Proceedings of the 1988 Winter Simulation Conference
M. Abrams, P. Haigh, and J. Comfort (eds.)

A space logistics simulation implementation in ADA

Jesus Borrego
Frank Cheng
Dr. Ron Janz
ADVANCED TECHNOLOGY, INC.
222 N. Sepulveda Blvd., Suite 1310
El Segundo, CA 90245

ABSTRACT

This paper describes some of the issues involved in
converting a prototype of a large-scale discrete event simulation
written in SIMSCRIPT II.5 and FORTRAN into Ada. Specific
features provided by SIMSCRIPT that needed to be created in Ada
are discussed. Preliminary conclusions regarding the use of both
languages for large-scale simulations are then presented.

INTRODUCTION

The Comprehensive Operational Support Evaluation Model
for Space (COSEMS) is a discrete event simulation that is being
developed by Advanced Technology, Inc., as a subcontractor to
General Research Corporation, for the U.S. Air Force Space
Division, Director of SDX Logistics. The primary objective of
COSEMS is to evaluate alternative logistics support concepts that
have been proposed for the Strategic Defense System (SDS).
COSEMS does this by computing the resources consumed to
implement a given support concept, and the SDS constellation
availabilities. The resources consumed are translated into costs by
Tecolote Research, Inc. The operational availabilities are used to
evaluate SDS constellation effectiveness by initializing force
engagement models that have been installed on the National Test
Bed along with COSEMS.

COSEMS was written for execution on the VAX family of
computers. It evolved from a prototype that was designed primarily
to provide an early analysis of various on-orbit support concepts.
As refinements in these concepts were implemented, the prototype
evolved into a preprocessor, core simulation, and postprocessor.
The preprocessor and core simulation consisted of over 7,000 lines
of SIMSCRIPT IL5 code. The postprocessor consisted of 6,500
lines of FORTRAN 77 code. This paper describes the SIMSCRIPT
portion of the prototype and its translation into Ada. It also
describes how the SIMSCRIPT environment facilitated the
development of the code, and the tools required for the development
of the simulation environment in Ada.

761

SIMSCRIPT

SIMSCRIPT is a high-order programming language widely
used in the simulation community because of its unique simulation
environment, It is similar to FORTRAN in its syntax and allows
programmers to write simulation programs without concerning
themselves with the mechanics of simulation control. The langnage
provides and maintains a system clock. Each process contains an
activation time and the environment is responsible for activating the
process at the desired time. The environment also provides quene
maintenance, so the implementation of the event queue is transparent
to the user. Events and processes can be activated by entities.
Entities are objects with attributes and are able to hold other entities
within themselves; they usually contain information necessary for
the activation of processes. Processes can be created, executed,
suspended, interrupted, and resumed and are easily maintained by
the system.

In the simulation, entities are FILEd in the queue in user-
specified priority order, and are available to the program until they
are DESTROYed. The language leaves the implementation of the
actual data structures to compiler writers. The simulation
environment provided by SIMSCRIPT was a major factor in our
decision to develop the prototype in SIMSCRIPT.

PROTOTYPE

The preprocessor performs several functions. It reads user
options from an ASCII (text) input file. The options include the
architecture of the SDS satellite constellations, configurations of any
space-based support platforms (SBSPs) and service vehicles
associated with the support concept under investigation, and other
variables necessary to initialize the simulation. The satellites,
SBSPs and service vehicles are created using permanent and
temporary entities. The preprocessor then executes scheduling
routines to determine when the satellites require support. A
temporary entity is created for each service request and FILEd into
the SIMSCRIPT internal queue with a given activation time.



After initialization, the core simulation activates processes
ordered by increasing time; as processes are activated, time is
ineremented to reflect simulation time. When a service request is
first removed from the queue, the core simulation determines the
type of service requested (e.g., corrective maintenance, preventive
maintenance, space-based, ground-based, etc.). It then activates a
process to handle the request. The processes perform the following
services: space-based corrective service, space-based preventive
service, ground-based corrective service, ground-based preventive
service, space-based satellite replacement service, ground-launched
satellite replacement service, and platform resupply service. For
more detailed information about COSEMS, see Janz, Cheng, and
Borrego (1988).

TRANSLATION ISSUES

As the prototype matured, we decided to translate it into

Ada, a high-level language sponsored by the Department of Defense.
The Ada language provides generic packages that facilitate software
reusability. A generic package is a template for a package. Itis
declared as a normal package, except for the fact that data items may

‘ be declared generically. The actual type of the data is not known
until the generic package is instantiated for a given data type
(integer, float, record, etc.). For example, if it'is desired to write
code to sort arrays, most high-level languages require separate
procedures for integer arrays, float arrays, and character arrays. In
Ada, a package could be written to sort a generic array (any type of
array). The instantiation of the package identifies the type of the
array, so an instantiation of the package for type integer allows for
integer array sorts, while an instantiation of the package for type
float allows for float array sorts. Once a package is instantiated, the
compiler generates all necessary object code to implement the
instantiation. The size of the executable is not reduced by generic
packages; it only simplifies code development and maintenance. For
more information about generic packages (or the Ada language),
refer to Barnes (1984).

