Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

Teaching Simulation with =

Professor Lee Schruben
School of OR&IE
Cornell University
Ithaca, NY 14853

ABSTRACT

¥ (pronounced SIGMA denoting Simulation Graphical
Modeling and Analysis) is an interactive graphics approach to
building, testing, and experimenting with discrete event simula-
tion models on personal computers. ¥ is written in C but is
self—contained and does not need a compiler or special graphics
software. ¥ is an extension of the simulation teaching system
report in [2].

The version of % described here requires an IBM PC
compatible computer (AT preferred) with at least 420K of free
memory, a floppy disk drive, an EGA or equivalent monitor
with the corresponding graphics card, and a mouse.

1. CONCEPTS AND COMMANDS IN ¥

In [2] the basic concepts of ¥ are presented with an
overview of the command structure for the PC implementation.
All commands are selected from the main menu.
detailed description of the commands is presented here.

Y, is based on an extension of the event graph represent-
ation of a discrete event system [1]. The elements of a simula-
tion model are the state variables, the events that change the
state variables, and the relationships between the events. An
event graph is a structure of the objects in a discrete event
system that facilitates the development of a correct simulation
model.

A more

Events are represented on the graph as vertices (nodes);
each is associated with a set of state changes.

Logical and temporal relationships between evenis are
represented in an event graph as directed edges (arrows)
between pairs of vertices. The edges define under what condi-
tions and after how much of a time delay one event will schedule
or cancel another event.

There can be multiple edges between any pair of event
vertices in the model; these edges can point in either direction.
Multiple edges are depicted with the prescripts and postscripts
telling the number of sub—edges contained in that edge. The
postscript, (the smaller number to the right of the edge number)
tells how many edges are going in the direction of the arrow (tail
to head). The prescript, gives the number of edges going in the
direction opposite of the arrow. If only the larger (graphics)

Mr. David Briskman
School of OR&IE
Cornell University
Ithaca, NY 14853

and

edge number appears, there is only one edge there. The

displayed edge will be referred to as the graphics edge.

SIGMA: Slmulation Graphical Modeling and Analysis

Create Slream

faa

£diL Edge 3 (Edges betwesn Veriex START and SRV) Delete
Nua From To Schad Osiay Conditlon Create Single
3 START SRV Y 1.4 it Hove
[} SAY START Y 1 ot
State Vars
No sore Edges |n this Set
Read
Save
fAppend
Prini
ExiL this seny
Run
Zoo4
Hardoopy
EXIT

Figure 1. A Popup Menu from a Multiple Edge

1.1. The Main Menu Options

All options on the main menu are functional. When an
option (or button) is "on", the mode or system status is defined
by the function represented by the button. When no buttons
are "on", ¥ is in Edit Mode. Edit Mode is the only mode by
which data may be entered.

Create Stream, Create Single, State Vars and Delete: These
commands allow the creation and deletion of state variables or
arrays, event vertices, and event relationship edges in the
simulation graph.

Read, Save, and Append: These commands allow the users to
read a previously saved model, to save the current model for
future recall, or to append another model onto the current
working model. The append command permits the user (or
teams of users) to create separate parts of a simulation model
and then connect them together into a larger simulation.

869

Move and Zoom: These commands allow the graphs to be
moved and viewed from various windows.

Dos, Clear and Fzit: Thé Dos command allows the user to
toggle back and forth from the simulator to the operating
system (say to check directories or edit an output file). The
Clear command will restart ¥ from scratch. The exit command
allows one to leave the simulator and return the PC to the state
(modes, paths, etc.) that it was in before the simulator was
invoked.

Run: This evokes a sequence of run control choices. The user
can select the initial conditions (state variable values, random
number seed, etc.), control the run termination conditions (time
or event count), and determine which variable values will be
recorded during the run. The user is also asked the name of the
disk file where the output is to be recorded. Finally, one can
select one of three run modes.

The three run modes are HIGH SPEED which simply
gives the output file on a disk, SINGLE STEP which allows the
user to slowly step through the execution of each event viewing
state changes, output, and the events list. If neither SINGLE
STEP or HIGH SPEED run modes are selected the run mode
will default to Graphics mode. The Graphics run mode uses
color extensively to illustrate the dynamics of running the
simulation model. Edges between events turn yellow when their
conditions are tested as being true, event vertices shade with a
yellow pattern as they are scheduled and when they are
executed, the vertices turn solid yellow. (Note: While in
Graphics mode, you may halt execution by hitting control—.)

