" Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

CONVERSIM — A teaching simulation language
incorporating a conversational model builder

Paul F. Roth

Department of Computer Science and Engineering

Bi=County Center for Engineering

University of South Florida at Sarasota
Sarasota, Florida 34243-2197 U.S.A.

ABSTRACT

This paper describes the CONVERSIM simulation
language. CONVERSIM is a developmental general-
purpose, discrete-event language which has been used
in the classroom to introduce the use and operation of

simulators prior to the introduction of languages such

as GPSS and SIMSCRIPT.

The distinctive innovation of CONVERSIM is that
model building is implemented by a conversational
query language which interacts with the modeler in
English questions with prompted, symbolic answers,
thus imparting no language jargon or bias, other than
such "neutral” terminology as would be used in
describing queuing models, The CONVERSIM "world view"
E is transaction=oriented.

With a modest repertoire of modeling optionms,
CONVERSIM has been found in the classroom to be an
asset in illustrating the performance of queuing
models and networks, prior to the immersion of the
student in the intricacies of standard simulation
languages and their various idiocsyncrasies. The query
system is of sufficient completeness to enable the
student to completely describe basic models without
the use of a reference manual or other written
documentation.

CONVERSIM is written in Pascal to be hosted by a
wide variety of DOS=-based microcomputers.

INTRODUCTION AND SUMMARY

Since most simulation languages are used less
frequently than many other programming languages, the
" number of proficient practitioners available at any

one time is limited. Yet the number of potential
users of simulation languages far exceeds the number
of proficient practitioners.

v

This situation helped motivate the following
. questions:

f Was it possible that that ideas such as
' conversational front-end programs and syntax-directed
; editors could make simulatién available to persons not
' proficient in a specific simulation language?

Was it possible for a conversational program to
. front-=end a simulation language similar to, say, GPSS?

. Could this be implemented for a microcomputer
! application?
t
If it was deemed possible to implement these ideas
then simulation could possibly be made more accessible
' to everyone. As it turned out, the answer to all
questions was positive. A conversational model-~
' building routine=--called "CONVERSE"--for transactionmal
' discrete-event models was accomplished. This was

i
|
|
|
|

Robert Brown
Computer Science Corporation
4001 Oak Manor Office Park
King George, Virginia 22485 U.S.A.

mated to a GPSS-like simulation execution program -
called "DSIM." The combined package, called
"CONVERSIM," was implemented for a DOS machine
environment. Although this tool has not been tested
in the simulation applications context, it has found
utility in the classroom, where, as a teaching tool,
it provides the initial programming environment for
modeling and simulation, prior to introduction of a
standard language such as SIMSCRIPT II.5 or GPSS.

CONVERSIM was recently used in concurrent,
graduate classes in simulation at the University of
South Florida, its first exposure outside of the
development enviromment. It was employed successfully
in sequence after the use of a manual simulator,
"Hyposim," and before the introduction of GPSS, and
later SIMSCRIPT II.5. As a result of this use,
certain adjustments, primarily in user-friendly
augmentations to CONVERSE, were implemented. The
execution module, DSIM, performed flawlessly. "Beta-
testing"” in other teaching environments is being
considered. Appropriateness for use in an
applications context has not been determined.

OVERVIEW OF CONVERSIM

CONVERSIM is composed of two program modules and
an editor, implemented in Pascal for a DOS
microcomputer. The module, CONVERSE, is a
conversational model=-builder tool which interacts with
the programmer through a series of screens,
translating the output of the query process into an
input file for the simulation execution module, DSIM,
and a text file to be used by the CONVERSIM editing
routine. DSIM executes the simulation: it is a
generic discrete-event simulator with a "transaction"
world-view, Its input data are comprised primarily of
integers, located in various line and columnar
formatted records. DSIM produces an autonomous
simulation data output which contains no optional
reports. Figure 1 depicts the program modules and
their data flow.

oSIM
Prompts ~ae——r{ l;llpulﬂl.
nteger) o

. Simulation
DSIM | e Quiput

{¥4f Acthity Sutumants + *

FIGURE 1CONVERSIMMODULES AND INFORMATION FLOW

Inputs D

Model Building Language--CONVERSE
Design goals
The primary design goal for the model=building

routine was to implement a stand-alone program which,
when executed, would produce as output, an input file

for a simulation execution program. The model builder
was to provide a sequence of queries which would
prompt responses which would be translated to the
output file. It was not intended that the model=-
building capability be exhaustive, but rather usable
in the synthesis of basic waiting-line systems of
nodest scale. This design goal did not, however,
preclude the expansion of the optioms should such be
desired in future incarnations.

