Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

A simulation of a store-and-forward distributed
network of transputers

Janice R. Glowacki
School of Computer Science
Florida International University
Miami, Florida 33199

ABSTRACT

With decreasing cost and size of
processors and more sophisticated demands of
computer users, it is becoming popular to
execute programs in parallel on a distributed
network. Subtasks of a program can then be
run on separate processors, communicating
through shared memory or hard wired 1links,
depending on the hardware and topology of the
system.

With ring networks, a token passing or
store-and-forward communication scheme is
often used. The token passing scheme allows
for only one processor to send a message at a
time. The store-and-forward scheme allows
many messages to travel around the network
and must be deadlock free.

This paper presents the simulation of a
distributed network of INMOS Transputers.
Also discussed are the store-and-forward
message passing scheme that is modeled and
results obtained thus far. ir

1. INTRODUCTION

Large computer networks, local area
networks, and multiple processor systems are
considered to be distributed networks. With
these systems, processes of a single program
can be distributed over several processors,
running in parallel, such that each processor
on the network performs a subtask of the main
program. Network processors need to share
mutual information and are classified as
tightly or loosely coupled (Silberschatz and
Peterson 1988). Because tightly coupled
systems have shared memory, an algorithm must
exist to insure mutual exclusive entries into
it. Loosely coupled systems have local
memory for each processor and communicate by
using a message passing scheme.

Processors (nodes) in a ring network are
loosely coupled and physically connected in a
circle, usually with one-way communication
links. Generally, a token or
store~and-forward message passing scheme is
used to support communication between nodes.

In a token passing scheme,
message, the token,

a specific
continuously circulates
through the hetwork. If a node wants to send
a message, it must first acquire access to
the network by removing the token when it
arrives. This sending node forwards a
message header followed by the message. When
the message has traveled completely around

836

the network, the sending node removes it
(guaranteed the destination node received it)
and forwards the token. Thus, only one
message may travel through the system at one
time.

With a store-and-forward message passing
scheme, each node has designated storage
(buffer) for incoming messages. As messages
are received, they are placed in this buffer.
When messages can be forwarded, they are
removed from it. Because the buffer is a
shared resource, the communication scheme is
not. trivial. The sending and receiving
processes form a producer/consumer
relationship and special techniques must be
employed to prevent deadlock.

With advanced system architecture it is
not uncommon to find systems with a large
number of processors. The Ethernet local
(Ethernet is a registered trademark of the
Xerox Corporation) area network, for
instance, can support up to 1024 processors
(MacDougall 1987). Issues regarding the
number of processors required to handle a
given work load or system throughput are
consistently raised.

Several distributed systems have been
simulated in order to evaluate their
performance. The maximum mean data rates for
several local area networks are presented by
Stuck (1983). He explained that transmission
medium has a dual purpose: to control access
to the network and to transmit the data.
Traffic on the network may be of low or high

delay. When the network has high delay
traffic, it is a bottleneck, and more time
may be spent controlling access to the

network than actually transmitting data.

Stuck included an evaluation of two ring
networks and two bus networks. The ring
networks consisted of 100 stations using a
token passing scheme. The first had a single
station sending to any of the 99 other
stations, while the second had all 100
stations sending messages to each other. The
bus networks consisted of a token passing
scheme and carrier sense multiple access with
collision detection. Stuck concluded by
stating "Token passing via a ring is the
least sensitive to workload, offers short
delay under light load, and offers controlled
delay under heavy load".

Garcia and Shaw (1986) studied transient
behavior of a five-node network using a
store-and-forward message passing scheme.
Assuming message traffic would be changing




in the future, they were interested in
analyzing current communication channels to
determine if they were adequate for future
loads. In addition they were concerned with
how performance might be improved.

Both a sudden burst of messages and a
sudden reduction in interarrival time for
given periods were modeled. They found
network performance severely degraded by
these transient message loads.