1.2. The Output Files

The output file contains an entry for each event that is
executed during the run. Fach entry gives the clock time, the
event name, a count of the number of times the event has been
executed, and the values of the user selected trace variables.

Auwseddn C: TRMEE OF OSTOVE YRMM MR ¥ITE INTTIAL Qet$.0 and FREE ~ 3.0
Tima Svaay Gewas @ b
€,000080 tHLT 3 19.000000 3,080808 (sad 1nivial evndiniens)
0. 000008 1 11.080080 3.000000 (firvs new avsival)
0,900000 sTAME 1 10, 2,008000 all servers buny)
9,000008 START H P.d00000 1,000800 (- < R
. 980066 srANE 2 0.0000408 o 000000 (- - = -
9,671058 A 1 $.000048 0.080090 (sasend Aww srvivel |
anms 1 5086400 1.000800 (fires survies wndal
4.217123 ezany 4 1.000068 ¢.000040
0.527738 e b3 5000000 1 000008
0. 017ITI0 srame s T,000008 0, 008408
6118 am 2 §.000000 9000000
1012033 we 2 0,900088 1 000000
1.912693 ezasr 3 7,440008 § 000040
1412178 e 4 T.040008 1. 008800
12778 ezase 7 6,000008 0000408
1L.73711¢ mm 3 6.000008 1 000004
L7374 A) 3.600008 ¢.00040¢
1206238 ¢ 3.000000 1 0ssdee
2,306233 oA , 4.009840 0, 000000
2,431257 T8 7 €.009000 3 080808
1.421137 reame i 1.000008 o 000808

Figure 2, An Example Output File

870

2. DETAILSON ¥

2.1. Using ¥

¥ displays each command as a button on the main menu.
to choose any command you must select it by clicking the mouse
while the graphics cursor is on the button.

To edit a vertex or an edge, all buttons must be "off"
before you select an object.

2.2. Finding Your Way Around

S1GMA: Slmulation Graghical “odeiing and Rnalysis
Create Slress
1411 SWaie tern Delete
Nm tew Ovwwrigtimn . -
(Y N MOWIA OF MEAL (N DK WA Create Single
1 DE MOWEA O RIVOWE TIAT L AT Move
3
' State vars
3
] Rend
! Save
L]
] fpoend
" Print
u
Cat) Unin swe un
00m
Heracopy
EXIT

Figure 3. A sample Popup Menu (State Vars Popup)

Ezit: The first and most important thing to know about ¥ or
any other piece of software is how to escape if it exhibits weird
behavior or you get bored and want to do something else. The
correct way 0 exit % is to select the EXIT button. '

Create Stream : This will be the easiest way to create a graph
from scratch. Create Stream creates a vertex at the location
where you click the mouse. It also creates an edge between the
last vertex created and the current one. As you keep clicking, T
will create a "stream" of vertices and edges. If you are starting
a new graph, the first mouse click will create vertex #1, the
initial event. To make self edges, (edges that have the same
origination and destination vertex) you can click twice at the
same location; the first click will create the vertex, and the
second click will create the self edge. NOTE: Create Stream
will always remember the last vertex that was created, thus, it
will continually create an edge between vertices.

Create Single: Create Single is just like Create Stream, except
it will only remember one vertex at a time. First, you are asked
to select an "out vertex" and then an "in vértex". These will
correspond to the origination and destination of one edge. After

you have selected an "in vertex", you will be prompted to select
another "out vertex"; unlike Create Stream, your next selection
will not create a vertex. This would be very useful for adding
edges and/or nodes to different places of your graph. As before,
make sure you are out of Create Single before you attempt to
edit any object.

Delete: Once you are in Delete mode, any attempt to edit an
object or a State Var will prompt you to delete it. This prompt
will always require keyboard input of either "Y" for yes or "N"
for no. A carriage return will be taken as the default "N". If
you select an edge while Delete is on, a popup will appear with
all the sub—edges in that graphics edge. (Even if only one
sub—edge exists.) You must then select which edge you would
like to delete. Deleting State wars will operate in the same
manner. Just select the State Var option while Delete is turned
on.

Move: Move allows you to move a vertex. L prompts you to
select a vertex and then to select a new location for it. All edges
will be appropriately redrawn. You may not Move a vertex on
to another vertex or on an edge.