The prototype utilized the SIMSCRIPT simulation
environment. Ada is a general purpose programming language and
does not provide any simulation tools. We considered acquiring
commercially available tools to satisfy our software development
efforts, but the required licensing agreements were unacceptable for
our application. The remaining alternatives were to either develop a
complete simulation environment, or to develop only the tools
required for our application. Due to time constraints, we chose the
latter course. For a more detailed presentation of complete
simulation environments, refer to Unger, Lomow, and Birtwistle
(1984).

762

An interesting feature of Ada is the concept of a task. A task
is a mechanism provided by the language to allow parallel execution
of pieces of code. Tasks may be suspended and resumed. This
capability is very attractive for simulation applications, since the
events usually overlap, requiring temporary suspension of one event
until another one is completed. Unfortunately, tasking in Ada is
implemented as a First-In-First-Out (FIFO) queue, unless a priority
is assigned to the task. Priorities are assigned at compile time by
means of a pragma statement. The difficulty with this approach is
that our application determines the reactivation priority at run time,
not at compile time.

We feel that tasking in Ada could be improved by adding an
attribute to tasks, to uniquely identify that task. The attribute would
be treated like a pointer (access type) to refer to a given instance of a
task. Our code was written without tasks, thus requiring more logic
to support suspension and reactivation of events.

Discrete event simulation also requires a random number
generator. Ada, unlike most high level languages used in simulation
programs, does not provide a random number generator. Instead of
developing our own random number generator, we implemented
interfaces with the VAX Run Time Library (RTL).

As part of our simulation tools, we developed generic
packages to handle our events and queue control mechanism, using
linked lists (access types). For more information about generic
packages or access types, see Barnes (1984) or Booch (1987a).
Our generic package allows for elements in the lists to be ordered in
up to four control fields (keys) and were implemented with generic
elements of limited private types. These elements were not defined
in the generic package to allow for different instantiation of elements.
For example, an instantiation of the package with event information
provided the simulation with the Master Event Queue. Another
instantiation of the package with text format provided simulation
messages for output reporting.

IMPLEMENTATION

To convert the SIMSCRIPT prototype into Ada, the
architecture of the program was described using structured analysis
and design techniques. While the architecture of the final model was
being created, the simulation tools required for the model were being
developed. As the architecture of the prototype was mapped,
improverients in the design were implemented to take advantage of
the features of the Ada language. During this phase of the design,
object oriented design (OOD) techniques were used. For more
information about OOD, refer to Booch (1987b), or Peterson
(1987a, 1987b). Objects created included satellites, SBSPs, orbital
replacement units (ORUs), service vehicles, and launch vehicles.



Objects were encapsulated in Ada data structures called
packages, together with procedures and functions required to
manipulate the data. Access to the data was given only through
procedures and functions declared inside the package. The
information about the object and the implementation of the
procedures and functions were hidden from the rest of the code, to
ensure data integrity.

The developed generic packages were used extensively in the
implementation, as was a library of reusable simulation components.
An example of a reusable component was the linked list generic
package previously mentioned. The procedures and functions
provided by the package are given in Table 1. The linked list
contains pointers to the first element, the current element (last one
accessed), and the next element in the list. The position of a new
element in the list is determined by a sequential traversal of the list.
Each element's control item (key) currently on the list is compared
with the new element's control item. The list traversal starts from
the current element pointer (last element processed by the scheduler
that defines the current simulation time).

The final version of COSEMS may include a more
sophisticated search algorithm to speed up seek times if it is
determined that queue traversal is too slow.

The linked list generic package was instantiated to
manipulate the event queue. Events were ordered in ascending time
order. For the events in the event queue, the generic element, called
"item," was instantiated as a record structure containing information
about the event. Information included object ID, type of event, the
source of the event, and IDs of related objects.

In our simulation, a scheduler obtains the events from the
event queue and determines what area of the code is responsible for
handling the event. The scheduler also obtains the activation time of
the next event in the queue. The code handling the event continues
execution until the event is completely processed, or until the current
time is about ready to exceed the activation time of the next event.
At this time, the current event is preempted and filed into the event
queue with a new activation time and the next event starts execution.
Again, the previous event is not reactivated until its activation time
is reached.

Since Ada does not provide a Pascal-like DISPOSE
statement, we considered two methods of handling "garbage
collection." (Garbage collection is necessary to reclaim storage
occupied by data that is no longer needed. Linked list elements are
created from available space — "the heap." As elements are created,
the heap gets smaller and smaller. If space is not reclaimed after
elements are deleted, the available storage space is minimized and
therefore wasted.)