The second design goal was to neutralize the
terminology incorporated in the query language, so as
to avoid imparting any application or special-use
bias, which is sometimes encountered in general=-
purpose simulation languages. This goal has led to
what might be considered a "generic" terminology, such
as that used in queuing theory.

A third design goal was to incorporate modularity
in both the query and execution packages so that
options and improvements could be added with facility.

The model=structuring reflected im CONVERSIM is
closely related to that of "BO0SS," a Burroughs
discrete-event language of the 1970”s, well-known to
the authors, which was felt to possess both a neutral
terminology and high modularity. As a result, the
simulation objects are also "BOSS=-like:" that is,
strongly typed.

Generic Queuing Model and Termimology

The following statements characterize the basic
structural aspects of a CONVERSE model:

1. The system owns server object types, called
"Resources," which are structured as
multiservers. Each resource type is wuser=-
named and represents a fixed pool of from zero
to n interchangeable units. Units may be
transferred pool-to-pool. Each pool owns a
queue, with service rule selectable, default
FIFO. Resource allocation is referenced by
type; individual units are not addressable.

"Users," are
Each type is
There may be multiple types
in a model. Each type carries with it a
specification for generation of its
replicative instances (arrivals) and,
optionally, its maximum number of instances.

Dynamic object types, called
transaction-oriented entities.
programmer-named.

User types comprise sequences of activities;
each activity is some operational event such
as resource allocation, time advance, etc.

4. Queuing is implicitly implemented with each
resource Trequest, and queue=servicing with
each release.

The system owns reference objects, called
"Parameters," global system variables to which
Users have access., Users may own Generation
Parameters, or locallyedefined variables, to
which each user instance has access alone.

GCONVERSE Query Sequence

The sequential flow of a CONVERSIM model-building
session, imparted by the CONVERSE program, reveals a
highly-modular, top-down approach. The top-down
sequence of model description can be expressed as a
flow=-chart, Figure 2. Note that the double~lined
boxes represent complex, repetitive query routines,

879

several of which will be illustrated in detail.

EXECUTE CONVERSE

: INDICATES
REPETITIVE MENU
SPECIFICATION

ISEE FIGURE 2)

i

LOFTIONAL)

OTHER
SPECIFICATIONS

EXECUTE DEIM
FIGUAE 2 CONVERSIM MAIN MODEL-BUILDING ROUTINE

Initialization comprises such preliminary
operations as naming the model.

A query routine successively identifies system=
level parameters. Memory space is reserved and
parameters are given programmer-assigned names.

Resources are initialized via a repetitive query
loop which prompts for identification of each resource
type by type name, then specifies the initial number
of units assigned to a type.

The user-type-specification query sequence is
quite complicated and is described under its
independent heading.

At this point in CONVERSE, all the model objects
have been defined. The option is then given to review
the user activity declarations, which if accepted,
brings the process into edit mode. The declarations
are ome~-line text word-descriptions of each specified
user activity, automatically screen-printed by
CONVERSE to echo the model. The editor displays the
declarations, initiates the editing operation, and
when acceptable, returns to the CONVERSE query stream.
What has happened intermally at this point is that the
translation to DSIM input code 1is completed and the
code saved; also the text declarations are saved for
future editing.

The last group of specifications in a CONVERSE
query routine include requesting optional snapshot
data outputs and setting an optional maximum run time.

Finally, CONVERSE prompts for "Run Now?" If
accepted, the DSIM program execution is initiated,
otherwise control is returned to DOS.

User Type Specification Query Sequence

A detailed user specification flow chart is shown
in Figure 3.

The routine is entered immediately following
specification of system resources. The flow shown in
Figure 3 is repatitively entered from Point A until no
more user types are to be described.

PROM MAIN ROUTING

TO MAIN AOUTINE

INTERARAIVAL TYPES

1. ONCE

2, PERIODIC

1 RANDOM . UNIFORM

4 RANDOM : EXPONENTIAL

- - =T

i

j e = e

ACTIVITY TYPe§

1. REQUEST RESOURCE 6!
2. RELEASE RESOURCE (S}
L ADVANCE TIME

4. BRANCH TO SUCCESSON
&. UPDATE A PARAMETER
& ENO THIB UBER

FIGURE'3 CONVERSIM USER TYPE SPECIFICATION ROUTINE

Initially, the user type is given a name, say
"Customer,"” which is referenced during the building
phase and in the data output.