State Var: This option lets you create and edit state variables.
First, a popup menu containing all the defined State Vars will
appear. To edit an existing state variable, just select it.
(Remember that a selection in a popup is done with the mouse.)
To create a new State Variable, select an empty one. Or, if vou
move the highlight to an empty option, all you need to do is
start typing. It is also important to remember that all State
Variable names have a maximum length of 10 characters.

Once you have selected a State Var in the first popup, &
new popup will appear. (See Figure 5.) This popup contains all
the data fields associated with each State Var. These are Name,
Description, and Make it an Array. If you select Make it an
Array you may either enter a "Y" or "N". All arrays are
referred to as Naome[#] where # represents the index intc the
array.

S{GMA: Slmulation Graohical Mcoe.!ng ang Analysis

Create Slrean

Oeiete

Create Single

Edit Siale Yar 2 Hove
Name, FREE Slate vars
Descript, THE NUMBER OF SERVERS THAT ARE FREE Resd
Make 11 sn Rerage(Y/N] N Save
Exit Anls asny Appena
Print
Run
Z00H

Figure 4. Sample State Var Popup

Zoom: Zoom allows the user to create larger simulation
models. When selected, Zoom will zoom out t0 make the screen
four times as large. You will then be prompted to choose 2
center of your screen. This location will be selected at your next
mouse click. Zoom then makes that location the center of your
viewing area and makes the Graphics window the same size as it

was before.

Clear: As expected, this clears the system of all models. You
will always be prompted to make sure you do not Clear acciden-
tally. Once a system is cleared, the model is lost, so make sure
you save your models often.

DOS: You can get from X to DOS by selecting the DOS
button. You can execute all common DOS commands by
entering them after this prompt. This is useful, for example, to
look at your disk directory or to copy an output file. To return
to ¥ from DOS type "exit".

2.3. Saving, Reading, and Running a % Model

Save: Before you invest a lot of effort in building a simulation
graph you need to know how to save your work. This is done
with the "Save" command. You will be prompted for a name
under which the model will be saved; the convention for files
containing simulation model graphs is "xxxxxx.mod" where x's
are your filename. It is suggested that all models be saved with
the file extension ".mod". This is useful for debugging and
homework documentation.

Read: Read lets you recall a simulation graph constructed
earlier. You will be asked to enter the name of the file in which
the simulation graph has been saved.

Run: Run will cause ¥ to execute your simulation model.
You are prompted for a sequence of parameters that control the
initial conditions and ending conditions for a run.

1. Starting conditions: The first prompt will ask for
starting attributes; these will be discussed later under the
topic of event attributes. One of the starting conditions
is a random number seed which is any number typed in
by the user. Since there is a default seed, you may just
hit return to continue.

2. Ending conditions: The next prompt concerns the dura-
tion of the run. A simulation run can be terminated after
a particular event occurs a specified number of times or
after a particular time. For example, suppose that the

simulation of a queue is to be run until the 10th customer

departs. Then the run would be controlled by the

Ycustomer departure” event and the number of execu-

tions of this event will be set at 10. To control the run

duration based on a particular event, press "E" (for

Event) at the prompt. You will then be asked which

event (enter the event name) and the number of execu-

tions of that event before the run is terminated. Run

871

control is often based on the implicit event that the
simulation clock reaches a particular time. If you want
to run for a specific Time, press "T" at the prompt. You
will then be asked how much simulated time the run is to
take (¥ runs until the first event after the specified
time). Note: there are no defaults for these questions so
you must hit either "T" or "E".

3. Trace Variables: Next you are asked for the state
variables to be displayed and recorded during the run.
You are to list the state variables (with subscripts if
appropriate) in a string separated by commas.
Run Mode: There is an option of using a single step run
mode. In this run mode simulation execution will halt
after each event and wait until the enter key is pushed.
This is useful in debugging the logic of the simulation
graph. Or you may choose high speed mode. High speed
mode turns off the graphics and just creates an output
file. High speed is very useful for running large simula-
tions for a long time. NOTE: The default values for
both modes is "N", and by pressing return you can
continue.

5. Output file name: Here you are asked for a DOS file
name in which values of the trace variables are recorded
during the run. For all runs the clock time is recorded
along with the values of the trace variables after the
execution of every event during the run. A running total
of the number of event executions is also recorded.