2. THE REAL NETWORK
The INMOS Corporation manufactures
Transputers -- processors specifically

designed for parallel processing (Transputer
is a registered trademark of the INMOS
Corporation). Transputers can be put
together as a distributed network connected
by fast, hard-wired communication links.
Currently, the School of Computer Science at
Florida International University has a
four-processor distributed network of T414
Transputers.

According to the INMOS Transputer
Reference Manual (1987), these processors
context switch in a microsecond and perform
integer/data moves in approximately 134
nanoseconds. The communication links between
processors transmit data at a rate of 10 MHz
or 20 MHz (individually switch selectable)
with effective rates of .8 and 1.6 million
bytes per second, respectively.

The host Transputer, an INMOS B004 board,
contains 2M bytes of memory. The network of
four Transputers, each with 256K bytes of
memory and four bidirectional communication
links, resides on an INMOS B003 board. The
topology of the network is shown in Figure 1.

Node #1
4

Node #2 Node #3 Node #4

A

HOST

Figure 1: Network Topology

Occam is the native language of the
Transputer system. The basic elements of an
Occam program are processes that can run
sequentially or in parallel. Processes
communicate over user-specified logical
channels. These channels can be 1links
connecting Transputers or local soft channels
connecting processes running on the same
Transputer. In addition, Occam supports most
of the constructs available in modern
high-level languages.

One advantage of the Occam view of
processes is they are assigned to processors

837

at compile time. Thus, a program developed
as a set of parallel processes on a single
Transputer system may be recompiled for any
valid Transputer/process mapping (Comfort and
Gopal 1988).

A deadlock-free store-and-forward message
passing scheme was written by Li Qiang and
explained by Qiang, Feild, and Klein (1987a)
of Florida International University. The
system is comprised of five processes running
on each node. Figure 2 displays a single
node in the network.

User Receiver

User Generator

User Front

User

Buffer

Server ransmitter
Previous Network Cont ingency Next
Node Buffer Buf fer Node

Figure 2: A single node in the network.

There exist two types of processes -—-
"network" and "local wuser". Network
processes are those that have access to the
physical network -- the incoming or outgoing
links. Local user processes are those that
do not have access to the physical network.
There are three local user processes. The
main one, performs the application program

("local” to the given node) and generates
messages. The second receives all messages
for the node. The third acts as an

intermediate process supporting communication
between the network and the receiving local
process.

Each message contains a message header
that indicates its source, destination, and
length. The header itself is exactly one
word regardless of the length of the message.
It is important to note that messages are
handled at the "word level" -- each word of a
message is sent individually although it is
part of an entire message.



In order to accommodate incoming
messages, there exist three buffers: the
user, the network, and the contingency. The

user buffer contains those messages received
for the local node. The network buffer holds
those messages to be transmitted to the next
node. The contingency buffer is a protective
buffer holding a message that would overflow
the network buffer. The contingency buffer
is necessary to avoid deadlock and is
explained by Qiang (1987b).

The primary responsibilities of the five
processes shown in Figure 2 are explained
below. To clearly identify each individual
process, they have been named and underlined.

The User Generator is responsible for
creating messages and passing them over a
soft channel to the server. The channel acts
as a blocking channel. Therefore, the user
generator is blocked between passing each
word of a message.

The User Receiver is responsible for
reading the messages sent to the current
node. It sends a request over a soft channel
to the user front to read each word. It is
therefore blocked from the time it sends a
request until a word is actually forwarded.

The User Front is responsible for the

user buffer. It handles the
producer/consumer relationship of the server
and user receiver. The server passes words
to the user buffer via the user front, while
the user recejver gets words from the user
buffer via the user front. :

Occam channels are blocking channels.
That is, 1if process Pl sends a word to
process P2, Pl cannot continue until P2
receives the word. If P2 is busy and not
ready to receive, then Pl remains blocked.
In order to create a non-blocking channel, an
intermediate process,P3, must be created
(Qiang, Feild, and Klein 1987b).