"Customer" is then provided a generation, or
interarrival type, selected from four choices:

1. One instance

2. Periodic arrivals

3. Uniform random interarrival

4, Negative exponential random interarrivals

Note that the complete set of specifying details
is not shown here; note also that this modular form of
program construction can accommodate future
selections.

Two type-specifications follow, interarrival
selection:

880

l. Optional delayed generation starting time
(default is "Q")
2, Optional Ilimit to the number of instances of

this user (default is a maximum quantity),

The routine which structures each user type’s
activities can be approximated by the following
pseudocode:

Procedure Usertype
Begin
Until MODELEND
Begin
Until USEREND
Begin
Specify activity
If last activity then USEREND
End
If last user then MODELEND
End
End,

To restate, a User or transaction is a system
object which is composed of a series, or network, of
activities which are executed in some sequence,
Following is a menu of CONVERSE activity types:

A. Request resource(s)

B. Release resource(s)

C. Advance time

D. Branching specification

E.
F.

Update a parameter
Terminate the User.

For instance, a primitive queuing user would
require, as a minimum, Activity Types A,C,B.

Activity Type A is defined through a sequence of
user prompts which serve, in succession, to Trequest
and allocate quantities of resource units from the
available resource types. This process can be
represented by the pseudocode:

Process resreq
Begin
Until ENDRESOURCE
Begin
Specify type name
Specify quantity of units
If last type then ENDRESOURCE
End
End.

Thus each request from a different pool is made
with a subsequent series of prompts. This results in
a sequential, piecemeal acquisition during execution.

Activity Type B, "Release Resource(s)," can be
represented by the pseudocode segment:

Procedure Resrel
Begin
Until ENDRELEASE
Begin
Name type
Specify quantity of units
If transfer release then give new
type name
Select discipline
Case: FIFO:
LIFO;
etc.;
If last release then ENDRELEASE
End
End.

Activity Type C, "Advance Time," is approximated

by:
Procedure timadv
Begin
Case: If service time deterministic,
enter value;
If service time uniform, enter
minimum, maximum values;
If service time negative
exponential, enter mean
End.

Note that this modular structure provides for the
adaptation to other selection rules.

Activity Type D, "Branch specification," involves
selecting a successor activity. Its use is optional
since the default succession connects activities in
succession in the order they are specified in the
program. It, as is Type E, "Update Parameter,' very
complex, having many choices and formats, and thus
will not be elaborated upon here.

Activity Type F, "Terminate User," is used to
signify that specification of a particular user is
complete,and returns control to the query routine.

O0f particular interest is Type B, "Release
Resource(s)" (Figure 4), which incorporates two
innovations not usually seen in other simulation
languages :

FROM E3
ACTIVITY SELECTED TYPE 7, RELEASE AESOURCE(R)

YPE 2 RELEASE ALSOURCEE)

SPECIFY
AMESOUNCE NAME

SPECIFY
NO. UNITE TO
RELEASE

0
ORIGINATING
NESOURCE POOL?

SPECIFY
NEWPOOL NAME

OUEUE SERVICE TYPES
1. FIFO (DEFAULT)
L1F0

2.
I hrosssuruis

I i '
i 1
i i i
= ~SPECIFICAVION OF VALUES— — —

H ' 1
'

i 1

i
)
: t
]

RETURN TO FIGURE 3
FIGURE 4 CONVERSIM RESOURCE(S) RELEASE ACTIVITY ROUTINE

881

Resource pool transfer
User-determined queue service discipline

The ability to transfer resource units between
pools is implemented in CONVERSIM to enhance
programming facility when confronted with the
requirement to move resources to a pool other than
from which it was acquired. Typically, this can occur
where there is some spatial distance between pools,
for instance in a transportation simulation where
locomotives or tugboats belong to different pools at
the beginning and end of a transaction or operation.
Although this can be effected with some difficulty in
many general-purpose simulation languages, it is
explicitly and easily accommodated in CONVERSIM.

Allowing each user type, at each resource release
activity, to select the queue service discipline to be
employed, constitutes another innovative feature of
CONVERSIM. Noting that each resource queue is treated
with FIFO discipline as a default condition, a
particular user type imparts its copies with the
facility to modify that default at a given point in
the transaction., The situational justification for
this innovation is not as direct as the previous one,
however.

