Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

A simulator for asynchronous hypercube communications

M. G. Roth
Mathematical Sciences Department
University of Alaska-Fairbanks
Fairbanks, AK 99775

ABSTRACT

This paper describes a simulator for the development and
study of software for hypercube multiprocessors with asynchro-
nous communications. The main area of application for the
simulator is the development of non-numerical algorithms for
hypercubes. The paper discusses the properties of hypercube
communications networks, the programmer interface to the
simulator, the simulator implementation and programming ex-
amples.

1. INTRODUCTION

The program described in this paper simulates the com-
munications system used on a hypercube multiprocessor under
development at the Jet Propulsion Laboratory (Core, 1985).
The simulator was designed to aid in developing programs for
that system and to study the asynchronous communication
traffic patterns which occur in hypercube multiprocessors in
general. The simulator runs under Version 4.4 or later of the
VAX/VMS operating system and may be used with any other
software which uses the VAX/VMS Common Language Envi-
ronment.

The simulator is capable of running up to a 6-dimensional
(64 node) hypercube on a VAX 11/750 or larger machine. We
refer to each simulated processor as a node. It is assumed that
the hypercube communicates to the outside world through an
intermediate processor called a Control Processor (CP). Please
note that there is vitually no similarity between this simulator
and an earlier synchronous (Crystalline) simulator described
by Hunt (1985), although the synchronous system provides a
subset of the functional capabilities in the present simulator.

The simulator allows any node to communicate with any
other node or with the CP. It also allows the CP to broad-
cast messages to all nodes. Each node maintains a queue of
messages received from the other nodes and the CP. These
messages can be accessed in FIFO order on messages from all
nodes or on only those messages from a specific node. In ad-

and

825

M. D. Wiley
Naval Research Laboratory
Washington, DC

dition, the handling of variable size messages is transparent to
the user.

The asynchronous simulator was developed primarily for
the purpose of investigating non-numerical algorithms on the
hypercube architecture. A wide variety of numerical problems
have been programmed and run successfully on hypercubes.
The majority of the numerical applications use regular spa-
tial decompositions in which identical computations are per-
formed on disjoint subsets of a lattice in the physical solution
space. Such applications, known as homogeneous problems,
are programmed by loading each hypercube processor with an
identical program to perform computations on a subset of the
lattice. For such applications, synchronous communication be-
tween processors is usually sufficient because the computations
at each processor are more or less identical. Since a processor
waiting for input blocks until a message is received, the effect
of synchronous communication is to synchronize the computa-
tions of all processors by means of their input requests.

If the amount of computation between corresponding in~
put requests is equal in every node, the processor loads will
be perfectly balanced and, assuming that the CPU execution
time is linear in the number of points of the physical lattice, a
speedup equal to

(@¥/(1+C/E)) (1)

is achieved, where E is the CPU execution time for a single
node processor to complete a solution on a subset of the lat-
tice, and C is the communication time required for the same

solution. When C is small relative to E, the maximum speedup
of 2V is nearly achieved.

In non-numerical applications, such as logic programming,
processor load balancing is much more difficult than for numer-
ical problems. For numerical problems it is usually possible to
develop an error estimator for the solution which determines
the step sizes and grid spacings required in the calculations.
From this information, it is possible, at least in theory, to sub-
divide a given problem in such a way that the processor loads

are approximately balanced.

|
:

In logic programming, there is often no obvious way to
subdivide the problem into equal pieces. Th{}s, a more general
scheduling strategy is required. The appro:ich adopted here,
and implemented in the hypercube simulator is that each node
processor runs a copy of the same program, which is typically
a Prolog or Lisp interpreter. However, the input to the inter-
preter for each processor constitutes a different program. In
effect, each processor therefore executes a d;ifferent program.
In this environment, processor loading can'be adjusted dy-
namically only if asynchronous communication between nodes
is possible. This capability will be available in the 32 node
hypercube currently under development at JPL and has been
implemented in the simulator described herein.