2.4. Building a Simulation Graph

SIGMA: Simulation Graphical Moceling and Analysis
A Create Sireaa
@ Oelele
Create Slngle
2 Hove
@ State Vars
Read
Save
191 Append
Print
@ Aun
2008
Hardcopy
EXIT

Figure 5. Simple M/M/1 queue Model in Sigma

872

Create : Typically three sets of objects must be defined in order
to construct a simulation program using X. These are the set of
state variables, the set of event vertices, and the edges
connecting the vertices of the simulation graph. These sets of

objects can be defined in any order (not necessarily
sequencially).

Creating State Variables: You must give the variable a name
by typing a name for the variable. It is this name that will be
used in expressions in the event vertex and edge definitions.
You can also type a description of the variable by selecting

"Description”. Finally, you will be asked whether you want the
variable to be an array or not.

You ‘can also use the powerful modeling device called an
attribute Handler which will be explained after we discuss
editing edges in the graph.

Event vertex 1 is always executed first. If several events
are to be simultaneously executed or scheduled at the start of a
run, then create a "start simulation" event in vertex 1 and have
this vertex schedule the other vertices (typically unconditionally
with zero delay times). Vertex 1 uses attribute handlers to
assign initial values to state variahles.

S{GMA: Slmulation Graphical Moageling and Analysis

i Create Sireaa
@ Delete
Creata Single
Edlt Yartex 2
Move
Nena: START .
Descriptions THE START OF SERVICE EVENT Siate vars
State Changes G+Q-1.Se] Read
Atte, Hendler cave
Priortly + 8 p—
ExiL this aenu
Printi
Run
z0on
Hardcopy
EXIT

Figure 6. A Sample Vertex Popup menu

Associated with each event there will typically be one or
more changes in state variables. State changes are simply
entered as expressions. The operators you can use are +, —, /,
*, and " for add, subtract, divide, multiply and exponentiation
respectively. Expressions are separated by commas and the
string can be up to 100 characters long. For example, consider
the "START" event window in Figure 6. The state changes are
given as the strong, Q=Q-1, S=1. Here, when the "START"
event occurs the number of customers waiting, Q, is decreased
by one and the status of the server, S, is set equal to 1 (busy).

There are two special variables that you can use. These
are RND and CLK. RND is a uniform random number betweer
0 and 1 and CLXK is the current simulated time.

In editing an edge you have the following options.

1. Scheduling or canceling edge: This ia a yes/no switcl
(yes for scheduling, no for canceling). It indicate
whether the occurrence of the originating event verte:
causes the estimation event vertex to be scheduled tr
occur or if it cancels the destination event if it has bee

previously scheduled. Canceling edges appear as dotted
arrows in the event graph whereas scheduling edges are
solid.
Edge delay time: This is the expression for the delay
time between the occurrence of the origination event
vertex and the occurrence of the destination event vertex.
(Event cancellations occur immediately). A typical
expression is ((RND*30)+20) meaning that the time
between the two events is distributed uniformly between
20 and 50.
Edge conditions: The scheduling (canceling) of the
destination event can be made conditional on the state of
the system at the time the origination event occurs. The
conditions are entered as normal expressions. You may
combine conditions by using the Boolean operators AND
and OR. For example, the edge condition, QUEUE>1
AND STATUS=0 means that the destination event will
be scheduled to occur (after the edge delay time) only if
QUEUE is greater than one and STATUS is equal to
zero. The operators you may use in edge conditions are
(+!—7/7*1A) plus

= ... equal to
not equal to
. less than,
. greater than
.. less than or equal to

>=... greater than or equal to, and
the Boolean operators "AND" and "OR", which can also
be represented as "&" an "||".
Event attributes (edge Attributes and vertex attribute
Handlers): Each edge has an Attribute list and each
vertex has an attribute Handler list. These are rather
simple but powerful modeling tools. The edge Attribute
list is simply a string of expressions separated by
commas. The vertex attribute Handler list is a string of
state variables separated by commas. When the origina-

tion vertex for an edge is executed the expressions in the
edge attribute list are evaluated. These values are placed
in the destination vertex attribute Handlers. When the
destination vertex is subsequently executed the state

873

variables in its attribute Handler list take on the values
assigned to the corresponding expressions in the sched-
uling edge attribute list. Simply think of the vertex
Handler list as variables of the left hand sides of equa-
tions and the edge Attribute list as expressions for the
right hand sides of the corresponding equations. Note:
These equations are evaluated when an event is scheduled
not when it is executed.