Input and editing

CONVERSE input is accomplished as a sequence of
prompts, conveyed by screen to the model builder. All
of the screens have a response field which can vary
from a single character to a string. Many responses
are pre-initialized to a default, requiring a response
only when exception is taken.

During the user=-structuring phase of CONVERSE, the
text description of each activity is displayed when
specification is complete. A prompt to verify
correctness is then given., If affirmative, CONVERSE
cycles to the next activity; if negative, CONVERSE
repeats the prompts for the current activity.

To illustrate the query process, a set of screens
for a "Request Resource(s)" activity is shown.

SYBTEN VSER: TRANS MODXEL1 HN1

CONVERSBIN

What does TRANE do next?
. Request & resource
Releass a resource

+ Advance time

. Salect a branch

. Update a parameter

v End this systes user

X Y YRR

1

SYSTER USER1 TRANE MODEL: WM 1

CONVERBIM
RESOURCE REQUEST

Hhat L{s tha name of the resource
that you wish to request?

SERVER

CURRENT DECLARATION
RESOURCES 3

1REQUEST

BYSTEN USER) TRANS MODEL: MMY

CONVERNIN
RESOURCE REQUXST

How maany ara you requesting from
the pool?
'

1

T CURRINT DXCLARATION §
IREQUEST RRSOUACES EEXRVER H [}

MODELs MMt

CONVERSIN
CONPLETED DRCLARATION

Do you acoept this statement asz
it is depictsd below?

;4

3 CURRENT DECLARATION 1
tREQUEST RESOURCES SBERVER QTY = 1 ¥

When the model specification cycle is done,
CONVERSE prompts to determine if the entire model is
to be reviewed for correctness., If affirmative, the
program transitions to edit mode. At the end of edit
mode, the modeler is again prompted for a return to
editing, or to go on.

Edit mode may be entered from two points: from
the end of the model query routine, or when starting a

' CONVERSE session and accessing a saved CONVERSE output

'edit command types (delete, move, modify, etc.).

file. 1In edit mode, activity statements are displayed
10-at-a=-time, and the modeler is prompted to select a
line to edit and then presented with a menu of line=
Upon
completion of editing im this manner, a prompt is
issued to repeat the cycle, or to go on.

The CONVERSE activity-statements for a basic M/M/1
model are shown in Figure 7.

' SIMULATION LANGUAGE - DSIM

Design Background

DSIM, a database record SIMulation language, was
conceived and constructed to be an easy language for

-bullding small and medium simulations that could be

'to represent a wide range of model constructs..
this point, DSIM”s connection with BOSS ends.

hosted by a DOS microcomputer. It is conceptually a
descendant of BOSS, in that its input database
consists of a series of fixed-format, integer files
which can be structured, via a strongly-typed syntax,
At
This is
because the tramslation of this type of database, left
entirely to the user, while efficient in the same
sense as assembly language, is not a viable option in
today”s software practice.

However, the concept of a database-driven language
using a series of numbers as the internal
representation can be effective if the user is always
presented the translated representation. Integer
numbers are easler to store than text, and a language
incorporating such a database is efficient for storage

'and manipulation as a simulation language.

882

It should be noted that, after careful design
consideration and planning, it was determined that a
conversational model building language could not be
achieved until after a simulation execution module was
developed. Therefore, DSIM was created first.

It should also be noted that, while the main
purpose of DSIM is to execute, as input, the CONVERSE
output file, complete accessibility to the DSIM input
file is available to the user for editing,
modification, and perhaps even generation of input
code independent of the CONVERSE process,

The DSIM Imput Data Base

The following sections describe the main record
formats for inputting model=specification records to
DSIM, the simulator. These formats, many
corresponding to activity types, are automatically
created by CONVERSIM.

All records contain multiple fields, some of which
are optional. All numeric fields are left-justified
and all alphanumeric fields are free format within the
prescribed lengths.

Comment Record. A comment record may be placed
into the input source file wherever it is appropriate.

column number

T —T
| MM 122222222223333333333444444444455555555556666 |

|123456789012345678901234567890123456789012345678901234567890123 |
I I

| . description of text used as a comment (75 chars) |
L - J

Time Advance Activity Type Records. Time advance
activities advance the system clock, The amount of
time advanced depends on the distribution type and
value.

column number

I T
| T111111111222222222233333333334 44444444 455555 666

|123456789012345678901234567890123456789012345678901 234567890123}

| 1 1iii y vwwwwwy ooooooo !
[]
WHERE: 1iii = label number (optional)
y = distribution types
1 = use vvvvvvv immediately to
advance time
2 = use rand om uniform
distribution between
vvvvvvy (min) and ooocooo
(max) for clock advancement
3 = use rand om exponential
distribution with mean of
vVVYVYV for clock
advancement
vvvvvvy = value for distribution types
0000000 = max value for uniform
distribution
(optional)