i
’
2. HYPERCUBE MODEL '

The multiprocessor architecture known as the Hypercube
or Nearest Neighbor Concurrent Processor consists of 2V indi-
vidual processors interconnected in the same manner that the
vertices of a binary N-dimensional hypercube are connected by
its edges. Each processor contains private memory and may or
may not have access to shared memory or shz’u‘ed file systems,
depending on the implementation. A hypercube is typically

controlled by a control processor (CP), which communicates
directly with one or more of the node processors. In the Cal-
tech/JPL hypercubes, the CP communicates directly with only
a single node of the hypercube.

The hypercube has interesting properties which make it
useful as the basis for communications networks. One of these
is that for an exponential growth in the number of nodes there
is only a linear growth in the number of communications links
required for a given node. This makes it possible for the hy-
percube to grow rapidly in its computational power with a
relatively small communications cost increase !'per node.

In addition, the model allows the use of a binary number-
ing scheme which allows for a fast message routing algorithm
and guarantees a minimal length path. This last attribute is
extremely important since we want the communications over-
head to be as small as possible. This binary l"epresenta.tion is

also useful for theoretical analysis.

Finally, the hypercube includes as special cases other com-

mon interconnection topologies such as rings, trees, and toroids.

2.1 Representation And Connectivity

v

A formal hypercube definition is presente‘d in Section 2.2

i

826

and is very useful in the theoretical sense, but fails to give
an intuitive understanding of how the hypercube may be rep-
resented physically. The most common representation of a 3-
cube is shown in Figure 1. Each vertex of the cube corresponds
to a node whose number is shown in decimal and (binary) next
to the vertex. Each vertex in an N-dimensional cube is directly
connected to N neighbors. Also shown in Figure 1 is the CP,
which communicates with the hypercube through node 0.

Figure 1. Three dimensional hypercube
and control processor.

Cpu (100) 5 (101)
0 (000), 1 f(o01)

6 (110) 7 (111)
2 (010) 3 (011)

Note that the neighbors of a given node n have numbers
which differ from n by exactly 27 for 7 =0,... , N — 1, where
N is the order of the cube. This coding system is called “Gray
code” and is particularly useful for message routing,.

2.2 N-Dimensional Cube Construction

The connectivity graph and node numbers in an N-dimen-
sional hypercube can be generated by a recursive algorithm.
The following algorithm describes the generation of an N-
dimen-sional hypercube in a form which is particularly useful
for the analysis of message flow within the hypercube.

1. Let Cy be a hypercube of N dimensions (2" proces-
sors).
. Define Cj to consist of node Iy + 0 only,
with no connections.
. To construct Cly, take two identical cubes C_;
and C'y_; and connect them as follows:
3.1 For each node I; in Cy_;
3.1.1 Connect node I; to the corresponding node I’ 7
in C' N-1
3.1.2 Rename I'; to Ipyon-1 + 7+ 281

2.3 Routing Algorithm

Each node has I/O channels numbered 0,...,N — 1. The
channel by which two directly connected nodes communicate
is numbered according to the position of the bits in which the
numbers differ, where position 0 is the least significant bit. For
example, nodes 0 and 1 differ in the Otk bit position, thus they
are connected via channel 0. Messages are passed according to
the following algorithm:

1. Let z = position of the lowest bit set in
Current_Node XOR Destination Node.
(Bit numbering is N —1,...,0.)

2. If the Current_Node = Destination Node

Then Save the message.
Else Send the message out channel .

2.4 Message Routing

Section 2.3 described how the message routing works from
the point of view of a given node. It is also useful to know the
path a message takes when going from the source node to the
destination node. The following algorithm generates the list of
nodes visited.