Ezample: Consider an edge with Attribute list X + 1, §,
QUEUE*N. Say that the destination vertex for this edge has
the attribute Handler list, Z, N, QUEUE. This is as if the
destination vertex had state changes given by Z = X + 1,
N =5, QUEUE = QUEUE*N; however, with one difference.
The expressions giving the values of these state variables (the
left hand sides of the equations) are evaluated when the event is
scheduled not when it executes. Suppose when the origination
vertex for an edge is executed that the state variables have these
values; X = 5, N = 10, QUEUE = 2. When the destination
event is executed the values for the state variables Z, N, and
QUEUE will be assigned to be 6,5, and 20 regardless of the
current values for X and QUEUE.

The main value of event attributes is in defining the
particular system entities to which an event pertains. For
example, suppose that there were two identical machines in a
simulated factory. The same "start processing" event vertex
may be used for both machines if the event has need for an
attribute telling which machine is to start.

Another common use of event attributes is in initializing
a simulation program. When you run a model, you are first
asked for initial attributes if any have been specified. You can
enter a string of initial values for the attribute handlers for
event 1 which is always the initial event. An example is a
multiple server queueing system where the number of servers
might change from run to run.

Event cancellation: When an event canceling edge is invoked
any previously schedule event that has an exact match of the
edge attribute values in its attribute handler is canceled.

2.5 A SAMPLE MODEL

Figure 7 is a screen dump from X. It is the representa-
tion of a multiple server queuing system simulation as developed

on Y. The events are as follows:

INIT: Here we initialize the state variables and start the
simulation run. Values for state variables are requested
from the user at the beginning or Run.

ARR: This is the arrival of another customer to the system.

START: This is the beginning of service for a customer.

SIGMA: Simulation Graphical Moce!ing and Analysis

Create Slrean

Delele

Create Single

Move

Slate Vars

O}
GD

Read

Save

Append

Print

Run

Z00M

Hardcopy

EXIT

Figure 7. Multi-Server Queue Model in Sigma

END: This is the event where the server completes service ona
customer.

2.6. USER DEFINED FILES (PSEUDO-VARIABLES)
‘ The user can create a "user" pseudo—variable by
' enclosing a valid DOS file in curly brackets, { }. This pseudo—
variable can be used anywhere a state variable can be used.
When this expression is encountered during execution a number
| from the file is read into the simulation. User input data files
~ are simply strings of real numbers (floating point numbers)
" separated by a space or line feed. The number read from the
user data file, depends on the offset parameter which follows the
‘ filename separated by a semicolon.

Ezample: The expression, (USER { DELAY.DAT;3}), will
‘cause the third number in the disk file named delay.dat to be

read. For example, consider the expression,

‘ NUM = RND*5+1,QUEUE

= (QUEUE + USER { SIZE.DAT;NUM }).
\
i This can be used to model arrivals of randomly sized
“groups of customers to a service facility; as in a simulated bus
station. Note that the offset number is a random integer
between 1 and 5 inclusive. The possible group sizes will be
listed as 5 numbers in the disk file named groupsiz.at. Each of
the five different group sizes will be selected uniformly at
random each time the above expression is executed. Note also
‘that the expression after the ";" must either be a constant or a
}single variable; other expressions must be evaluated as above.

874

To increment through a file sequentially, use the constant "0" as
the index. (L.e. USER, { DELAY>DAT;0 }).

When the offset parameter in a user pseudo—variable is 0
the file is read sequentially during the run. When the end of a
file is reached a prompt asks whether the user wants to start
over at the beginning of the file or terminate the run. In HIGH
SPEED run mode the user file is cycled through as many times
as needed without the prompt.

REFERENCES

[1] Schruben, L. "Simulation Modeling with Event Graphs,"
Comm. A.C.M. Vol. 26.11.

[2] Schruben, L. "A 'Disposable’ Graphical Event
Synthesizer for Teaching Simulation Model Building,"
Proc. 1987 WSC, pp. 72—76.

Authors’ Biographies

Lee Schruben is on the faculty of the
School of Operations Research and Indust—
rial Engineering, Cornell University.

He holds degrees from Cornell, the Uni—
versity of North Carolina and Yale.

David Briskman recently completed his
Master's of Engineering at Cornell Uni-
versity and is presently employed as an
industrial engineer by General Foods.