Generation Record. The generation record causes
the system to generate a mew instance into the system
periodically based upon the distribution types and the
limits found on the generation record. FEach new
generation contains 10 generation parameters, numbered
0 through 9, which are local to the individual
generation.

column number

T
11111111112222222222333333333346444 444444

T
!
|123456789012345678901234567890123456789012345678901234567890123 |
I
[

LE4

2 iiii y vvvvvwv 0000000 s5SS88S cccceee [

WHERE : iiii

label number (optional)

y = generation interval types
1 = use vvyvvvv as the amount of
time between generations
2 = use rand om uniform
distribution between
vvvvvvy (min) and oooo0000
(max) for the time between
generations
3 = use random exponential
distribution with mean of
vvvvvvy for the time
between generations
vvvvvvy = value for time imterval types
0000000 = Max value for unif orm
distribution (optional)
sssssss = start time for the first
generation (optional)
cecceeee = maximum number of — generations

that may begin (optional)

Transfer Activity Type Record. Transfer
activities are used to branch, based upon sone
condition, to the prescribed label. This ability to
branch means the simulation model will not always take
a single path through the system.

column number

] T
| 111111111122222222223333333333444444444455555555556666
| 1234567890123456789012345678901234567890123456789012345676890123 |
| I
| 3 iiii bb L1Ll gqqq nnnnnnn |
1)

1

WHERE: 1iii = label number (optional)

bb = branch type
1 = unconditionally taken
2 = branching occurs qqqq
percentage of the time.

3-8 = branching occurs on a
comparison of a system
parameter qqqq and the
value in nnnnnnn.

9«14 = branching occurs on 2
comparison of a resource
qqqq queue”s length and the
value in nonnnnne.

15-20 = branching occurs on a
comparison of resource qqqq
and the number of units
nnnononn available for
immediate resource request.

21-26 = branching occurs on a
comparison of resource qqqq
and the total number of
units
already in use and
immediately available.

27-32 = branching occurs on a
comparison with the system
clock and the value of
nnnnonn.

33«38 = branching occurs n a

comparison with the s stem

883

clock and a system
parameter number nnnnnnn.
label where a successful
comparison will be sent to.
(Note: unsuccessful comparison
will result in passing through
to the next simulation record.)
quantity used for one side of the
comparison. (optional)
second comparison
(optional)

1111

9499

nnOnnun quantity.

Resource Allocation Record. Resource allocation
records define resources and their initial quantity in
the resource pool. It is important to note, that the
quantities in the resource pool may fluctuate during
the simulation, since a quantity of the resource”s
pool may be given to another resource”s pool.

column number

T

111111111222 3333333333444444644455555555556666
123456789012345678901234567890123456789012345678901234567890123 |
I

4 {iii nnn |

]

WHERE: iiii
rrrr

nnn

Label number (optional)

resource pool number

initial quantity in the resource
pool (Note: may be "0")

Resource Request Activity Type RBRecord. Resource
request activities request a quantity of a particular
resource from the available pool. If the system is
unable to satisfy the request, the request will be
suspended and placed into a queue.

colum number

T
111111111122222222223333333333444444444455555555556666 |
123456789012345678901234567890123456789012345678901234567890123 |

5 iiii non eree |
L]
WHERE: iiii = label number (optional)
nnn = quantity of the resource being
requested
rrrr = resource post number

Resource Release Activity Type Record. The
resource release activities release a quantity of one
resource to either the same or another resource type.
If there are items in queue waiting for this resource,
the resource release record also specifies how this
particular release wishes to take items from the
queue. Each particular resource release request may
handle queued items in a different manner.

column number

l
| 111111111122222222223333333333444 444444455

[123456789012345678901234567890123456789012345678901234567890123 |

L
A4,

| 6 iiii nnn rrer tttt q p |
— 1
WHERE: iiii = label number (optional)
nnn = quantity of the resource being
released
rrrr = resource pool number which is
releasing quantity nnn.
tttt = resource number which will
receive the released quantity

to be added to its resource
pool. (optional) -
q = release from queue, how:
1 = FIFO
2 = LIFO (not implemented)
others
P = generation parameter used in
releasing from the queue.
(optional)

The remaining records include formats for
accessing parameters, indicating end of a transaction
or block of records, indicating end of the input file,
specifying maximum rum time, and exercising data
output options.