1. Let Iy = Source.Node and D = Destination-Node
2. 7+—n+0
3. While j < N Do
3.1 If bit § of (I, XOR D) =1 Then
Add node Ly1 + (D & 29) | (I, & ~27)
andn+—n+1
325+« j+1

The term (D & 27) masks the destination address. The
term (I, & ~ 27) masks all bits except the the jth from the
current node in the list. The result of ORing these terms is
to shift one bit from the source node’s value to the destination
node’s value. Each time this is done the next node closer to the
destination is generated. The list Ip,..., I, represents the path
a message must travel to go from the source to the destination.

2.5 Worst Case Analysis

Well designed hypercube programs take advantage of “lo-
cality of reference” to reduce communications overhead. As
mentioned above this is not always possible in applications
where it is difficult to predict the course of the solution. It is
therefore useful to analyze the case where every node sends a
message to every other node. This causes the worst communi-
cations problems possible due to the large number of packets
each node handles. We analyzed the number of packets han-
dled by each node to determine the communications overhead
in this case. Section 5 describes the programs used to study

this example on the simulator.

2.5.1 Connectivity. Node I is directly connected by a
path of length 1 to the nodes which satisfy

(I XOR 2%), n=0,...,N — 1.)

Proof: This follows directly from the method of construc-
tion.

2.5.2 Path Length. A message from node I to node J
passes through

K=Y (I XOR J) (3)
bits

nodes.

Proof: This follows directly from the routing algorithm
since each bit in (I XOR J) is looked at exactly once. Only if
a given bit is set is the message sent from the current node to
the next node closer to J.

2.5.3 Number Of Messages. The number of messages,
My .1, either ending at or passing through every node in an

N-cube for the case where all nodes are sending exactly one
message to all other nodes is

My =Nx2V"!for N >o0. (4)

Proof: Using the N-cube definition given previously, the
number of messages reaching but not necessarily stopping at a

given node I is
My =2My_3+2V 71 (5)

This can be shown by noting that there are My_; messages
at I due to the N —1 order cube C, 2Y ! messages from I’ to
C via I, and My _{ messages from all nodes in C’ other than
I'. By induction it can be shown that this recurrence equation
reduces to (4).

The number of messages passed for a hypercube consisting
of 2 single node (N = 0) is Mo = 0. Now assume My..; =
(N — 1) x 2V =2, Then from (5)

My =2My_, +2V1
=2((N—1) x2N-2) 4 2N-!
=(N-1)x2N-14oN-t
=Nx2N-!

3. PROGRAMMER INTERFACE

The user must provide two programs for the simulator.
One is the program for the Control Processor (CP), which is
connected to the hypercube as shown in Figure 1. The other

program is loaded into every node of the hypercube. These
programs access the hypercube simulation features via a set

of functions and subroutines whose names begin with “HA_”,
Figure 2 shows a list of the simulator routines with a brief
description of each. The declarations for these routines are
normally included in a header file at the beginning of the CP
and node programs.

Figure 2. C Language declarations file
for hypercube simulator.

/% CP initialization routine . */
extern int ha_init_CP():

/* Node initialization routine */
extern int ha_init_node();

/* Get a message from node n or the CP */
extern int ha_read_node();

/* Send a message to node n or the CP */
extern int ha_write_node();

/* CP broadcasts a message to all nodes */
extern int ha_broadcast();

/* Get # messages waiting from node n */
extern int ha_status(); ‘

/* Gracefully shut cube down (Normal) #/
extern int ha_shutdown();

/* Fatal error so shut down the cube x/
extern int ha_error();

/* Get global simulator values */
extern int ha_whoami();

/% Communication overhead summary */
extern int ha_summary();

Although the simulator routines are written in C, they
may be called from CP or node programs written in any lan-
guage which uses the VAX/VMS Common Language Envi-
ronment., When programming in C, the header file is called
HASIM.H. To program in other languages the declarations
in HASIM.H must be translated into the appropriate format
before they can be included in the CP and node programs.
Header files for FORTRAN and Pascal are presently available.
The reader is referred to Wiley (1986) for additional informa-~
tion on mixed language simulations.