Accordingly, in order to have the server
(Pl) pass messages to the local user receiver
(P2) without blocking, there must exist the
user fropt (P3) as an intermediate process.
The user front takes messages from the server
and, transparent to the server, places them
in the user buffer. Upon request, it removes
them from the buffer and forwards them to the
user receiver. Because messages are handled
at the word level, a separate request must be
issued for each word of the message.

The Server takes words from the incoming
link and places them in the appropriate
buffer. Messages for the current node are
sent to the user front and placed in the user
buffer, while all other messages are placed
in the network buffer for retransmission. It
also receives messages from the user

and places them in the network
buffer for retransmission. Lastly, it
answers the Lransmitter's requests by
removing and forwarding messages from the
network buffer (one word at a time).

monitors the outgoing

link. Whenever the 1link is available, it

838

requests and receives a word from the server
and sends it down the outgoing link.

Deadlock can easily occur in this network
if each user generator saturates the network
to the point where every node is blocked from
servicing the incoming message. In order to
prevent this situation, there exists a
protocol for filling the network buffer as
explained by Qiang, Feild, and Klein (1987a).

In short, the server receives messages
from the user generator and the incoming
link. It forwards local ones to the user
front and fills the network buffer with
non-local ones. However, the server places a
message from the user generator into the
network buffer if, and only if, the entire
message ctan fit. Whenever the network buffer
is full, however, the server blocks the user
generator and processes messages from the
incoming link by filling the contingency
buffer. This buffer must be large enough to
hold one complete message.

This protocol enables the server to push
messages through the system even when the
local user process has saturated the system.
In other words, if the network buffer fills,
the contingency buffer is still available to
buffer network traffic.

The term "network buffer" will now refer
to both the contingency and network buffers.
Physically they are one buffer and logically
separated in software. The contingency part
is always set to accommodate the largest
message size. The network buffer must always
be at least as large as two maximum size
messages —- one for each part of the buffer.

The Transputer link, like a soft channel,
behaves as a blocking link. Therefore, any
word sent down a link remains on it until
removed by the next node. When traffic is
intense, the network can become blocked. Tt
is because of this protocol that the network
cannot. deadlock.

3. THE SIMULATION MODEL

A comprehensive simulation model was
designed to investigate system throughput.
Also of interest were the effects of message
length variation and network size increases.

Several software packages exist for
writing simulation programs. John Comfort at
Florida International University has written
a distributed simulation package to run on
the INMOS Transputer system (Comfort and
Gopal 1988). The program identifies objects
such as a statistics module, random number
generator, and a priority queue handler that
can be placed on separate processors of the
network.

A simulation program using this package
must first instantiate specific instances of
these objects. The future events queue is an
instance of a priority queue. The objects
are then accessed by standard calls.
Statistics are updated for an entity in the
simulation by sending messages to the




statistics package whenever the entity
changes its state.

The servers and entities: In order to
simulate the real network it is necessary to
determine how processes and messages will be
represented. As processes service messages
in the real network, servers process entities
in the simulation model. Each server must
have a set of states and well-defined actions
to be performed.

Although processes on the same processor
are conceptualized as running in parallel,
only one process can actually be running at a
time. Thus, for every node in the model,
only one server (process) can be servicing
(running) at a time. Each type of server had
a designated set of states and actions
describing the process being modeled and
could therefore be in only one state and
perform only one action at a time.

Messages in the system: Messages in the
real network consisted of two parts: the
message header and message body. The header
contained the source, destination, and length
of the message. In the simulation model,
each message header was an entity.

Simulating the buffers: In order to
model the user and network buffers that held
messages, it was necessary to create two FIFO
queues for every node. The queues held the
message header entities and local counters
were updated to track the total words in a
given buffer.