Figure 5 depicts the DSIM input f£ile for a basic
M/M/1 model, Appropriate comments are shown.

CONVERSIM TIME_UNITS = MINUTES

THIS NEXT RECORD DECLARES A RESOURCE NAMED SERVER
. THERE IS ONE SERVER

- CONVERSIM RESOURCE# 11 SERVER

4 11 1
« CONVERSIM SYSTEM_USER = TRANS

THE NEXT RECORD IS A GENERATION RECORD
« THERE IS A SINGLE SYSTEM USER NAMED TRANS IN THIS MODEL
- IT WILL GENERATE A NEW TRANS EXPONENTIALLY EVERY 10 TIME
« UNITS. THE FIRST GENERATION WILL START AT O TIME UNITS.
THE SYSTEM WILL ATTEMPT TO GENERATE 9999999 NEW TRANS
2 3 10 0 9999999
- THE NEXT RECORD IS A RESOURCE REQUEST RECORD
- A REQUEST IS MADE FOR THE ONE UNIT OF THE SERVER
5 1 1"
- THE NEXT RECORD IS A TIME ADVANCE RECORD
- TIME WILL BE ADVANCED EXPONENTIALLY WITH A MEAN OF 5.

1 3 5

- THE NEXT RECORD IS A RESOURCE RELEASE RECORD

- ONE UNIT OF THE SERVER WILL BE RELEASED.

- IT WILL BE RETURNED TO THE SERVER AND ANY ITEMS

. RELEASED FROM THE QUEUE WILL BE IN A FIFO MANNER
6 1T 1" 0

- THE NEXT RECORD IS THE END OF THIS SYSTEM USER

990
« THE NEXT RECORD WILL PERIODICALLY DISPLAY STATISTICS
- EVERY 1000 SIMULATED MINUTES

996 1000
+ THE NEXT RECORD WILL CAUSE PROBE OUTPUT TO BE PLACED
. INTO THE OUTPUT FILE

995
- THE NEXT RECORD IS THE MAXIMUM TIME LIMIT RECORD
- THIS MODEL WILL RUN FOR 10000 SIMULATED MIKUTES

998 10000

Figure 5. DSIM Input Data File for M/M/1 Model

884

Internal Data Structure and Processing

Input Source Records. The simulation system
stores the simulation model as a linked list of source
records in memory. The source records are kept in
memory to decrease processing time by the simulation
system.

Each transaction in the simulation contains a
pointer to ome or more of the input source records.
Each record contains a pointer to the next input
record and a pointer to the last record. These
records also contain statistical information including
the probe counters,

Transaction Records. The simulation system relies
on the fact that all processing will be performed in
simulated time., This means that all operations in the
simulator must be stored in numerically ascending
time, based upon the requested time. All transactions
are stored in a linked list. When a transaction has
completed an operation in the source input records, it
will create a new transaction, copy any information
that is necessary for the entire run, point to the
next source input record, and establish a new time for
this transaction. The new time may be the present
time as determined by the system clock or it may be an
advanced time. If the time is the present time, it is
inserted into the linked list of transaction records
at the head of the list. If it is not the present
time, it is inserted in at its proper position, The
time sort routine will then pass control back to the
simulation system.

Sort Routine for Transactioms List. Transactions
are stored in a linked 1list. Each transaction
contains the time that it will be processed. When the
transaction makes its way to the head of the list, the
system clock is updated to the time of the tramsaction
that is being processed. The transaction list
contains all of the transactions that are in the
system, including the termination transaction, all
present generations, and the next generation time for
each generation statement. The transactions list is
sorted numerically ascending based upon the requested
time to process.

System Control. The system control routine is
DSIM”s time-flow mechanism. Whenever a tramsaction is
processed, the system clock is updated, and the
transactions record list is re-sorted by system
control. Initialization, an important fumction is
also scheduled by system control. The control
sequence 1s depicted by the flow chart, Figure 6.

Random Number Gemeration. Random numbers serve an
important function in any simulation system, DSIM is
no exception. There are presently 10 random number
streams which are initialized at the start of the
simulation execution. Every location in the source
input records which requires a random number is
assigned a new random number stream up to the maximum
number allowed in the system. Each stream serves
independently to generate uniformly distributed
numbers over the range 0.0 < rnd num < 1.0. This type
of random number generation lends credibility to any
results derived from a model which is rum using DSIM,

Generation Processing. The system initializes all
generations statements at system start up. When the
transaction processor recognizes that a generation
statement is now being processed, it will generate the
next future generation tramsaction and have it
inserted into the sorted tramsaction lists. A check
is made to insure that the next generation will not be

more than the requested number of generations on the
source input record.