The low level message passing is invisible to the program-
mer and thus no such routines are listed. The use of certain
routines is required for successful execution of the software.
For example, the routines HA_INIT_.CP and HA INIT_NODE
initialize the CP and nodes, respectively. HA_ SHUTDOWN is
also required to provide an orderly termination of the simu-
lated processes. The remaining routines are used for sending
and receiving messages, obtaining information about individ-
ual nodes and statistics about the the communications at each

node.

The programmer is provided with the simulator source
code file, the include files used to provide the simulator sub-
routine definitions and two VAX/VMS Command Language
procedures, HACONF.COM and BUILDDIR.COM, which are
used to interactively obtain information on cube order and
mailbox size and to create the necessary directory structure
to run a simulation. The organization of these directories and
their contents are shown in Figure 3. The CP and node pro-
grams reside in the top level directory, which also contains
a subdirectory named RUN. In this subdirectory each of the
node processors and the CP have a subdirectory to which their
output is directed.

Figure 3. Hypercube simulator directory structure.

Normal Directory

CPPROGRAM.EXE [.RUN] NODEPROGRAM.EXE
[.cP] [.NODEO] . v . [.NODExx]
INIT. INIT. INIT.
(CP init file) (NODEO init file) (NODExx init file)
OUTPUT.LIS OUTPUT.LIS
(NODEOQ sys$output) (NODExx sys$output)
ERRORS.LIS ERRORS.LIS

(NODEQO sys$error)

(NODExx sys$error)

4. SIMULATOR IMPLEMENTATION

The simulator operates by creating a VMS subprocess for
each node. The original process becomes the CP. The CP and
each node process has a mailbox to which all messages for that
process are sent. All processes run in separate sub-directories,
with node output going to files in the subdirectory owned by
the node and CP output going to the user’s default output de-
vice (i.e. terminal). In addition, each node (except the CP)
also has an event flag associated with it, which is used to pro-
vide synchronization during startup and shutdown. Figure 4
shows the I/O diagram for a given node. Several VMS System
Services are used to handle low level communications and syn-
chronization. Figure 5 gives an overview of what happens in
the simulator during startup and shutdown and is discussed in
more detail in the following sections.

4.1 Initialization

The CP program reads the data file generated by HA-
CONF.COM, which contains data regarding the order of the
hypercube, the mailbox size, and the name of the node pro-
gram. The event flag clusters used for hypercube synchroniza-
tion during startup and shutdown are allocated and all event
flags are cleared. The CP then creates a mailbox for itself and
one for each node. Initialization files containing mailbox and
neighbor information are written to each node’s directory and
the node processes are created. When created, each node’s
I/O is redirected to files within its own sub-directory and the
process name and system limits are also set. When the CP is
done with these tasks it waits until all nodes report via event
flags that they have completed their initialization.

When created, each node program must complete its own
initialization process via calls to HA_INIT_NODE. It must read
the data file generated by the CP, assign channels to its own
and all neighbor’s mailboxes, and initialize its own message
queue. When these operations have been completed, it sets its
event flag and hibernates until the CP wakes it.

When all nodes have reported then the CP again clears all
common event flags (for use later by the shutdown routine) and
wakes all the nodes. The hypercube simulator is now ready for

operation.
4.2 Message Passing
All messages are passed using fixed size packets via VMS

mailboxes and asynchronous system I/O calls. There is a mail-
box associated with each process (CP and node) which inter-

829

rupts the process whenever a message is received. When the
process is interrupted it keeps and/or passes along the received
message as required. Thus the user program does not have to
worry about the mechanics of the message passing system.

It is common to have a message which fills more than one
packet. In this case the packets are stored normally, but the
available message count for a given node is not updated until
a packet containing at least one null character is received. If
the message would fill exactly n packets, then n + 1 packets
are sent, with the last packet being empty. Only when such
a packet is received does the queue manager acknowledge that

the message is available.

