event can be made significantly larger than
the cost of saving a state vector. This may be difficult to
achieve for certain applications. A more general solution
is to use hardware support [17, 18]. Even ardent sup-
porters of optimism concede that hardware support will
probably be required to exploit fine grain parallelism.

Optimistic algorithms tend to use much more mem-
ory than their conservative counterparts. Though the
space-time tradeoffs for optimistic systems are not yet
understood, this appears to be an unavoidable aspect of
optimism.

Finally, unlike conservative approaches, optimistic
systems need to be able to recover from arbitrary er-
rors that can arise because such errors may be erased
by a subsequent rollback. Erroneous computations may
enter infinite loops, requiring the Time Warp executive
to interact with the hardware’s interrupt system. In cer-
tain languages, pointers may be manipulated in arbitrary
ways; Time Warp must be able to trap illegal pointer us-
ages that result in runtime errors, and prevent incorrect
computations from overwriting non-state saved areas of
memory. Although such problems are, in principal, not
insurmountable, they may be difficult to circumvent in
certain systems without appropriate hardware support.
The alternative taken by most existing Time Warp sys-
tems is to leave the onerous task of analyzing incorrect
execution sequences to the user.

6 CONCLUSIONS

In this paper we have attempted to provide insight
into the problem of executing discrete event simulation
programs on a parallel computer. We have surveyed ex-
isting approaches and analyzed the merits and drawbacks
of various techniques. The state of the art in PDES has
advanced rapidly in recent years, and much more is now
known about the behavior of proposed simulation mech-
anisms than a few years ago.

Optimistic methods such as Time Warp offer the
greatest hope as a “general purpose” simulation mecha-
nism, at least in simulating systems that contain some
degree of parallelism. Significant successes have been
achieved across a wide range of applications.



Conservative methods offer good potential for certain
classes of problems. Significant successes have also been
obtained, particularly when application specific knowl-
edge is applied to maximize the efficiency of the simula-
tion mechanism. Conservative methods may find success
in packaged simulation systems (e.g., logic simulators) in
which the simulation code is optimized for the synchro-
nization algorithm and users only configure the provided
simulation modules into specific systems.

An important application area that has not yet been
adequately addressed by either optimistic or conservative
simulation mechanisms is real time applications. Theo-
ries of performance are not sufficiently developed to ad-
dress this question, though some progress has been made.
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