Queue Storage., If a request for a resource can
not be completely satisfied, the request is placed
into a single queue. This request is tagged with the
resource number it requires, the quantity required,
and other important statistics. All items added to
the queue are added to the tail of the queue so that
they may be removed later in the proper order.

Resource Release and Queue Removal. When a
resource releases a quantity back to the resource
pool, a check is made to see 1f there are any
transactions in the queue which could now be
satisfied. If so, the first-fit algorithm is employed
in conjunction with the other queuing disciplines that
the resource release has requested. For example,
assume that a resource is returning 3 units to the
resource pool. The release request has requested a
FIFO discipline. In the queue for that particular
resource (in order) are requests for 5 units, 2 units,
and 1 unit. The 5-units request would now remain
unsatisfied. The 2-units request would be added to
the present tramsactions list. And lastly, the l-unit
request would then be also added to the transactions
list.

1

| sTART |

—
!

| —
| INITIALIZE |
| SYSTEM |
L

|
| —
—> GET TIME |

V——— ¥ | —
| TIME = END TIME? p————> EXIT |
_ 1 [E—

I —

| PROCESS TRANSACTION |

|

— v 1 Y —
| TRANSACTION TERMINATION |———> EXIT |
I L

ll

1
1
|
1
|
| L
!
|
l
|
|

T
i N
|

]

1
CREATE NEW TRANSACTION |

!
|
!
|
| T
I I
!
!
|
|
!

i

V-
| SORT NEW TRANSACTION |

|

w

N——

L |CONTINUE LOOP |

—_

Figure 6., DSIM Control Routine
Output Report

An M/M/1 queuing model was implemented with the
following description:

Single-server resource called SERVER;

885

User transaction called TRANS;

TRANS interarrival dist“n: neg. exp., mean 10
min.;

Mean service time: 5 min.;

Length of run: 1000 min.

The basic, autonomous output report is shown as
Figure 7.

Note that the CONVERSE activity statement file is
reproduced. Also shown are the basic data outputs
including resource wutilization and transaction
performance. These are highly self-explanatory and
are not discussed further.

DSIM
INPUT LINES
stmat rerd unit

type

1 . CONVERSIM TIME_UNITS = MINUTES

2 . CONVERSIM RESOURCE# 11 SERVER

3 DECLARE RESOURCES SERVER QTY = 1

4 . DATA INITIALIZATION SECTION

5 . CONVERSIM SYSTEM_USER = TRANS

6 GENERATE A USER MEAN = 10 OFFSET = 0 # GENS = 9999999
7 REQUEST RESOURCES SERVER QTY = 1

8 ADVANCE TIME MEAN = 5

9 RELEASE RESOURCES SERVER QTY = 1 OUT @ BY FIFO

10 END OF BLOCK

11

12

13

DSIM
UTILIZATION QUTPUT

STATEMENT NUMBER OF COMPLETE AVERAGE TIME

TRANSACTIONS TO COMPLETE
6 103 4.6311
THE SYSTEM CLOCK IS 1000
STATEMENT AVERAGE TIME

NUMBER BETWEEN GENERATIONS

6 9.7282
RESOURCE # COMPLETED AVG. TIME AVERAGE %
NAME USED UTILIZED
SERVER 103 4.6311 0.48
RESOURCE ~ PRESENT QUEUE TOTAL IN MAXIMUM IN AVG. QUEUE
NAME QUANTITY QUEUE QUEVE TIME
SERVER 0 7 1 0.0000

Figure 7. DSIM Output Report for M/M/1 Model
CLASSROOM EXPERIENCE AND RESULTS
Description of Course

As of the date of this document, CONVERSIM has
been used in two courses, both run concurrently at the

¢+ introduction of GPSS.

University of South Florida. The course was a
Computer=-Science=~oriented survey of simulation and
simulation languages taught at the graduate level.
CONVERSIM was employed as a tool in the transition
between a manual simulator, called "Hyposim," and the
It was introduced at about the
fifth week in a fifteen-week semester.