If a process requests a message which is not available, the
process hibernates until the queue manager signals that a mes-
sage is ready. If the new message is not the one desired then
the process hibernates repeatedly until the correct message is
available.

4.2.1 Message Routing. Message routing is done using
the following algorithm:

Let X = (Current_Node XOR Destination),
where Destination = 0 for the CP.
If the message type = B (Broadcast mode) Then
Keep a copy of the message; and
For n = 0 to this node’s subcube order —1
Forward a copy of the message out channel n.
Else If the (Current_Node = Destination) Then
Save the message.
Else If this node is the CP Then
Send the message via the CP channel to node 0.
Else If the Destination is the CP Then
If Current Node # node 0 Then
Send the message towards node 0.
Else Send the message to the CP using
the CP channe! from node 0.
Else Send the message out channel X,

4.2.2 Message Queue Structure.
ceived by a node are stored in a global message queue for that

All messages re-
node. Each node maintains two arrays of pointers into its
global message queue. These pointers are used to directly ac-
cess messages from a given node. The first array, FRSTMSG,
points to the first packet in the queue from a given node. The
second array, LSTPACK, points to the last packet from a given
node. These pointers allow the front and back of the queue to
be located without list traversal. Additional pointers give the
HEAD, TAIL, and next FREE blocks in the queue.

Figure 4. 1/O organization for a simulated hypercube node processor.

Input via channels
from other nodes

SRS

] !
| Mailbox

l L To other nodes/CP
—-—— .
_1

[.nodexxloutput.lise—1, |
Process Event Flag

[.nodexx]errors.lis<~r— |

i o

To other nodes' mailboxes cP
via output channels

Figure 5. Simulator execution overview.
CP Program Nodexx Program

HA_INIT_CP

Read CP init file

Create CP mailbox

Create CP message queue
Create node mailboxes
Clear common event flags

For each node
Move to node directory
Write node init file

Create node procesSS—-mcmcmucenmnna >HA_INIT_NODE

(set process name,

CPU limit, output Read node init file

and error files) Assign channels to mailboxes

Create node message queue
Move back to CP directory

Set AST on CP mailbox Set AST on node mailbox
Wait for nodes to complete init Set start event flag
(Wait for all nodes to set (Node init complete)

their event flags)
‘ Hibernate until CP wakes
Clear all event flags for use up this node
by HA_SHUTDOWN
Wake up the nodes
(CP init complete)

User CP code { User node code {
Compute, &o I/O,ietc. Computé, do I/0, etc.
} ’ }
HA_SHUTDOWN HA_SHUTDOWN
Wait for all nodes to raise Raise event flag

event flags
Wait for the CP to force

Force nodes to terminate the node process to exit
normally
Exit

830

In addition o the message packets, the global queue con-
tains a set of links enabling it to keep data about message
sequencing, source nodes, and total message length. Figure 6
demonstrates what the queue for a 3-dimensional cube might
look like. The specific node numbers used in the figure are for
demonstration purposes only.

The queue, arrays and global queue pointers for an N-
dimensional cube are defined below:

struct inqueue {
int *next; next packet from same node
or next free block
int *next_msg; next packet in global queue
int *prev_msg; back link in global queue
char srcnode; where packet came from
char bytcnt; number of bytes used in packet

char data[x];} data (x=Packetsize-Packet_Hdr)

struct inqueue *frstmsg[N]; head of node queues
struct inqueue *lstpack[N]; tail of node queues

head of free list
head of global queue
tail of global queue

struct inqueue *free;
struct inqueue *head;
struct inqueue *tail;

4.2.3 Packet Format. Messages are sent between nodes
in 16 byte packets by default.

changed by changing the value for Packetsize in the simulator

The packet length may be

source code and recompiling. The packet format is as follows:

byte © : Message type
B - broadcast
D ~ data
E - error
byte 1 : Destination node
byte 2 : Source node
byte 38 : Number of data area bytes used
bytes 4 ~ 16 : Data area (Packetsize-Packet_Hdr)

4.2.4 1/0 Routines. The CP may send messages to the
nodes via either of two methods. It may broadcast messages to
all nodes via HA_ BROADCAST or it may send a message to

Figure 6. Message queue data structure for 3-D hypercube.