: A Transputer link
can only hold one word at a time (message
headers are single words). Because actions
performed depend on the type of data sent,
links were simulated using two variables.
The first indicated the type of data on the

link: a message header, a word of the
message body, or an indication the link was
free. If a message header was on the link,

then it was necessary to identify the actual
entity number. This was done by the second
variable.

: A single future
events queue (FEQ) held the bound event
notices for the entire simulation. These
notices included scheduling processes to
time-out because of waiting for a channel or
run time expiring. Also included were
notices from a node to another indicating
there was data on the 1link or data was

removed. Lastly, there were batch run
termination notices, as well as several
others.

.

Unless a priority scheme for scheduling
servers was represented, an unrealistic
ordering occurred in the simulation.
Therefore, it was necessary not only to keep
track of the servers that could process a
message, but also the order in which they
became available.

For this reason, two queues (Block and
Ready) were added to the simulation model.
The Block Queue held those servers waiting

839

for some event or condition to occur before
they could run, while the Ready Queue held
those servers ready to run. The servers in
the simulation were placed on the block queue
after serving an entity (message) and moved
to the ready queue according to pre-defined
conditions for the process being modeled.
Essentially, this modeled the operating
system's scheduler.

: The time needed to
perform each action was not easy to
determine. -The real network communication
program was analyzed and it was necessary to
literally count instructions (Qiang, Feild,
and Klein 1987a). In addition, the INMOS
Reference manual was consulted for system
timing statistics (INMOS 1987).

Each Transputer cycle takes about 67
nanoseconds —— 15 million cycles per second.
In order to acquire accurate results, it was
necessary to determine the time needed for
each server to perform its action. The level
of detail was so crucial that code for each
process in the real network communication
program was thoroughly evaluated to the point
where instructions were literally counted
{(Qiang, Feild, and Klein 1987a). In
addition, the INMOS Reference manual was
consulted for system timing statistics (INMOS
1987) .

: There were
five random number streams used for the
model. A parameter was sent for each stream
indicating the distribution: constant,
negative exponential, or uniform. The
streams used:

Average links a message travels

Number of messages to send now

Length of the current message

Time to run the local user application
Operating system delay to schedule a
process.
Parameters to the system: There were 16
parameters to the system:

The
The
The
The
The

number of batches to run

length of each batch

maximum length of a message

number of messages to send at once
size of the network buffer

The size of the user buffer

The five means and seeds for the
random number streams

4. MODEL VALIDATION

The real network of four nodes was run to
acquire comparative results. It was run
until each node sent/received 30,000 messages
of 15 words to/from the node three links
away. This test was run several times with
different network buffer sizes but the with
user buffer and link speed constant at 2000
words and 10MHz respectively. A few timers
were added and the system appeared to reach
stability almost immediately.

Intuitively, we could visualize the local
user generator flooding the server with



messages so the network buffér would be
filled to capacity. Then, the user

generator
would be blocked and the server would be able

to handle incoming messages by placing them
in the contingency buffer. At some point,
the server could reach a steady state of
handling both incoming and local messages.

The simulation was then tested where each
node was sending/receiving continuously to
the node three links away. The user buffer
size and link speed were set to constants of
2000 words and 10MHz respectively. The
variant was the size of the network buffer.

This test was run for eight blocks, each
representing one second of real time. The
network is presumed to have been saturated
with messages and reached steady state. The
results for blocks three to eight were the
same. The average time a message spent in the
system for both the real and simulated
networks are shown in Table 1 and Figure 3.

Table 1: Simulated versus real:
message time in system.

AVERAGE TIME A MESSAGE IS IN THE SYSTEM

(SECONDS)
Buffer
36 .00767 .00492 .3585
54 .00748 .00981 -.3115
150 .03380 .03900 ~.1538
300 .08300 .08300 .0000
500 .14616 .14633 -.0012
2000 .60320 .60330 -.0002

Average Message Time in System

Milliseconds

1000
900
800
700
600
500
400
300
200
100

500 1000 1500 2000

Network Buffer Size in Words

_+_ Reat

Figure 3: Simulated versus real:
message time in system.