The first method consisted of recycling deleted events into a
free-space list and then obtaining the next event from this list
whenever a new event was desired. The second method consisted
of invoking the Unchecked Storage Deallocation ("UNCHECKED_
DEALLOCATION") procedure provided by the VAX. ‘This
procedure releases storage space previously used by deleted
elements. We opted for the invocation of the UNCHECKED_
DEALLOCATION procedure.

The items mentioned above, namely the data encapsulation
of objects, generic packages for event handling and sorting, garbage

Table 1. Queue Generic Package Software Inventory

Name Type Purpose Remarks

Add Procedyre Adds elements Updates pointer

Browse Procedure Browse next No pointer update

Clear Procedure Clears queue Releases storage

Delete Procedure Deletes current Releases storage
element

Dispose Procedure Deletes first Releases storage
element

Get First Procedure Obtains first Returns element
element

Get Next Procedure Obtains next Returns element
element

Number Function No. of elements Returns integer

of events in queue
Replace Procedure Updates element Updates in place

763




collection for freed memory, and utility routines such as random
number generator, were the key features necessary for the
development of our Ada model. Once these items were
implemented, the remaining tasks were the rearranging and
translation of algorithms and logic into the new structure. With
greater control and visibility over individual events, plus flexibility
in handling of special cases, the translation and testing were done
very smoothly and without major obstacles.

SUMMARY

We believe that SIMSCRIPT language provides an excellent
simulation environment and allows for quick development of
simulations. It is ideal for prototypes where the concern is to prove
a concept before committing the.resources required for a full scale
simulation. Unfortunately, the language is not sponsored by the
Department of Defense and any defense-related simulation
implementation has to take into account portability and
maintainability. The Ada language is beginning to gain acceptance
not only in the defense community, but also in industry and
academic communities. Although our software development effort
was delayed while we implemented the simulation environment, the
time required to develop the tools was not prohibitive, especially
since the reusability of the code will make the next simulation effort
more attractive in Ada.

REFERENCES

Barnes, J.G.P. (1984). Programming in Ada, Second Edition.
Addison-Wesley Publishing Company, Reading
Massachusetts.

Booch, G. (1987). Software Components with Ada: Structures,
Tools, and Subsystems. Benjamin/Cummings Publishing
Company, Menlo Park, California,

Booch, G. (1987). Software Engineering with Ada, Second
Edition. Benjamin/Cummings Publishing Company, Menlo
Park, California.

Janz, R., Cheng, F., Borrego, J. (1988). COSEMS: A Dynamic
Simulation of Space Logistics. ATAA Conference.

Peterson, G.E. (1987). Tutorial: Object Oriented Computing,
Volume 1: Concepts. Institute of Electrical and Electronic
Engineers (IEEE) Computer Society Press, Piscataway, New
Jersey.

Peterson, G.E. (1987). Tutorial: Object Oriented Computing,
Volume 2: Implementations. Institute of Electrical and
Electronic Engineers (IEEE) Computer Society Press,
Piscataway, New Jersey.

Unger, B.W., Lomow, G.A., Birtwistle, G.M. (1984). Simulation
Software and Ada. The Society of Computer Simulation, La
Jolla, California.

764

AUTHOR'S BIOGRAPHIES

JESUS BORREGO has 10 years experience in software
engineering, 5 of them in simulation and modeling, He is presently
a Technical Leader on the COSEMS software development effort.
He holds a B.S. in Electrical Engineering from California State
University, Fullerton and a B.S. in Computer Science from
California State University, Dominguez Hills. He is currently
pursing an M.S. degree in Computer Science from the University of
Southern California,

Advanced Technology, Inc.

222 N. Sepulveda Blvd., Suite 1310
El Segundo, CA 90245

(213) 640-1050

FRANK CHENG has 3 years experience in scientific simulation
and modeling. He is presently a Technical Leader on the COSEMS
software development effort. He holds a B.S. in Applied
Mathematics from the University of California at Los Angeles and is
currently pursuing an M.S. degree in Computer Science from the
University of Southern California.

Advanced Technology, Inc.

222 N. Sepulveda Blvd., Suite 1310
El Segundo, CA 90245

(213) 640-1050

DR. RON JANZ has 20 years experience in formulating
models/simulations for diversified engineering applications. He is
currently Technical Manager of the COSEMS development effort.
Prior to joining Advanced Technology, Inc., he was Principal
Director of the Mathematics and Programming Subdivision at The
Aerospace Corporation. He holds a Ph.D in Applied Mathematics
from Northwestern University.

Advanced Technology, Inc.

222 N. Sepulveda Blvd., Suite 1310
El Segundo, CA 90245

(213) 640-1050