FRSTMSG Message Queue Message Queue
Link Diagram
0 HEAD cemete] srec =
1k node 0
2 \\ — .) message |prevmsg
3 sre =
4 node 3 next nextmsg
5 [
6
7 FREE available
.| available
srec =
M node 1
X (\
srec =
\ node 1
LSTPACK avallable
0 —~ sre = —
1 node 0
5 Lt
3 | sre =
[} node 5
5
6 (srec = “
7 node 5
(src¢ =
node §
|
8sre =
\A node 6
_: sre = >
node 0
TALL e

831

a specific node via HA_.WRITE_ NODE. The nodes may only
use the latter method to send messages. They may be read,
via HA READ_NODE, eitﬂer with respect to the global order
in which messages arrived or by specifying a particular node.

4.3 System Calls

VAX/VMS provides a variety of system services which
were useful in writing the simulator. In particular, the $QIO
{Queue I/O Request) was critical to the ease with which this
software was implemented. This service provides the ability to
deliver messages to a mailbox synchronously and to read them
asynchronously. Since the sending operation is synchronous,
it will wait until the message is delivered before completing.
Thus if the destination mailbox is full then it will wait until
the receiving node has had time to process a few messages and
partially empty its mailbox.

Conversely, the asynchronous reception of messages allows
the receiving node to process the incoming messages without
attention by the user program. Thus, this mechanism is com-
pletely transparent to the user. This is especially important
when a message is received which is not for the current node
and must be passed on.

Unfortunately, this method does not avoid the possibility
of deadlock caused by mailbox overflow. However, if mailbox
sizes are sufficiently large then this does not become a prob-
lem. Evaluation of the worst case test problem discussed in
Section 2.5 indicates that the minimum mailbox sizes provided
by HACONF.COM are sufficiently large for most applications.

4.4 Run Statistics

The routine named HA.SUMMARY writes runtime statis-
tics to the default output device. These data include CPU
time, number of bytes, packets, and messages sent, received,
or forwarded, and the average packet and message lengths.
This routine may be run at any time to obtain intermediate as
well as final results.

The number of bytes sent are those which this node or CP
originated. The number received are those for which this node
was the destination. The number forwarded are those which
were neither sent or received, but were simply passed along.
The number broadcast is the number of bytes received (sent for
the CP) that had a message type of “Broadcast.” These broad-
cast values are not reflected in the sent/received/forwarded in-
formation given earlier and are completely independent. The
packet and message information is generated in a similar man-
ner.

832

4.5 Error Handling

A special purpose routine, HA_ERROR, is provided to
handle fatal errors. In the CP this routine will print a message
to the error device. Using the process identifications (PIDs)
saved when creating the nodes, it will force all of the nodes
to terminate. It will then shut itself down and return the exit
status.

When a node calls this routine a special type of message
is sent to the CP which then calls HA.ERROR. The error
message printed by the CP identifies which node originated
the message. In addition, the error status sent from the node
is used as the CP exit status. This allows VMS to interpret the
error status and let the user know what it means. Information
indicating where the error occured is usually written to the
node’s error file.

4.6 Shut Down Sequence

A routine called HA_SHUTDOWN is provided which al-
lows for the orderly shutdown of the simulator after the, pro-
gram has completed. Although one node may be finished with
its portion of the processing, because of the asynchronous na-
ture of the simulator it may be required to pass messages be-
tween nodes which have not completed work. Thus it may not
simply shut itself down. This procedure avoids all of the po-
tential problems associated with shutting down the simulator.