X Simulated

When the network buffer is less than 300
words, there was a noticeable difference

840

between real and simulated results. It is
possible the cache memory may accommodate
these smaller buffers -~ with less memory off
chip the process can run faster. .

The simulation was then run with
uniformly distributed random message lengths
between 1 and 30 words. Again, each node was
sending messages across 3 links at 10 MHz.
The results are shown in Table 2 along with
the 90% confidence interval which
encapsulates the real network's average
méssage time in the system (as shown in Table
1). The user buffer was set to 2000 words.
The simulation was set run for 25 intervals
each representing one-half second of real
time.

Table 2: Four-node network with
random message length.

AVERAGE TIME A MESSAGE IS IN THE SYSTEM .

(SECONDS)
Average
Network Time in Standard 90% Confidence
i
36 .00640 .00202 .00308 TO .00972
2000 .79333 .12200 .59426 TO .99235

With several test runs and the results
listed here, it was decided the model was
valid.

5. FURTHER RESEARCH

The first step of this project was to
simulate the real four-node network and
verify the results. The simulation model was
validated and an extended model has been

created. This model was enhanced to simulate
networks of sizes greater than four
Transputers. Current research includes

observing system performance with various
message lengths modeling small messages to
large file transfers.

Currently, it is not possible to simulate
more than 32 Transputers due to the memory
constraint. However, we are investigating
alternatives to avoid this obstacle. One
alternative is to run the simulation on a
distributed network itself! However, since
each Transputer on the distributed network
has only 256 K bytes of memory, the problem
may persist. Another alternative is running
the model on a VAX 8800 for which Occam is
available. Lastly, MicroWay produces the
Quadputer which is a four node Transputer
network that each Transputer has 1 M bytes of
memory.

ACKNOWLEDGEMENTS

I wish to thank my husband, Paul, and
Professor John Comfort, whose support and
encouragement helped make this project a
success. In addition, I give special thanks
to Li Qiang and Raja Gopal for sharing their
friendship and Transputer expertise.




REFERENCES

Comfort, J.C. and Raja Gopal, R., (1988)
"Environment Partitioned Distributed
Simulation With Transputers”. Proceedings
of the 1988 wWinter Simulation Conference,

103-108.

Garcia, Albert B., Shaw, Wade H., (1986)
"Transient Analysis Of A Store-And-Forward
Computer-Communications Network"
B 3 f the 1986 Wi s A
Conference. Washington, D.C., 752-760.

. (1987)
INMOS Ltd. 72-TRN 006-03, Bristol, UK.

MacDougall, M.H. (1987) Simulating
System Techpnigues and Tools

Press, Cambridge.

The MIT

Silberschatz, Abraham, and Peterson, James L.

(1988) Operating System Concepts. Addison
Wesley Publishing Company, New York.

Stuck, Bart W. (1983) ™"Calculating the
Maximum Mean Data Rate in Local Area
Networks". Computer, May 1983, 72-76.

Qiang, Li, William B. Feild Jr., and Donald
Klein. (1987a) "Inplementation of a
Transputer Ring Network and a Deadlock
Prevention Algorithm". Proceedings from the
3rd U.S. Occam User Group Meetipng, Chicago,
Illinois.

Qiang, Li, William B. Feild Jr., and Donald
Klein. (1987b) "Channel Design Primitives
in Occam". Proceedings from the 3rd U.S.

’ Chicago,
Illinois.

AUTHOR'S BIOGRAPHY

JANICE R. GLOWACKI is an associate
programmer for IBM in Rochester, Minnesota.
She recently received her Master's of Science
in Computer Science from Florida
International University.

IBM Corporation

Highway 52 & Northwest 37th Street
Rochester, Minnesota 55901
(507)253-4011

841