Use in Course

Its employment was primarily to introduce a
programming tool which encompassed "generic"
terminology, not very different from that of basic
queuing theory which was a preceding unit. It allowed
the student to experiment with a simulator and
structure a model without having to understand a
particular terminological or programmatic structure,
The 1dea was to verify some of the results of queuing
theory without "language stress." In this aspect it
succeeded. The models programmed with CONVERSIM were

. the identical introductory queuing models used for
~queuing theory analysis and later for GPSS and

. Simscript II.5 application,

These were the M/M/1
queue and a simple 2-server feedback network.

Results

! Student reaction to CONVERSIM was positive in that

it really provided a quickeaccess vehicle for computer
implementation of a simulation. Student reaction to
the CONVERSIM "process'" was informative from a tool
design standpoint, especially within the context that
only classroom instruction in CONVERSIM, without
access to a user”s manual, was provided. From this
experience it was concluded that CONVERSIM is self-
instructing emnough so that with minimal orientation
construction of modest models is possible without
written documentation, Also, student reactions to
various features (or nomn-features) of the tool
produced a "wish-list" of modifications and additions
. to both the tool and the process of using the tool.

- CONCLUSTONS

That the CONVERSIM project successfully fulfilled
the original goals there can be no question.
Specifically:

A conversational program for building of discrete-
event simulation models was accomplished.

It was successfully employed as a front end for a
GPSS=like simulator.

|
|
|
; It was implemented for microcomputer application.
| That CONVERSIM has a greater, or even a continued
iutility beyond its rather limited trial employment, is
an issue subject to a great deal of questioning.

Affecting its use as a general=-purpose simulator
+in an applications environment is, for example, a
,structural limitation: dits world-view, strictly
‘confined to process interactiom, exemplified by
.Fishman”s "Process Interaction Approach, Concept 1."
iAs a result it lacks the ability to represent servers
| as processes, thereby implementing true "producer-
! consumer" interaction, defined by Fishman as "Process
Interaction Approach, Concept 2." To enable this
!would require the implementation of such comstructs as
‘"suspend" and "resume," or "passivate" and "activate,"

‘as available in SIMSCRIPT and Simula, respectively.

' Other limitations are more in the area of "user-
friendliness” and relate to editor features and

certain options in outputting,

To dwell on such shortcomings at this point is
argumentative., The plain result is that this
enterprise has been successful, and that any
undertaking of future development is a complex issue.

REFERENCES

Cox, S. (1984). The User Interface of GPSS/PC. In:
Proceedings of the 1984 Winter Simulation
Conference Imstitute of Electrical and Electronics
Engineers, Dallas, Texas.

Ferrari, D. (1978). Computer Systems Performance
Evaluation. Prentice-Hall, New York.

Fishman, G. S. (1973). Concepts and Methods in
Discrete Event Digital Simulation, Wiley, New
York.

Franta, W. R.
Simulation.

(1977). The Process View of
Elsevier North-Holland, New York.

Meyerhoff, A. J., Roth, P. F., and Shafer, P. E.
(1971). "BOSS Mark II Reference Manual."
Technical Report 660994, Burroughs Corporation,
Paoli, Pennsylvania.

Nance, R. E. (1981). "Model Representation in
Discrete Event Simulation: The Conical
Methodology." Technical Report CS81003-4,
Virginia Polytechnic Institute and State
University, Blacksburg, Virginia.

Russell, E. C. (1983). Building Simulation Models
with SIMSCRIPT II.5. CACI, Los Angeles,
California.

Wirth, N. (1976). Algorithms + Data Structures =
Programs. Prentice-Hall, New York.

AUTHORS” BIOGRAPHIES

Paul F. Roth is currently Distinguished Lecturer
in Computer Science and Engineeridg at the University
of South Florida. He has been involved in simulation,
both continuous and discrete, for over 30 years, with
service in industry, government, and academe, and as a
consultant. He is currently doing research in
simulation software for application to computer
networks and manufacturing processes. He has twice
served as Chairman of the ACM Special Interest Group
on Simulation (SIGSIM), and has rendered nearly
continuous service in various capacities to the Winter
Simulation Conference since the early 1970”s. His
degrees are from Pilttsburgh and Pennsylvania.

Robert Brown has been involved with computer
software and applications since he received his degree
in mathematics from Rutgers University in 1978. He
has worked in various capacities for Computer Science
Corporation since 1979, primarily doing scientific
programming under the auspices of the AEGIS project
for the Defense Department. He recently was awarded
his Master”s degree in Computer Science from Virginia
Tech, where he contributed to the initial development
of the techniques used in CONVERSIM.