When HA_SHUTDOWN is called a node sets its event flag
and waits. This wait does not interfere with message handling
but does reduce the CPU overhead involved with running many
processes. When the CP is done it waits for all of the nodes
to raise their event flags, then it tells all of the node processes
to exit normally.

5. ALL-TO-ALL SIMULATION

In this simulation the CP broadcasts a message to all
nodes and also sends an individual message to each node. Each
node also sends a message to all other nodes and the CP. After
sending the appropriate messages, each node/CP waits until all
expected messages have been received fron the other nodes/CP,
then prints the communications summary and stops. These
programs use almost all of the functions available on the sim-
ulator and provide a good benchmark on the highest possible
communication traffic.

The C language source codes for the CP and node pro-
grams for a 3 dimensjonal hypercube simulation (8 processors)
are given in Appendix A. Ignoring messages from the CP, each
node will receive or forward Ms = N x 2¥~1 messages, accord-
ing to (4). Thus, for N = 3, M3 = 12. The communications
summaries for node 0 and node 7 are shown in Figure 7. The
summaries confirm that the correct numbers of received and
forwarded messages are obtained when the CP messages are
subtracted. At node 0, 14 CP messages are forwarded (7 from
the CP to the other nodes and 7 from the other nodes to the
CP) and 1 CP message is received. In the case of node 7, only
1 CP message is received and no messages are forwarded to
other nodes.

one node found a solution to a problem on which several nodes
were working via different approaches. The first node to suc-
ceed would send an answer to the controlling node/CP which
would then send “stop” messages to the other nodes working
on the problem. The implementation of this capability would
be analogous to the way in which messages from different nodes
are now accessed in the queues.

6.2 Removal Of The 64-node Limit

The simulator is limited to 64 nodes due to the startup
and shutdown synchronization method, which employs event

Figure 7. Communications summaries for “All-to-All” simulation.

Communication summary: Node O

of Sent Broadcast Forwarded Received
Bytes 48 20 177 57
Packets 8 2 26 9
Messages 8 1 19 8
Average packet size = 6.7 bytes
Average message size = 1.3 Packets, 8.4 bytes
CPU time used = 1.15 seconds
Communication summary: Node 7

of Sent Broadcast Forwarded Received
Bytes 48 20 30 57
Packets 8 2 5 9
Messages 8 i b 8
Average packet size = 6.5 bytes

Average message size
CPU time used = 1.17 seconds

6. FUTURE DEVELOPMENTS

There are a few modifications which may be implemented
at a future date which would expand the capabilites of the
simulator. Some of these changes are due to a better under-
standing of the capabilites required for the physical hardware
on which this software is based.

6.1 Prioritized Messages

It would be useful in certain applications (e.g. Concurrent
Prolog) to have a mechanism for sending messages of different
priorities. This would be particulary useful when telling a node
to stop work on the current problem. This could happen when

833

1.1 Packets, 6.0 bytes

flags. VAX/VMS allows a maximum of 64 common event flags
to be used by communicating processes. A possible solution
to this problem would be to lock global pages into memory
which could then be used by all processes to perform the same
synchronization tasks. Unfortunately, this also requires special
operating system privileges and has the ability to degrade the
CPU performance if done incorrectly.

6.3 Multiple Node Programs

It may be desirable in some cases to have the nodes run-
ning different programs. For example, this could happen when
learning to partition the hypercube into subcubes to take ad-
vantage of unneeded processors. Currently only copies of a
single program may run in each of the nodes. This limitation

could easily be removed to allow different programs to run in
each node by having HACONF.COM either request the name
of a load map file or interactively querying the user for the
program to run in a specific node. HAINIT_-CP would also
have to be modified to read the load map and use the specified
programs when starting the nodes.

6.4 Packet Length

In some cases a simpler mechanism for specifying packet
length may be desired. For example, a user may run a series
of simulations in which the optimum packet size varies greatly.
In this case it would be useful to have HACONF.COM query
the user for the packet size desired. This would be easy to
implement, requiring only small changes in HACONF.COM,
HAINIT.CP, HA_.WRITE.INIT, and HA_READ_INIT.

ACKNOWLEDGEMENTS

This work was partially funded by NASA through JPL
contract 956901.

" APPENDIX A. All-to-All Programs

These programs illustrate the worst case communication
traffic in which every node sends messages to every other node

as discussed in Section 5.

A.1 All-to-All CP Program

#include "hasim.h"

main()
{
char buffer[30];
int i,j.msgnode,length;
int nodenum,doc,dim,numnodes;
int trace,pid;

/* Initialize CP #/

ha_init_CP(Q); .

ha_whoami (dnodenum, &doc ,&dim,
dmumnodes ,&trace,&pid);

/* Broadcast message to all nodes */
sprintf (buffer,"Broadcasting message");
printf ("Broadcast message\n\n");
ha_broadcast(buffer,20);

/* Send message to all nodes */

sprintf (buffer,"CP sending data");

for (i = 0; i < numnodes; i++)

{ printf("Sent message to node %d\n",i);
ha_write_node(i,buffer,15);

¥

834

/* Read messages from all nodes */
printf ("\n");
for (i = 0; i < numnodes; i++)
{ printf("\nWaiting for message %d\n",i);
length = ha_read_node(nodenum,&msgnode,
buffer, 20);
buffer[length]l = *\0’;
printf("Message received from node %d,
length is %d\n",msgnode,length);
printf ("Message is ‘'%s’\n",buffer);
¥
/* Get communications summary %/
ha_summary () ;

/* Shut down simulator */
ha_shutdown() ;

A.2 All-to-All Node Program

#include "hasim.h"

main()

{
char buffer[20];
int i,j,length,dest,msgnode;
int nodenum,doc,dim,numnodes;
int trace,pid;

/* Initialize node processor */

ha_init_node();

ha_whoani (dnodenum, &doc ,&dinm,
4numnodes,&trace,&pid) ;

/* Send a message to all other nodes */

sprintf (buffer,"Node %d",nodenum);

for (i = 0; i < numnodes ; i++)

{ if (i == nodenum) dest = -1;
else dest = i;
ha_write_node(dest,buffer,strlen(buffer));
printf ("Sent message to node Yd\n", dest);

>

/* Receive messages from all other nodes */

printf ("\n");

for (i = 0; i< (numnodes + 1) ; i++)

{ printf("Waiting for message %d\n", i);
length = ha_read_node (nodenum, &msgnode,

buffer, 30);
buffer[length] = *\0’;
printf("Message received from node %4,
length is %d\n",msgnode, length);:

printf ("Message is ’Ys’\n",buffer);

>

/* Get communications summary */

ha_summary();

/% Wait for CP to complete shut down */

ha_shutdown() ;

REFERENCES

Core Engineering Team (1985). Mark III Core Engineering
Notebook, JPL D-2431, Hypercube Research Project, Jet Pro~
pulsion Laboratory.

Hunt, H. (1985). “Hypercube Simulator: Nsim,” Caltech Con-
current Computation Program, Hm-155.

Wiley, M. (1986). “A VAX/VMS Simulator for an Asyn-
chronous Hypercube Architecture,” Unpublished M.S.
Thesis, Department of Mathematical Sciences, University of
Alaska Fairbanks.

AUTHOR’S BIOGRAPHIES

MITCHELL G. ROTH holds a Ph.D. degree in computer
science from the University of Illinois at Urbana-Champaign.
He is presently an associate professor of computer science at
the University of Alaska in Fairbanks.

Department of Mathematical Sciences, University of Alaska,
Fairbanks, Alaska 99775. (907)-474-7332.

MARSHALYL D. WILEY earned the M.S. degree in com-
puter science at the University of Alaska Fairbanks. IHe is
presently a systems analyst for the Naval Research Labora-

tory.

Naval Research Laboratory, Washington, D.C. (206)-767-1009.

835

